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A fundamental problem about the strength of non-deterministic computa-
tions is the problem whether the complexity class NP is closed under comple-
mentation. The set TAUT (w.l.o.g. a subset of {0, 1}∗) of propositional tau-
tologies (in some fixed, complete language, e.g. DeMorgan language) is coNP-
complete. The above problem is therefore equivalent to asking if there is a non-
deterministic polynomial-time algorithm accepting exactly TAUT .

Cook and Reckhow (1979) realized that there is a suitably general defini-
tion of propositional proof systems that encompasses traditional propositional
calculi but links naturally with computational complexity theory. Namely, a
propositional proof system is defined to be a binary relation (on {0, 1}∗) P (x, y)
decidable in polynomial time such that x ∈ TAUT iff ∃y, P (x, y). Any y such
that P (x, y) is called a P -proof of x.

It is easy to see (viz Cook and Reckhow (1979)) that the fundamental prob-
lem becomes a lengths-of-proofs question: Is there a propositional proof system
in which every tautology admits a proof whose length is bounded above by a
polynomial in the length of the tautology?

Proving lower bounds for particular propositional proof systems appears
rather difficult. For example, no non-trivial lower bounds are known even for
the ordinary text-book calculus based on a finite number of axiom schemes and
inference rules (a Frege system in the terminology of Cook and Reckhow (1979)).

Proof complexity applies methods from logic, from finite combinatorics, from
complexity theory (in particular, from circuit complexity, communication com-
plexity, cryptography, or derandomization), from classical algebra (field theory
or representation theory of groups), and even borrows abstract geometrical con-
cepts like Euler characteristic or Grothendieck ring.

However, the most stimulating for proof complexity are its multiple connec-
tions to bounded arithmetic. In particular, the task of proving lower bounds (for
any particular proof system) is equivalent to the task of constructing suitably
non-elementary extensions of models of a bounded arithmetic theory (the theory
in question depends on the proof system we want lower bounds for). Most lower
bounds can be explained very naturally as constructions of such extensions (and
some of the most treasured ones were discovered in this way).

In particular, models M to be extended are cuts in models of true arithmetic
(they can be “explicitly” obtained as bounded ultrapowers of N). Extensions N

of M we are after should preserve polynomial-time properties but should not be
elementary w.r.t. NP-properties. There are two things going against each other:
Under how fast functions is M closed and how strong theory model N satisfies.



The former issue influences the rate of the lower bound deduced, the latter one
the strength of the proof system for which it is proved.

I shall describe a new method for constructing these extensions. The models
are Boolean-valued and are formed by random variables.
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