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Abstract

We show how to formalize approximate counting via hash functions in subsystems of
bounded arithmetic, using variants of the weak pigeonhole principle. We discuss several
applications, including a proof of the tournament principle, and an improvement on the
known relationship of the collapse of the bounded arithmetic hierarchy to the collapse of
the polynomial-time hierarchy.

1 Introduction

Counting the number of elements of a finite set is one of the most fundamental operations
in discrete mathematics. However, exact counting is not available in weak systems of first-
order arithmetic where exponentiation is not a total operation unless the polynomial hierarchy
collapses, because of Toda’s theorem [36]. This does not exclude the possibility of approximate
counting, which is sufficient in many counting applications: we estimate the size of the set up
to a negligible error (where the meaning of “negligible” depends on the context).

A popular way of simulating approximate counting arguments in bounded arithmetic is to
apply variants of the weak pigeonhole principle, see e.g. [29, 30, 28]. A systematic approach
was taken in [21]: we have proved in the theory PV1 + sWPHP(PV ) (defined below in
Section 2) that for any bounded set defined by a Boolean circuit, there exist suitable kind
of surjective “counting functions” (also definable by circuits) which allow us to coherently
define the approximate size of the set up to a polynomially small error. This framework
admits smooth development of basic counting and probability arguments (including, e.g., the
inclusion-exclusion principle, and the Chernoff bounds), and provides a suitable means to
define and discuss randomized algorithms in bounded arithmetic. However, it also suffers
from a significant defect: if X is a subset of [0, a], we can only estimate the size of X up to an
error polynomially small relative to a—the size of the ambient interval—rather than relative
to the size of X itself. (One of the reasons being that the size of X is estimated by sampling it
with a pseudorandom number generator.) Sufficiently “sparse” sets are thus indistinguishable
from the empty set. This precludes more sophisticated combinatorial counting arguments (in
particular, inductive arguments such as in the proof of the Ramsey theorem), and it is at
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odds with what usually goes by the name “approximate counting” in theoretical computer
science.

Sipser’s Coding Lemma [34], which is an application of Carter–Wegman 2-universal fami-
lies of hash functions [7], shows that the polynomial-time hierarchy is closed under a stronger
form of approximate counting: if X is the finite set we want to count, and n is a parameter
given in unary, we can find s such that s ≤ |X| ≤ s(1 + ε) for any ε ≤ n−O(1). Our aim
is to show that Sipser’s definition makes a well-behaved concept of approximate counting
in bounded arithmetic. We work in the theory T 1

2 + sWPHP(PV2) (i.e., the one as before,
but relativized with an NP -oracle; it is a subtheory of T 3

2 ), or in the slightly weaker theory
T 1

2 + rWPHP(PV2) (see Section 2). The key technical result (which can be thought of as for-
malization of the Coding Lemma in bounded arithmetic) states that Sipser-style approximate
counting in terms of hash functions is (more or less) equivalent to the existence of certain
surjective functions (Corollary 3.5 and Theorem 3.8). Armed with this “implementation-
independent” view of hashing, we are able to prove basic properties of counting (Section 3),
such as the size of a disjoint union is (approximately) the sum of sizes of the summands.

In Section 4 we mention some applications, intended as examples demonstrating how the
methods developed in Section 3 may be used to formalize counting arguments in bounded
arithmetic. We solve an open problem of Kraj́ıček, Pudlák, and Takeuti [9, 23] by showing that
T 1

2 + rWPHP(PV2) (hence also T 3
2 ) proves Erdős’s [13] tournament principle (Theorem 4.2).

We also prove a generalization of the tournament principle (Theorem 4.3), which allows
us to strengthen the results of [26, 3] showing that the collapse of the bounded arithmetic
hierarchy implies collapse of the polynomial-time hierarchy (Theorem 4.6 and Corollary 4.7).
We observe that approximate counting provides an approximate Euler characteristic (in the
sense of Kraj́ıček [25]) for models of S2(α) (Theorem 4.10). We also include two applications
from computational complexity: we formalize in bounded arithmetic Cai’s [5] result SP

2 ⊆
ZPPNP (Theorem 4.11), and the existence of an AM -algorithm for graph nonisomorphism
by Goldwasser and Sipser [15] (Theorem 4.12).

We remark that the “new” approximate counting method does not make the “old” count-
ing of [21] superfluous: while the method in the present paper allows for better approximation
(we can estimate the size of a set X up to an error which is a polynomially small fraction of
|X|, rather than of the size of the ambient universe) which also agrees with the established
usage of the term “approximate counting” in computer science, the price we pay is an in-
crease in the complexity of the counting functions, which requires an increase of the strength
of the base theory by one level of the bounded arithmetic hierarchy. To put it differently,
T 1

2 + sWPHP(PV2) can count PNP/poly-sets using the old method, but only NP/poly-sets
using the new method. Moreover, some results from [21] are used in an essential way in
Section 3.
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2 Preliminaries

We assume some degree of familiarity with first-order bounded arithmetic, however the basic
definitions are summarized below. More background can be found in [23, 4, 17].

Buss’ theories are formulated in the language L = 〈0, S,+,×,≤,#, |x|,
⌊
x
2

⌋
〉. The intended

meaning of the symbols are the usual arithmetical operations on non-negative integers, and
|x| = dlog2(x + 1)e, x # y = 2|x|·|y|. Bounded quantifiers are introduced by

∃x ≤ t ϕ⇔ ∃x (x ≤ t ∧ ϕ),

∀x ≤ t ϕ⇔ ∀x (x ≤ t→ ϕ),

where t is a term without an occurrence of the variable x. Such a quantifier is sharply
bounded, if t has the form |s| for some term s. A formula ϕ is bounded (sharply bounded)
if all quantifiers in ϕ are bounded (sharply bounded). A formula is Σb

1 if it is constructed
from sharply bounded formulas by means of ∧, ∨, sharply bounded, and existential bounded
quantifiers. In general, Σb

i -formulas consist of i alternating blocks of bounded quantifiers
followed by a sharply bounded formula, where the first block is existential, and we ignore
sharply bounded quantifiers which are allowed to appear anywhere in the quantifier prefix.
Πb

i -formulas are defined similarly, but the first block is universal; in other words, Πb
i -formulas

are negations of Σb
i -formulas. The class of Boolean combinations of Σb

i -formulas is denoted
by B(Σb

i). Bounded formulas capture the polynomial-time hierarchy (PH ). More precisely,
for any i ≥ 1 the class ΣP

i coincides with sets of natural numbers definable by Σb
i -formulas in

N (the standard model of arithmetic), and dually ΠP
i = Πb

i(N), in particular NP = Σb
1(N).

The theory T i
2 is axiomatized by a finite set of open axioms denoted by BASIC , which

state elementary properties of the symbols of L, and the schema of induction

(IND) ϕ(0) ∧ ∀x < a (ϕ(x)→ ϕ(x + 1))→ ϕ(a)

for Σb
i -formulas ϕ. The theory Si

2 is axiomatized over BASIC by the polynomial induction
schema

(PIND) ϕ(0) ∧ ∀x ≤ a (ϕ(
⌊
x
2

⌋
)→ ϕ(x))→ ϕ(a)

for Σb
i -formulas ϕ. Alternatively, Si

2 can be axiomatized over BASIC by the length induction
schema

(LIND) ϕ(0) ∧ ∀x < |a| (ϕ(x)→ ϕ(x + 1))→ ϕ(|a|),

or by the length maximization schema

(LMAX ) ϕ(|a|)→ ∃b ≤ |a| (ϕ(b) ∧ ∀c < b¬ϕ(c))

for Σb
i -formulas ϕ. We have Si

2 ⊆ T i
2 ⊆ Si+1

2 , the full bounded arithmetic is thus S2 =
⋃

i S
i
2 =⋃

i T
i
2. The theory Si+1

2 is ∀Σb
i+1-conservative over T i

2 by Buss’ witnessing theorem [2] (in the
case of i = 0 we need a minor adjustment of the language of T 0

2 , see [19]).
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PV is an equational theory introduced by Cook [11]. Its language contains function
symbols for all polynomial-time algorithms, introduced inductively using limited recursion on
notation (cf. Cobham [10]). It is axiomatized by defining equations of its function symbols,
and a derivation rule similar to PIND . PV1, also known as QPV , T 0

2 (�p
1), or ∀Σb

1(S
1
2), is a

first-order variant of PV . It can be axiomatized by equations provable in PV together with
the axioms 0 6= 1 and

⌊
x
2

⌋
= 0→ x = 0 ∨ x = 1, and it proves the PIND and IND schemata

for sharply bounded formulas. We will also use the symbol PV to denote the set of function
symbols of PV .

The theories PVi+1 for i > 0, introduced in [26], are defined similarly to PV1, except that
the basic functions of their language include the characteristic functions of all Σb

i -predicates,
thus PVi+1-functions correspond to FPΣP

i in the standard model. Again, we will also use
PVi+1 to denote the class of PVi+1-functions. The class of PVi+1-predicates (which cor-
responds to ∆P

i+1 in the standard model) is denoted by ∆b
i+1; it coincides with predicates

provably Σb
i+1 ∩Πb

i+1 in either T i
2 or Si+1

2 .
As PVi+1 is a conservative extension of T i

2 by definitions, we will simply identify PVi+1

with T i
2, and work freely with PVi+1-functions in T i

2. The theory S1
2(PVi+1), which is ax-

iomatized by PVi+1 and Σb
1(PVi+1)-PIND , is a conservative extension of Si+1

2 for the same
reason, hence we will also identify Si+1

2 = S1
2(PVi+1).

All these theories can be relativized in a straightforward way. We include a new predicate
α in the language, and define Σb

i(α) as before, but allowing α to be used in atomic formulas.
The theory T i

2(α) consists of BASIC and Σb
i(α)-IND (i.e., there are no axioms involving α

apart from the induction axioms), and similarly Si
2(α) = BASIC + Σb

i(α)-PIND . In the
case of PV (α) and PVi(α), we allow the characteristic function of α to appear in functions
constructed by limited recursion on notation, so that function symbols of PV (α) correspond
to polynomial-time oracle algorithms. More generally, if Γ is a set of formulas, we define
Σb

i(Γ), T i
2(Γ), Si

2(Γ), and PVi(Γ) by substituting Γ-formulas for α in Σb
i(α), T i

2(α), Si
2(α), and

PV i(α). (Notice that T 1
2 (Σb

i) = T i+1
2 , and so on.) The main point of relativization is that

this kind of substitution preserves derivability. Hence, e.g., if we prove a statement about
counting of Σb

1(α)-sets in T 1
2 (α) + sWPHP(PV2(α)), it also applies to counting of Σb

i -sets in
T i

2 + sWPHP(PVi+1) for every i > 0.
The choice schema (aka bounded collection, or replacement) BBΓ for a set of formulas Γ

is defined by
∀x < |a| ∃y ≤ b ϕ(x, y)→ ∃w ∀x < |a|ϕ(x, (w)x),

where ϕ ∈ Γ, and (w)x denotes the xth member of the sequence encoded by w. BBΣb
i(α) is

provable in Si
2(α).

For any functions f, g, the surjective (also called dual), injective, and retraction pigeonhole
principles are defined by

sPHPa
b (f)⇔ ∃v < b∀u < a f(u) 6= v,

iPHPa
b (g)⇔ ∃v < b g(v) ≥ a ∨ ∃v < b∃v′ < v g(v) = g(v′),

rPHPa
b (f, g)⇔ ∃v < b (g(v) ≥ a ∨ f(g(v)) 6= v).
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(Recall that a retraction pair is a pair of functions f, g such that f ◦ g = id; the function f is
called a retraction, and g is its coretraction.) Note that the functions f, g may involve other
parameters not explicitly shown. The weak pigeonhole principles are defined by

?WPHP(f) = ∀
(
x > 0→ ?PHPx|y|

x(|y|+1)(f)
)
,

?WPHP(Γ) = {?WPHP(f); f ∈ Γ},

where ∀ denotes universal closure, Γ is a set of functions, and ? ∈ {s, i, r}. In the case of
rWPHP(PV (Γ)) and iWPHP(PV (Γ)), the principles thus introduced are equivalent to the
more usual variants with bounds ?PHPx

2x or ?PHPx
x2 over PV1(Γ). This however does not

hold for sWPHP (we need S1
2(Γ) to prove the equivalence, see [20] for details), we thus need

to state the principle in the strong form as above.
As T i

2(α) proves that every PVi+1(α)-function is on a bounded domain computable by
a polynomial-size circuit with a Σb

i(α)-oracle, the schema ?WPHP(PVi+1(α)) is over T i
2(α)

equivalent to its single instance where f is the evaluation function for Σb
i(α)-oracle circuits,

for any ?.
Clearly rWPHP(f, g) follows from either sWPHP(f) or iWPHP(g). The weak pigeon-

hole principles sWPHP(f) and iWPHP(f) are provable in T 2
2 (f) [29, 23, 27] (in particular,

sWPHP(PV2(α)) is contained in T 3
2 (α)), but no variant of WPHP is provable in S2

2(f) [22, 32].
We will often use (for i = 1) the following connection between rWPHP and sWPHP , which
follows by relativization of [18, Cor. 1.15, 4.12].

Theorem 2.1 For any i ≥ 0, the theory Si+1
2 (α) + BBΣb

i+2(α) + sWPHP(PVi+1(α)) is
∀Σb

i+1(α)-conservative over T i
2(α) + rWPHP(PVi+1(α)).

We will often work with bounded definable sets, which are collections of numbers of the form

X = {x < a; ϕ(x)},

where ϕ is a formula. Bounded sets are not genuine objects in our arithmetical theories, but
a figure of speech: x ∈ X is an abbreviation for x < a ∧ ϕ(x). We will write X ∈ Σb

1(α) if
X is a bounded set defined by a Σb

1(α)-formula. When used in a context which asks for a
set, a number a is assumed to represent the integer interval [0, a); thus, for example, X ⊆ a

means that all elements of X are less than a. We will use simple set-theoretic operations,
whose meaning should be generally clear from the context; for example, if X ⊆ a and Y ⊆ b,
we may define

X × Y = {bx + y; x ∈ X, y ∈ Y } ⊆ ab,

X ∪̇ Y = X ∪ {y + a; y ∈ Y } ⊆ a + b.

On the other hand, we will occasionally (especially in the applications) need to refer to
“small” sets directly encoded by a number. They should be distinguishable from definable
sets by the context; in particular, by the absence of a complexity measure (as in “a Σb

1(α)-
set”). If X is such a small set, we denote by |X| its cardinality, defined in a natural way (e.g.,
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as in Corollary 3.10). This notation should not be confused with the length (or logarithm)
function |a| from the basic language of bounded arithmetic.

Due to general absence of BB in our base theory, we will often need to work with a
strengthened notion of surjectivity. We will call a function f : X → Y a smooth surjection,
written as

f : X � Y,

if for every sequence w of elements of Y , there exists a sequence v of elements of X, such
that lh(v) = lh(w), and f(vi) = wi for every i < lh(v), where lh(v) denotes the length of the
sequence v. (Note that the length of w is implicitly polynomially bounded as lh(w) ≤ |w|,
but we do not impose other restrictions on it.) We also extend the definition so that the
empty partial function is considered a smooth surjection from any set X on the empty set Y .
In many situations, a surjection is automatically smooth (in particular, we will often use (i)
without explicit mention):

Observation 2.2 (in T 1
2 (α)) Let X ∈ Σb

1(α). A surjective PV2(α)-function f : X → Y is
smooth whenever at least one of the following holds:

(i) f has a PV2(α)-coretraction,

(ii) f has a Σb
1(α)-graph,

(iii) BBΣb
2(α),

(iv) f is a composition of two smooth surjections.

(Note in particular that all surjections are smooth in the standard model of arithmetic.
Smoothness is only a technical condition needed to compensate for the lack of appropriate
instances of BB .) We will write just X � Y if there exists a function f : X � Y (of suitable
complexity, which should be clear from the context).

We will use the shorthand notation

x ∈ Log⇔ ∃y x = |y|.

We will also work with rational numbers, which are assumed to be represented by pairs of
integers in a natural way. The expression x−1 ∈ Log is a shorthand notation meaning that
x is a positive rational number, whose inverse is bounded above by an integer n ∈ Log. The
symbol QLog denotes the set of rationals whose nominator and denominator belong to Log.

Many of our results take place inside formal theories like T 1
2 + rWPHP(PV2). If T is a

theory, a parenthesized expression “in T” in the heading of a definition or theorem indicates
that the definition is introduced in T , or that the theorem is formulated and proved inside T .
However, we will slightly abuse this convention for reasons of compactness: when we write e.g.
“for every PV2-function f . . . ” in a formalized context, it is assumed that the quantification
over PV2-functions takes place in the metatheory, and only parameters of the function are
quantified inside T . Formulas, definable sets, and other non-first-order objects are treated
similarly.
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In fact, in most cases the sets or functions thus quantified will only have a bounded
domain. As already mentioned above, speaking of (say) PV2(α)-functions, or Σb

1(α)-sets in
such a context is equivalent to using circuits with a Σb

1(α)-oracle, or non-deterministic Boolean
circuits with an oracle α, respectively. We will, however, generally use the former expression,
as we believe it is easier to read (even though the latter may be formally more correct). We
point out that the reader should think about Σb

1-sets as corresponding to NP/poly , rather
than just NP as is usual in bounded arithmetic.

We will also need some notation and results from [21]. For convenience, we state it in a
relativized version (which is the one we will actually use); in particular, what we denote �ε

below is closer to what is denoted by �1
ε in [21].

Let X, Y ⊆ a be definable sets, and ε ≤ 1. We say that the size of X is approximately
less than the size of Y with error ε, written as X �ε Y , if there exists a PV2(α)-function C,
and v 6= 0, such that

C : v × (Y ∪̇ εa) � v ×X.

The sets X and Y have approximately the same size with error ε, written as X ≈ε Y , if
X �ε Y and Y �ε X. (We recall that we identify a number s with the interval [0, s), thus as
a special case, X ≈ε s means that the size of X is equal to s with error ε.)

If p is a rational, we also write

Prx<a(ϕ(x)) �ε p iff {x < a; ϕ(x)} �ε pa,

and similarly for �, ≈. We will often omit the mention of a when it is clear from context. For
example, a sequence ~A = 〈Ai; i < k〉 of t×n binary matrices is encoded by a number x < 2ktn,
hence we write Pr ~A(ϕ( ~A)) instead of Prx<2ktn(ϕ(the sequence of matrices encoded by x)).

Theorem 2.3 ([21, Thm. 2.7]) (in T 1
2 (α) + sWPHP(PV2(α))) Let X ⊆ a, X ∈ ∆b

2(α),
and ε−1 ∈ Log. There exists a number s ≤ a such that X ≈ε s, moreover the surjections re-
quired by the definition of ≈ have PV2(α)-coretractions, and the numbers v from the definition
belong to Log.

The reader may find it helpful to familiarize her/himself with basic properties of �ε from
[21, §2].

We will occasionally use some results from [21] on definable randomized algorithms, in
particular, AM . Recall that a promise problem is a pair L = 〈L+, L−〉 of disjoint sets of strings
(a language L ⊆ Σ∗ is identified with the promise problem 〈L,Σ∗ r L〉). A promise problem
L is in promise AM (α) (prAM (α) for short), if there exists a probabilistic polynomial-time
algorithm A(x, y) with oracle α such that

A(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p, and

x ∈ L+ ⇒ Pr(∃y A(x, y)) ≥ 3/4,

x ∈ L− ⇒ Pr(∃y A(x, y)) ≤ 1/4.
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A language is in AM (α) if the corresponding promise problem is in prAM (α).
We formalize this definition in T 1

2 (α) + sWPHP(PV2(α)) as follows. Let β be a PV -
function with values in (0, 1/2). A pair 〈ϕ, r〉, where ϕ(x,w) is a Σb

1(α)-formula, and r is a
PV -function, β-defines a prAM (α) problem L = 〈L+, L−〉 if L+ ⊇ L+

ϕ,r,β and L− ⊇ L−
ϕ,r,β,

where

x ∈ L+
ϕ,r,β iff Prw<r(x)(¬ϕ(x,w)) �0 β(x),

x ∈ L−
ϕ,r,β iff Prw<r(x)(ϕ(x,w)) �0 β(x).

The pair 〈ϕ, r〉 β-defines an AM (α)-language, if ∀x (x ∈ L+
ϕ,r,β ∨ x ∈ L−

ϕ,r,β). If unspecified,
we take β = 1/4.

The definition is insensitive on the choice of β in the following sense: if t, s are PV -
functions such that t(x), s(x) > 0 and 1/s(x)+1/|t(x)| ≤ 1/2, then T 1

2 (α)+sWPHP(PV2(α))
proves that L is a definable prAM (α)-problem iff it is a (1/2 − 1/|t|)-definable prAM (α)-
problem iff it is a 1/s-definable prAM (α)-problem [21, P. 4.3]. We could also use an asym-
metric definition with different bounds for L+ and L−, but we will not write it down explicitly.

We will need the following statement, formalizing the result that AM ⊆ NP/poly .

Theorem 2.4 ([21, P. 4.5]) (in T 1
2 (α) + sWPHP(PV2(α)))

If L is a 1/4-definable prAM (α)-problem, and n ∈ Log, then there exists a polynomial-size
nondeterministic oracle circuit C : 2n → 2 such that

x ∈ L+ ⇒ C(x) = 1,

x ∈ L− ⇒ C(x) = 0

for every x < 2n.

If L0, L1 are definable prAM (α)-problems, it is easy to see that L0∩L1 := 〈L+
0 ∩L+

1 , L−
0 ∪

L−
1 〉 and L0 ∪L1 := 〈L+

0 ∪L+
1 , L−

0 ∩L−
1 〉 are also definable prAM (α)-problems. More impor-

tantly, definable prAM (α)-problems are in T 1
2 (α) + sWPHP(PV2(α)) closed under bounded

existential quantification [21, Thm. 4.4]: if q is a PV -function, and L is a definable prAM (α)-
problem, then so is L∃ := 〈L+∃, L−∀〉, where

x ∈ L+∃ iff ∃y < q(x) 〈x, y〉 ∈ L+,

x ∈ L−∀ iff ∀y < q(x) 〈x, y〉 ∈ L−.

3 The toolbox

We begin with a definition of approximate counting based on Sipser [34]. Rather than defining
what is a size of a set, we introduce a predicate X -ε s which means that the size of X is
bounded above by s (approximately, with relative error ε). (This - should not be confused
with �.)

The basis of the construction is to use linear hash functions. The idea is as follows. Let
X ⊆ 2n, s = |X|, and choose a parameter t. We consider a random linear function A : 2n → 2t
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(which is given by a matrix, thus a polynomial-size object). Ideally, we would like A to be
injective on X, which would witness that s ≤ 2t. This is rather unlikely to happen unless t

is really huge, but it is possible that A is injective at least on a sizable part of X. Let thus
X ′ be the set of all elements x ∈ X such that A(x) 6= A(y) for all y ∈ X different from x,
so that A is injective on X ′. Elements of X ′ are called separated by A. The probability that
A(x) = A(y) for x 6= y is 2−t, hence any x ∈ X is not separated by A with probability at
most s2−t ≤ 1/2, as long as 2t ≥ 2s. The expected size of X ′ is thus at least s/2. In order
to cover all of X, we choose independently random linear functions Ai : 2n → 2t for i < t.
The probability that x ∈ X is not separated by Ai is at most 1/2, hence the probability
that it is not separated by any Ai, i < t, is at most 2−t. The expected number of x ∈ X

not separated by any Ai is thus at most s2−t ≤ 1/2, hence there exist matrices A0, . . . , At−1

such that every x ∈ X is separated by some Ai. However, the existence of such ~A does not
conversely guarantee that |X| ≤ s. Each Ai injects a part of X to 2t, hence we can inject X

into t2t. We may choose 2t ≤ 4s, hence we obtain only an injection of X to 4s log 4s.
This form of hashing thus directly distinguishes sets of size s from roughly 4s log s. We

want to distinguish size s from s(1+ε) for polynomially small ε; we achieve this by considering
Cartesian powers. Instead of our set X, we apply the hashing to Xc for some c. We can
distinguish its size sc from 4sc log sc = 4csc log s, and the latter is less than (s(1 + ε))c as
long as (1 + ε)c ≥ 4c log s. We have (1 + ε)c1 ≥ 2 for c1 ≥ ε−1, and 2c2 ≥ 4c log s for c2

about log log s + log c, hence it suffices to take roughly c = Ω(ε−1(log log s + log ε−1)). We
will actually use somewhat larger (but still polynomial in ε−1 and log s) c for convenience to
simplify some computations below.

Definition 3.1 Let X ⊆ 2n, and x < 2n. A matrix A ∈ 2t×n (i.e., a t-by-n matrix over
GF (2)) separates x from X if Ax 6= Ay for all y ∈ X r {x} (where we view elements of 2n as
column vectors over GF (2)). A sequence ~A = 〈Ai; i < k〉 of matrices isolates X, written as

~A : X # 2t,

if every x ∈ X is separated from X by some Ai. Let ε−1 ∈ Log. If s > 0, we write

X -ε s

if there exist 〈Ai; i < t〉 such that ~A : Xc # 2t, where c = 12|S|dε−1e2, and t = |Sc| + 1 for
some 0 < S ≤ s. We also define X -ε 0 iff X is empty. We write X - s if X -ε s for every
ε−1 ∈ Log.

Remark 3.2 If X is Σb
1(α), then the properties “A separates x from X”, and “ ~A isolates

X” are Πb
1(α), hence X -ε s is Σb

2(α).
The definition makes - monotone: if Y ⊆ X -ε s ≤ t, then Y -ε t.
If X ⊆ 2n, n < m, ~A ∈ 2t×m, and ~B ∈ 2t×n is the sequence of restrictions of Ai’s to the

first n columns, then ~A isolates X iff ~B does. The definition of X -ε s thus does not depend
on the choice of n.

A moment’s reflection will persuade the reader that it is next to impossible to work directly
with the hash functions. For example, if ~A : X # 2t, and ~B : Y # 2t, there is apparently no
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way of constructing ~C such that, say, ~C : X ∪Y # 2t+1. In the real world, this is no problem
as we have a well-behaved preexisting notion of cardinality, and we merely observe that the
hashes agree with it. Obviously, this does not work in bounded arithmetic if we want to use
the hashes to define (approximate) cardinality in the first place. We get around the problem
by showing that X -ε s is, up to ε, equivalent to the existence of suitable surjections from
a power of s to a corresponding power of X; these surjections will be much easier to handle.
The key result is Theorem 3.4 (the other direction will be much simpler), which is essentially
a formalization of Sipser’s Coding Lemma in bounded arithmetic.

Lemma 3.3 (in T 0
2 ) If c ∈ Log, there exists a PV -bijection

f :
.⋃

i≤c

(
c

i

)
×Xi × Y c−i ' (X ∪̇ Y )c

with a PV -inverse.

Proof: Let u <
(
c
i

)
, 〈xj ; j < i〉 ∈ Xi, and 〈yj ; j < c−i〉 ∈ Y c−i. We can enumerate subsets of

c of size i by
(
c
i

)
, let thus U ⊆ c be the uth set. Let 〈πj ; j < i〉 be an increasing enumeration

of U , and 〈%j ; j < c− i〉 an increasing enumeration of c r U . We define f(u, ~x, ~y) = ~z, where
zπj = xj , z%j = yj . It is easy to see that f is a bijection. �

Theorem 3.4 (in T 1
2 (α) + sWPHP(PV2(α))) Let d, r > 0, d ∈ Log, and f : rsd � r ×Xd,

where X is Σb
1(α), and f is PV2(α). Then there exists 〈Ai; i < t〉 such that ~A : X # 2t,

where t = |s|+ 1, and moreover,

Pr ~A

(
~A does not isolate X

)
�0 2/3.

Proof: Let B be the set of sequences 〈Ai; i < t〉, Ai ∈ 2t×n, such that ~A does not isolate X.
We define a PV -function

g0 : (2n r {0})× 2n−1 → 2n

as follows. Let i < n be the index of the first set bit of x. We decompose w = w0 a w1, where
w0 < 2i and w1 < 2n−i−1, and we put g0(x,w) = w0 a b a w1, where b = xT(w0 a 0 a w1).
Clearly, g0(x, ·) is a surjection of 2n−1 onto {a ∈ 2n; aTx = 0} whenever x 6= 0. Then we can
define a PV -function

g : (2n r {0})× 2(n−1)t → 2t×n

so that g(x, 〈w0, . . . , wt−1〉) is the matrix A such that the jth row of A is g0(x,wj)T for every
j < t. It follows that

g(x, ·) : 2(n−1)t � {A ∈ 2t×n; Ax = 0}

for every x 6= 0.
We define a PV2(α)-function

h : rt+1
(
st+12(n−1)t2

)d → rt+1(2t×n)td

as follows. We interpret the input to h as sequence consisting of u, 〈vi; i < t〉, and 〈wi,j ; i < t,

j < d〉, where u, vi < rsd, wi,j < 2(n−1)t. We compute f(u) = 〈p, xj ; j < d〉 ∈ r×Xd, and in a
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similar way, f(vi) = 〈qi, yi,j ; j < d〉. For each i < t and j < d, we define Ai,j = g(xj+yi,j , wi,j)
(where + is vector addition) if xj 6= yi,j , and Ai,j = 0 otherwise. We let 〈p, qi, Ai,j ; i < t,

j < d〉 be the output of h.
We claim that h is a surjection of rt+1

(
st+12(n−1)t2

)d onto rt+1 ×Bd. Indeed, consider a
sequence 〈p, qi, Ai,j ; i < t, j < d〉 ∈ rt+1 × Bd. For each j < d, there exists an xj ∈ X which
is not separated from X by 〈Ai,j ; i < t〉; we can collect them to a sequence 〈xj ; j < d〉 by
BBΣb

1(α) ⊆ T 1
2 (α). Likewise, there exists a sequence 〈yi,j ; i < t, j < d〉 of witnesses to the

non-separation of xj by Ai,j , i.e., yi,j 6= xj , and Ai,jxj = Ai,jyi,j . The latter is equivalent to
Ai,j(xj + yi,j) = 0, and as xj + yi,j 6= 0, we can use the properties of g to find a sequence
〈wi,j ; i < t, j < d〉 such that g(xj + yi,j , wi,j) = Ai,j . As f is surjective, we can find a u < rsd

such that f(u) = 〈p, xj ; j < d〉. We construct suitable vi in a similar way, using smoothness
of f . Then h(u,~v, ~w) = 〈p, ~q, ~A〉.

As s ≤ 2t−1, we have

rt+1
(
st+12(n−1)t2

)d ≤ 2−drt+12nt2d,

thus sWPHP(PV2(α)) implies that h is not onto rt+1 × (2t×n)td, hence B 6= (2t×n)t. Any
~A ∈ (2t×n)t r B isolates X.

As B is Σb
1(α), and we assume T 1

2 (α) + sWPHP(PV2(α)), there exists a b such that
B ≈1/20 b by Theorem 2.3. By definition, there exists 0 < e ∈ Log, and a PV2(α)-surjection

e×
(
B ∪̇ 1

202nt2
)

� eb.

For any k ∈ Log, we can thus construct a chain of surjections

r(t+1)dk/deek
k∑

i=0

(
k

i

)
2(nt2−1)ddi/de

(
1
202nt2

)k−i
=

= ek
k∑

i=0

(
k

i

) (
rt+12(nt2−1)d

)di/de (
rt+1

)dk/de−di/de
(

1
202nt2

)k−i
�

� ek
.⋃

i≤k

(
k

i

)
r(t+1)dk/deBi

(
1
202nt2

)k−i
'

' r(t+1)dk/de
.⋃

i≤k

(
k

i

)
(eB)i

(
1
20e2nt2

)k−i
�

� r(t+1)dk/de
(
e
(
B ∪̇ 1

202nt2
))k

� r(t+1)dk/deekbk,

where the surjection from the second to the third line is constructed using h : rt+12(nt2−1)d �
rt+1Bd, and the last but one surjection follows from Lemma 3.3. We have

k∑
i=0

(
k

i

)
2(nt2−1)ddi/de

(
1
202nt2

)k−i
≤ 2nt2(k+d)

k∑
i=0

(
k

i

)
2−i20−(k−i)

= 2nt2(k+d)(11/20)k =
(

11
202nt2

)k
2nt2d ≤ 1

2

(
12
202nt2

)k

as long as k ≥ 8(nt2d + 1), hence b ≤ (12/20)2nt2 by sWPHP(PV2(α)). As B �1/20 b, we
have B �0 b + (1/20)2nt2 < (2/3)2nt2 . �
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Corollary 3.5 (in T 1
2 (α) + sWPHP(PV2(α))) Let d, r > 0, d, ε−1 ∈ Log, and f : rsd �

r ×Xd, where X is Σb
1(α), and f is PV2(α). Then X - s, and moreover,

Pr ~A

(
~A does not isolate Xc

)
�0 2/3,

where c = 12|s|dε−1e2, t = |sc| + 1, X ⊆ 2n, and ~A = 〈Ai; i < t〉 is a sequence of matrices
Ai ∈ 2t×n as in Definition 3.1.

Remark 3.6 If we assume that f has a PV2(α)-coretraction, the existence of ~A in Theo-
rem 3.4 and Corollary 3.5 is provable even in T 1

2 (α) + rWPHP(PV2(α)), as the statement
becomes ∀Σb

2(α). This is quite typical behaviour. To avoid unnecessary cluttering of the
text, we will only indicate provability in T 1

2 (α) + rWPHP(PV2(α)) below if it applies to an
unmodified statement of a theorem, or if it does not directly follow from Theorem 2.1.

Lemma 3.7 (in T 1
2 (α) + sWPHP(PV2(α))) Let s, ε−1, c ∈ Log, c > 0, X ∈ Σb

1(α). If there
exists a PV2(α)-surjection f : b(s + 1 − ε)cc � Xc, then there exists a surjection s � X

(encoded by a sequence, hence PV -definable).

Proof: Let k ≤ s + 1 be maximal such that there exists a sequence of length k of pairwise
distinct elements of X (by Σb

1(α)-LMAX ⊆ T 1
2 (α)). If k ≤ s, we have s � X. Otherwise

X � s + 1, which implies

(s + 1)c

(
1− ε

s + 1

)
≥ (s + 1− ε)c � Xc � (s + 1)c,

contradicting sWPHP . �

Theorem 3.8 (in T 1
2 (α) + rWPHP(PV2(α))) If X is Σb

1(α), and X -ε s, there exists
a PV2(α)-function f such that f : bs(1 + ε)cc � Xc (with a PV2(α)-coretraction), where
0 < c ≤ 12|s|dε−1e2.

Proof: W.l.o.g. s = S in the notation of Definition 3.1. The case s ≤ 1 is left to the reader,
we assume s ≥ 2. Let a = 4|s|dε−1e, c = 3dε−1ea, and fix x0 ∈ Xc, and ~A : Xc # 2t, where
t = |sc|+ 1. We define a mapping f : t× 2t → Xc by

f(i, u) =

{
x if x ∈ Xc, Aix = u and Ai separates x from Xc,

x0 otherwise.

The definition of # ensures that f is onto; it has a PV2(α)-coretraction defined by

g(x) = 〈i, Aix〉, i = min{i < t; Ai separates x from Xc}.

The function f is itself PV2(α), as it is computable by the following algorithm: if

¬∃x ∈ Xc Aix = u ∨ ∃x, x′ ∈ Xc (Aix = Aix
′ = u ∧ x 6= x′)

(these are Σb
1(α) oracle calls), output x0. Otherwise there exists a unique x satisfying the

Σb
1(α)-condition x ∈ Xc ∧Aix = u, and we can find it by binary search.
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As a ≥ 4|s| ≥ 8, we have 2a ≥ 3a2 + 4. Moreover (1 + ε/3)d3/εe ≥ 2, hence

t2t ≤ 4sc(|sc|+ 1) ≤ 4sc(c|s|+ 1) = sc(12|s|dε−1ea + 4)

≤ sc(3a2 + 4) ≤ sc2a ≤ sc(1 + ε/3)d3ε−1ea ≤ (s(1 + ε/3))c.

If s ≥ 3/(2ε), we obtain

(s(1 + ε/3))c ≤ (s(1 + ε)− 1)c ≤ bs(1 + ε)cc.

If s ≤ 3/(2ε), we have s(1 + ε/3) ≤ s + 1/2, and s ∈ Log, hence s � X by Lemma 3.7 (which
works in T 1

2 (α) + rWPHP(PV2(α)), as our surjection has a PV2(α)-coretraction). �

The proof of Theorem 3.8 actually shows the following:

Corollary 3.9 (in T 1
2 (α) + rWPHP(PV2(α))) If X ∈ Σb

1(α) and X # 2t, there exists a
PV2(α)-surjection f : t2t � X with a PV2(α)-coretraction.

The corollary below states the important principle that approximate counting with small
error reduces to exact counting whenever the latter is possible.

Corollary 3.10 (in T 1
2 (α) + rWPHP(PV2(α))) Let X ∈ Σb

1(α), and s ≤ ε−1 ∈ Log. We
have X -ε s iff there exists a sequence of length at most s which includes all elements of X.

Proof: If w is such a sequence, then w : s � X, hence X - s by Corollary 3.5. (We can use
sWPHP by Theorem 2.1.) On the other hand, X -ε s implies the existence of w by the proof
of Lemma 3.7 and Theorem 3.8. �

The following corollary serves several purposes. First, it shows the basic counting principle
that upper bounds on cardinality are preserved by surjections. Second, it shows that the
present approximate counting generalizes the method of [21] in the following sense: if Y ⊆ 2n

and Y �ε s, then Y - s + 2ε2n. Finally, we will often use the special case when f is the
identity function to reduce the error of approximation in favor of worse bounds: X -ε s

implies X -δ bs(1 + ε)c for every δ−1 ∈ Log.

Corollary 3.11 (in T 1
2 (α)+sWPHP(PV2(α))) Let X, Y ∈ Σb

1(α), f ∈ PV2(α), d, ε−1 ∈ Log,
d, r > 0. If X -ε s, and f : r ×Xd � r × Y d, then Y - bs(1 + ε)c.

Proof: We have bs(1+ε)cc � Xc for some c by Theorem 3.8, hence rcbs(1+ε)ccd � rcXcd �
rcY cd, thus Y - bs(1 + ε)c by Corollary 3.5. �

The next two results state fundamental counting principles for computing upper bounds
on the size of Cartesian products and unions.

Corollary 3.12 (in T 1
2 (α) + rWPHP(PV2(α))) If X, Y ∈ Σb

1(α), X -ε s, and Y -ε t, then
X × Y - bst(1 + ε)2c.

Proof: Use Corollary 3.5, and Theorems 3.8 and 2.1. �
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Theorem 3.13 (in T 1
2 (α) + rWPHP(PV2(α))) If X, Y ∈ Σb

1(α), X -ε s, and Y -ε t, then
X ∪ Y - b(s + t)(1 + 2ε)c.

Proof: We can use sWPHP by Theorem 2.1. Take PV2(α)-functions f : Sc � Xc, and
g : T d � Y d by Theorem 3.8, where S = bs(1+ε)c, T = bt(1+ε)c. Put k = 3(c|s|+d|t|)dε−1e.
Using Lemma 3.3, we can construct smooth PV2(α)-surjections

(X ∪ Y )k �
.⋃

i≤k

(
k

i

)
XiY k−i �

∑
i≤k

(
k

i

)
Scdi/ceT dd(k−i)/de ≤ ScT d

∑
i≤k

(
k

i

)
SiT k−i =

= ScT d(S + T )k ≤ 2c|S|+d|T |(S + T )k ≤
(
(1 + ε/3)(S + T )

)k

as (1 + ε/3)d3ε−1e ≥ 2. If

(1 + ε/3)(1 + ε)(s + t) ≤ (s + t)(1 + 2ε)− 1 ≤ b(s + t)(1 + 2ε)c,

we are done by Corollary 3.5. Otherwise s, t ∈ Log, in which case b(s + t)(1 + 2ε)c� X ∪ Y

by Lemma 3.7. �

Theorem 3.13 is one of the most important elementary counting principles. Its dual, which
says that the size of a disjoint union X ∪̇ Y is (approximately) bounded below by the sum
of the sizes of X and Y (it has to be formulated contrapositively, see Theorem 3.17), is just
as fundamental, but it is considerably harder to prove in our setting. To see why, consider
the case where X ∪̇ Y = [0, a): the obvious fact that X ∪ Y -ε a does not give us any useful
information, hence we must be ready to produce out of thin air a function witnessing that
the size of X or Y is (approximately) at most a/2. Theorem 2.3 comes to our rescue, as
production of magic surjections is exactly what it is good for.

But first we state another consequence of [21]. It allows us to reduce the complexity of -ε

from Σb
2(α) to Πb

1(α) in many situations, which is indispensable in proofs by induction (notice
that our favourite theory has induction only for B(Σb

1(α))-formulas). We recall that this does
not imply any fancy derandomization of AM , as Πb

1(α) here has the meaning of coNP/poly ,
not coNP (see Section 2).

Recall Definition 3.1.

Lemma 3.14 (in T 1
2 (α) + sWPHP(PV2(α))) Let c ∈ Log, X ⊆ a× 2n, X ∈ Σb

1(α), and put
Xx = {y < 2n; 〈x, y〉 ∈ X} for each x < a. There exists a Πb

1(α)-predicate C such that

C(x, t)⇒ Xx # 2t,

¬C(x, t)⇒ PrA0,...,At−1∈2t×n

(
~A isolates Xx

)
�0 1/4

for every x < a, t < c.

Proof: The promise problem L = 〈L+, L−〉, where

〈x, t〉 ∈ L+ ⇔ Pr ~A

(
~A isolates Xx

)
�0 1/8,

〈x, t〉 ∈ L− ⇔ Pr ~A

(
~A isolates Xx

)
�0 1/4,

is a definable prAM (α)-problem, hence the existence of C follows from Theorem 2.4. �
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Lemma 3.15 (in T 1
2 (α)+sWPHP(PV2(α))) Let X ∈ Σb

1(α), X 6= ∅. There exists a t ∈ Log
such that X # 2t+2, and for every ε−1 ∈ Log there exists a positive r ∈ Log, and a smooth
PV2(α)-surjection f : r × (X ∪̇ ε2t) � r2t with a PV2(α)-coretraction.

Proof: Assume X ⊆ 2n. Let C be as in Lemma 3.14, find the minimal k ≤ n such that
C(k) = 1 by PV2(α)-induction, and put t = k − 2. We have X # 2k. Take g : k2k � X and
its coretraction h : X → k2k from Corollary 3.9, and define

A = {u < k2k; h(g(u)) = u} = rng(h).

Let η = ε/4n, and A ≈η a by Theorem 2.3. We have g : A ' X with inverse h : X ' A,
and there exists a PV2(α)-surjection r(a + ηk2k) � rA with a PV2(α)-coretraction for some
r > 0, r ∈ Log, hence

r(a + ηk2k) � r ×X.

By minimality of k, and Theorem 3.4 we have

a + ηk2k ≥ 2t.

There exists a PV2(α)-surjection r(A ∪̇ ηk2k) � ra with a PV2(α)-coretraction by Theo-
rem 2.3. We compose it with h to obtain r(X ∪̇ ηk2k) � ra, hence

r(X ∪̇ ε2t) ⊇ r(X ∪̇ 2ηk2k) � r(a + ηk2k) ≥ r2t. �

Theorem 3.16 (in T 1
2 (α) + rWPHP(PV2(α))) If X, Y ∈ Σb

1(α), and X × Y -ε st, then
X - bs(1 + ε)c, or Y - bt(1 + ε)c.

Proof: We can use sWPHP by Theorem 2.1. Assume that X 6= ∅ 6= Y , and take a PV2(α)-
function f : bst(1 + ε)cd � (X × Y )d by Theorem 3.8. Let 0 < c ∈ Log, and take k, `, r ∈
Log such that Xcd # 2k+2, r(Xcd ∪̇ η2k) � r2k, Y cd # 2`+2, r(Y cd ∪̇ η2`) � r2` by
Lemma 3.15, where η = (8(k + ` + 4))−1. By Corollary 3.9, there are smooth PV2(α)-
surjections (k + 2)2k+2 � Xcd, (` + 2)2`+2 � Y cd. As

η(k + 2)2k+`+2 + η(` + 2)2k+`+2 + η22k+` ≤ 5
82k+`,

we can construct smooth PV2(α)-surjections

r2(Xcd × Y cd ∪̇ 5
82k+`) � r2(Xcd × Y cd ∪̇ η2kY cd ∪̇ η2`Xcd ∪̇ η22k+`)

' r(Xcd ∪̇ η2k)× r(Y cd ∪̇ η2`) � r22k+`.

On the other hand, f (c) : bst(1 + ε)ccd � Xcd × Y cd, hence

r2
(
bst(1 + ε)ccd + 5

82k+`
)

� r22k+`,

which implies
(st(1 + ε))cd ≥ 2k+`(1− 6

8) = 2k−12`−1
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by sWPHP(PV2(α)). Therefore (s(1 + ε/2))cd ≥ 2k−1 or (t(1 + ε/2))cd ≥ 2`−1, hence

8(s(1 + ε/2))cd
(
cd|s(1 + ε/2)|+ 3

)
≥ 8(s(1 + ε/2))cd|4(s(1 + ε/2))cd| ≥ 2k+2(k + 2)

or 8(t(1 + ε/2))cd
(
cd|t(1 + ε/2)|+ 3

)
≥ 8(t(1 + ε/2))cd|4(t(1 + ε/2))cd| ≥ 2`+2(` + 2),

which implies

8(s(1 + ε/2))cd
(
cd|s(1 + ε/2)|+ 3

)
� Xcd or 8(t(1 + ε/2))cd

(
cd|t(1 + ε/2)|+ 3

)
� Y cd.

We may fix c ∈ Log so that

8
(
cd|max{s, t}(1 + ε/2)|+ 3

)
≤ (1 + ε/4)cd,

hence there exists a PV2(α)-function(
s
(
1 + 7

8ε
))cd

≥
(
s(1 + ε/2)(1 + ε/4)

)cd
� Xcd

or
(
t
(
1 + 7

8ε
))cd

≥
(
t(1 + ε/2)(1 + ε/4)

)cd
� Y cd.

Then
X - bs(1 + ε)c or Y - bt(1 + ε)c

by Corollary 3.5 and Lemma 3.7. �

Theorem 3.17 (in T 1
2 (α) + rWPHP(PV2(α))) If X, Y ∈ Σb

1(α), and X ∪̇ Y -ε s + t + 1,
then X - bs(1 + 2ε)c, or Y - bt(1 + 2ε)c.

Proof: We can use sWPHP(PV2(α)) and BBΣb
3(α) by Theorem 2.1. W.l.o.g. assume s ≤ t.

Put S = s(1 + ε), T = (t + 1)(1 + ε). We fix a surjection bS + T cc � (X ∪̇ Y )c by
Theorem 3.8. Let d ∈ Log be such that 8cd|6(S + T )| ≤ (1 + ε/4)cd, and put η = 1/4. For
each i ≤ cd, we fix ki ≤ cd|S + T | such that Xi × Y cd−i # 2ki+2, and PV2(α)-functions
fi : r(Xi × Y cd−i ∪̇ η2ki) � r2ki , by Lemma 3.15 and BBΣb

3(α). Then we can construct
surjections

r

(
(S + T )cd + η

∑
i

(
cd

i

)
2ki

)
� r

.⋃
i

(
cd

i

)
(Xi × Y cd−i ∪̇ η2ki) � r

∑
i

(
cd

i

)
2ki

using Lemma 3.3. By sWPHP(PV2(α)),

(1− η/4)r
∑

i

(
cd

i

)
2ki ≤ r

(
(S + T )cd + η

∑
i

(
cd

i

)
2ki

)
,

hence ∑
i

(
cd

i

)
2ki ≤ (S + T )cd(1 + 2η) =

∑
i

(
cd

i

)
SiT cd−i(1 + 2η)

by sWPHP(PV2(α)), which implies

2ki ≤ SiT cd−i(1 + 2η) ≤ 3
2SiT cd−i
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for some i ≤ cd. It follows that

3
4SiT cd−i(1 + ε/4)cd ≥ 6SiT cd−i|6SiT cd−i| ≥ (ki + 2)2ki+2 � Xi × Y cd−i

using Corollary 3.9, hence Xi × Y cd−i - 3
4SiT cd−i(1 + ε/4)cd by Corollary 3.5, which implies

Xi - (S(1 + ε/4))i or Y cd−i - (T (1 + ε/4))cd−i

by Theorem 3.16. We obtain a PV2(α)-function(
s(1 + ε)(1 + ε/3)

)ie
� Xie or

(
(t + 1)(1 + ε)(1 + ε/3)

)(cd−i)e
� Y (cd−i)e

for some e ∈ Log by Theorem 3.8, hence

X - bs(1 + 2ε)c or Y - b(t + 1)(1 + 9
5ε)c

by Corollary 3.5 and Lemma 3.7. If

(t + 1)(1 + 9
5ε) ≤ t(1 + 2ε),

we are done. Otherwise s ≤ t < 5ε−1 + 9 ∈ Log, hence the result follows by exact counting,
using Corollary 3.10. �

We formulated the key theorems 3.12, 3.13, 3.16, and 3.17 for binary sums and products.
It is straightforward to generalize them to sums and products of logarithmically many sets,
using simple induction.

Corollary 3.18 (in T 1
2 (α)+ sWPHP(PV2(α))) Let n, ε−1, δ−1 ∈ Log, and let {Xi; i < n} be

a Σb
1(α) parametric family of subsets of some 2m.

(i) If Xi -ε si for every i < n, then
⋃

i<n Xi -
⌊
(1 + 2ε)

∑
i<n si

⌋
.

(ii) If Xi -ε si for every i < n, then
∏

i<n Xi -
⌊
(1 + ε)n+1

∏
i<n si

⌋
.

(iii) If
.⋃

i<n Xi -ε
∑

i<n si − 1, there exists i < n such that Xi - bsi(1 + 2ε)c − 1.

(iv) If n > 0, and
∏

i<n Xi -ε
∏

i<n si, there exists i < n such that Xi - bsi(1 + ε)c.

Proof: (i): Let X =
⋃

i Xi, and s =
∑

i si. We have Xi -η bsi(1 + ε)c by Corollary 3.11,
hence

X -η

⌊
s(1 + ε)(1 + 2η)n−1

⌋
by induction on n from Theorem 3.13 (we can make the induction hypothesis Πb

1(α) using
Lemma 3.14). We choose η = ε/(12n) so that (1 + 2η)n ≤ (1 + ε/3). We have(

s(1 + ε)(1 + ε/3)
)c

� Xc

by Theorem 3.8, hence X - bs(1 + 2ε)c by Corollary 3.5 and Lemma 3.7.
The other items are proved in a similar way, using Corollary 3.12, and Theorems 3.16

and 3.17. �
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We also prove versions of Theorems 3.13 and 3.17 which apply to a “large” number of
summands with a uniform description. They can be thought of as averaging arguments: if
there are more than st objects in a rectangle of length s, some column must hold at least the
average, which is more than st/s = t.

Theorem 3.19 (in T 1
2 (α)+ sWPHP(PV2(α))) If X, Y, Z ∈ Σb

1(α), Z ⊆ X×Y , X -ε s, and
{y ∈ Y ; 〈x, y〉 ∈ Z} -ε t for every x ∈ X, then Z - bst(1 + 4ε)c.

Proof: Assume X ⊆ 2n, and fix η−1 ∈ Log such that (1 + η)6n+2 ≤ 1 + ε/4. We denote

Za..b = {〈x, y〉 ∈ Z; a ≤ x < b}

for every a < b ≤ 2n, and Za = Za..a+1. By Lemma 3.14, Corollary 3.5 and Theorem 3.8,
there exist Πb

1(α)-predicates C(u, v, a), D(u, v, a) such that

C(u, v, a)→ Zu..v -η a→ C(u, v, ba(1 + η)c),
D(u, v, a)→ X ∩ [u, v) -η a→ D(u, v, ba(1 + η)c).

We prove

(∗) ∀u < v ≤ 2n ∀a ≤ 2n
(
v − u = 2k ∧D(u, v, a)→ C

(
u, v, bat(1 + ε)(1 + η)6k+1c

))
by induction on k ≤ n. The case k = 0 is clear, let thus k > 0. Assume D(u, v, a).
Put w = (u + v)/2, and find b, c ≤ 2n such that D(u, w, b), ¬D(u, w, b − 1), D(w, v, c),
¬D(w, v, c − 1) using induction (where “D(. . . ,−1)” counts as false). By (∗) for k − 1, we
have

Zu..w -η bbt(1 + ε)(1 + η)6k−5c,
Zw..v -η bct(1 + ε)(1 + η)6k−5c,

hence
Zu..v -η b(b + c)t(1 + ε)(1 + η)6k−3c

by Theorem 3.13. On the other hand, we have X ∩ [u, w) 6-η db(1 + η)−1e − 1, X ∩ [w, v) 6-η

dc(1 + η)−1e − 1, thus

X ∩ [u, v) 6-η

⌈
b

(1 + η)3

⌉
+

⌈
c

(1 + η)3

⌉
− 1

by Theorem 3.17. As X ∩ [u, v) -η a, we obtain a ≥ (b+ c)(1+ η)−3, i.e., b+ c ≤ ba(1+ η)3c.
Hence

Zu..v -η bat(1 + ε)(1 + η)6kc,

which implies C
(
u, v, ba(1 + ε)(1 + η)6k+1c

)
.

Take k = n. We have D(0, 2n, bs(1 + ε)(1 + η)c), hence C
(
0, 2n, bst(1 + ε)2(1 + η)6n+2c

)
by (∗), which gives

Z = Z0..2n -η bst(1 + ε)2(1 + η)6n+2c ≤ bst(1 + 4ε)c.
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As it stands, the proof needs Πb
2(α)-LIND . The theorem is unfortunately not ∀Σb

2(α),
we thus cannot directly use Theorem 2.1. Nevertheless, we can decrease the complexity of
the induction as follows. Let a(u, v) be a PV2(α)-function which computes a ≤ 2n such that
D(u, v, a)∧¬D(u, v, a− 1) by binary search. We define a PV2(α)-function f(k) (where k ≤ n

is given in unary) by

f(0) = 0,

f(k + 1) =

{
f(k) + 2n−k−1, C

(
u, u + 2n−k−1, ba(u, u + 2n−k−1)t(1 + ε)(1 + η)6(n−k)−5c

)
,

f(k) otherwise.

If we assume for contradiction Z 6-η bst(1 + ε)2(1 + η)6n+2c, we can prove

¬C
(
f(k), f(k) + 2n−k, ba(f(k), f(k) + 2n−k)t(1 + ε)(1 + η)6(n−k)+1c

)
by PV2(α)-LIND on k ≤ n, using the same argument as above. Taking k = n, we have
a(f(k), f(k) + 1) ≤ 1, and we obtain a contradiction with the assumptions. �

Theorem 3.20 (in T 1
2 (α)+rWPHP(PV2(α))) If X, Y, Z ∈ Σb

1(α), Z ⊆ X×Y , and Z -ε st,
then X - s− 1, or there exists x ∈ X such that {y ∈ Y ; 〈x, y〉 ∈ Z} - bt(1 + 2ε)c.

Proof: Let n ∈ Log be such that X ⊆ 2n. Fix η ∈ Log such that (1 + η)6n ≤ (1 + ε/2), and
assume X 6-η s− 1. By induction on k ≤ n, we will show

(∗) ∃u < v ≤ 2n ∃a ≤ 2n
(
v − u ≤ 2n−k ∧ a 6= 0 ∧ (X ∩ [u, v)) 6-η a− 1

∧ Zu..v -η bat(1 + ε)(1 + η)6kc
)
,

where Zu..v is as in the proof of Theorem 3.19. If k = 0, we may take u = 0, v = 2n, a = s.
Assume that (∗) holds for k < n. Put w = d(u + v)/2e, and find b, c such that X ∩ [u, w) 6-η

b−1, X∩ [u, w) -η bb(1+η)c, X∩ [w, v) 6-η c−1, X∩ [w, v) -η bc(1+η)c. Assume b 6= 0 6= c,
the other cases are easy. We have X ∩ [u, v) -η b(b + c)(1 + η)3c by Theorem 3.13, hence
a ≤ b(b+c)(1+η)3c, which implies Zu..v -η bbt(1+ε)(1+η)6k+4c+bct(1+ε)(1+η)6k+4c+1.
By Theorem 3.17, we obtain Zu..w -η bbt(1 + η)6(k+1)c or Zw..v -η bct(1 + η)6(k+1)c, which
gives (∗) for k + 1.

Take u, v, a which witness (∗) for k = n. Then v − u ≤ 1, and X ∩ [u, v) 6= ∅, hence
v = u + 1, u ∈ X, a = 1, and Zu -η bt(1 + ε)(1 + η)6nc, which implies Zu - bt(1 + 2ε)c.

As in the proof of Theorem 3.19, we can replace -η by a Πb
1(α)-formula in (∗), thus the

argument formalizes in S2
2(α) + sWPHP(PV2(α)). The result is ∀Σb

2(α), hence it is provable
in T 1

2 (α) + rWPHP(PV2(α)) by Theorem 2.1. (We can also eliminate the instance of Σb
2(α)-

LIND explicitly as in Theorem 3.19.) �

In the special case Z = X × Y , Theorem 3.20 implies a variant of Theorem 3.16 with
slightly different parameters, which may be favourable in some applications (e.g., see the
proof of Theorem 4.3): if X × Y -ε st, then X - s− 1 or Y - bt(1 + 2ε)c.

The next theorem shows that we can construct almost counting functions for any set
X. Moreover, the conditions imposed on f and g make them very well-behaved: the “local
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defects” by which the functions differ from true counting functions (i.e., monotone bijections)
are small, and evenly distributed across the domain. A possible use of the theorem is that
we can apply various results of [21] to relatively dense subsets of a sparse set X, as we can
lift the whole situation to an interval. (Lifting a Σb

1(α)-set by a PV2(α)-function increases its
complexity to ∆b

2(α), which is fine as T 1
2 (α) + sWPHP(PV2(α)) can count ∆b

2(α)-sets in the
framework of [21].)

The main idea of the construction was suggested by Neil Thapen.

Theorem 3.21 (in T 1
2 (α) + rWPHP(PV2(α))) Let X ∈ Σb

1(α), and ε−1 ∈ Log. There exist
numbers t, s such that s ≤ t ≤ bs(1 + ε)c, and non-decreasing PV2(α)-functions

t
f−−−→←−−−
f ′

X
g−−−→←−−−
g′

s

such that f ◦ f ′ = idX , g ◦ g′ = ids (hence f, g are onto, and f ′, g′ are injective), f, g are
≤ 2-to-1, and ⌊s

t
u
⌋
≤ g(f(u)) ≤

⌈s

t
u
⌉

for every u < t.

Proof: Fix n ∈ Log such that X ⊆ 2n, and η−1 ∈ Log such that (1 + η)8n ≤ 1 + ε. Let C be
a Πb

1(α)-predicate such that

C(u, v, w)→ X ∩ [u, v) -η w → C(u, v, bw(1 + η)c)

for all u, v, w ≤ 2n. Using binary search, we can define a PV2(α)-function S such that

C(u, v, S(u, v)) ∧ ¬C(u, v, S(u, v)− 1)

for all u, v ≤ 2n. Put a = S(0, 2n). If a < η−1, then a ∈ Log, hence the required functions
exist by Corollary 3.10. We thus assume a ≥ η−1. Consider the following algorithm (where
u, uk, vk, wk are rationals):

input: either u ∈ [0, 1), or x ∈ X

let x0 := 0, y0 := 2n, u0 := 0, v0 := 1, r0 := a

for k = 0, . . . , n− 1 do:
zk := (xk + yk)/2, pk := S(xk, zk), qk := S(zk, yk)
wk := (qkuk + pkvk)/(pk + qk)
if u < wk or x < zk then 〈xk+1, yk+1, uk+1, vk+1, rk+1〉 := 〈xk, zk, uk, wk, pk〉

else 〈xk+1, yk+1, uk+1, vk+1, rk+1〉 := 〈zk, yk, wk, vk, qk〉

If it is necessary to indicate the input, we will write pk(u) for the value of pk assigned by the
algorithm on input u, and so on.

Claim 1 Let u ≤ u′ < 1, x ≤ x′ ∈ X, and ` ≤ k ≤ n.

(i) yk = xk + 2n−k.

(ii) uk(u) ≤ u < vk(u), xk(x) ≤ x < yk(x).
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(iii) rk = S(xk, yk) 6= 0, and pk + qk 6= 0 (hence the division step makes sense).

(iv) x` ≤ xk, y` ≥ yk, u` ≤ uk, v` ≥ vk.

(v) Either 〈xk(u), yk(u), uk(u), vk(u)〉 = 〈xk(u′), yk(u′), uk(u′), vk(u′)〉, or yk(u) ≤ xk(u′),
vk(u) ≤ uk(u′).

(vi) Either 〈xk(x), yk(x), uk(x), vk(x)〉 = 〈xk(x′), yk(x′), uk(x′), vk(x′)〉, or yk(x) ≤ xk(x′),
vk(x) ≤ uk(x′).

(vii) If xk(u) ≤ x < yk(u), or uk(x) ≤ u < vk(x), then 〈xk(u), yk(u), uk(u), vk(u)〉 =
〈xk(x), yk(x), uk(x), vk(x)〉.

(viii) (1 + η)−3rk ≤ pk + qk ≤ (1 + η)3rk.

(ix ) (1 + η)−3krk ≤ a(vk − uk) ≤ (1 + η)3krk.

Proof: (i)–(vii): Straightforward induction on k.
(viii): As pk = S(xk, zk), we have ¬C(xk, zk, pk−1), thus X∩ [xk, zk) 6-η dpk(1+η)−1e−1.

Similarly X ∩ [zk, yk) 6-η dqk(1 + η)−1e − 1, hence

X ∩ [xk, yk) 6-η

⌈
dpk(1 + η)−1e(1 + η)−2

⌉
+

⌈
dqk(1 + η)−1e(1 + η)−2

⌉
− 1

≥ d(pk + qk)(1 + η)−3e − 1

by Theorem 3.17. On the other hand, rk = S(xk, yk), hence C(xk, yk, rk), and X ∩ [xk, yk) -η

rk. This implies rk ≥ d(pk + qk)(1 + η)−3e, hence rk(1 + η)3 ≥ pk + qk. In a similar way we
have X ∩ [xk, zk) -η pk, X ∩ [zk, yk) -η qk, and X ∩ [xk, yk) 6-η drk(1 + η)−1e − 1, hence
drk(1 + η)−1e ≤ b(pk + qk)(1 + η)2c by Theorem 3.13, thus (1 + η)−3rk ≤ (pk + qk).

(ix): By induction on k, using (viii), and the identities

wk − uk =
pk

pk + qk
(vk − uk), vk − wk =

qk

pk + qk
(vk − uk). � (Claim 1)

Let t = da(1 + η)3ne, s = ba(1 + η)−3nc, f(u) = xn(u/t), f ′(x) = dtvn(x)e − 1, g(x) =
dsvn(x)e − 1, g′(v) = xn(v/s) for any integers u < t, v < s, x ∈ X. We have t ≤ a(1 + η)4n ≤
ba(1 + η)−3nc(1 + η)8n ≤ s(1 + ε). Notice that rn = 1 (hence xn ∈ X) by (i) and (iii), thus

1
2s
≤ 1

t
≤ vn − un ≤

1
s
≤ 2

t

by (ix) (in particular, f ′(x), g(x) ≥ 0). Clearly f : t → X, f ′ : X → t, g : X → s, g′ : s → X,
and all the functions are monotone by (v), (vi).

If u = f ′(x), we have un(x) ≤ vn(x)−1/t ≤ u/t < vn(x), hence f(u) = xn(u/t) = xn(x) =
x by (vii), thus f ◦ f ′ = id. If f(u) = x, then tun(x) = tun(u/t) ≤ u < tvn(u/t) = tvn(x) by
(vii). As there are at most two integers in [tun(x), tvn(x)), we have |f−1(x)| ≤ 2.

If x = g′(v), then svn(x) − 1 ≤ sun(x) = sun(v/s) ≤ v < svn(v/s) = svn(x) by (vii),
hence v = g(x), thus g ◦ g′ = id. Assume that x, x′, x′′ ∈ X, x < x′ < x′′. We have
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yn(x) = x + 1 ≤ xn(x′) = x′ by (i) and (ii), hence svn(x) ≤ sun(x′) ≤ svn(x′)− 1/2 by (vi).
Similarly svn(x′) ≤ svn(x′′)− 1/2, hence g(x′′) = dsvn(x′′)e − 1 ≥ dsvn(x)e > g(x). It follows
that |g−1(v)| ≤ 2 for any v < s.

Let u < t, and put x = f(u), v = g(x). We have vn(x) − 1/s ≤ un(x) = un(u/t) ≤
u/t < vn(u/t) = vn(x) by (vii) and (ii), and vn(x) − 1/s ≤ v/s < vn(x) by definition, hence
−1/s < u/t− v/s < 1/s. �

4 Applications

We begin with a classical theorem which cannot be avoided by any self-respecting theory of
counting.

Theorem 4.1 (Ramsey theorem) (in T 1
2 (G) + rWPHP(PV2(G))) An undirected graph G

on N vertices contains a clique or independent set of size at least |N |/2.

Proof: We formalize the following well-known proof. We pick a node a0, and let c0 be the
majority colour among edges incident with a0. We continue with nodes connected to a0 by a
c0-coloured edge, and repeat the process. In this way, we construct a sequence a0, . . . , ak−1

of nodes and a sequence c0, . . . , ck−1 of colours such that the edge from ai to aj is ci-coloured
for i < j, and there are at least (roughly) N/2k nodes connected to every ai by a ci-coloured
edge. We can carry on as long as k < log2 N , obtaining a prehomogeneous set of size log2 N ,
from which we select a homogeneous set of size log2 N/2 by taking the majority colour among
~c. We proceed with the formal details.

We can use sWPHP by Theorem 2.1. For every a 6= b, we define C(a, b) < 2 so that
C(a, b) = 1 iff there is an edge between a and b in G. Let ε−1 ∈ Log be such that (1−2ε)|N | ≥
1/2. By induction on k ≤ |N | − 2, we prove that there exists a sequence 〈ci; i < k〉 of ci < 2,
and a sequence 〈ai; i < k〉 of pairwise distinct ai < N such that C(ai, aj) = ci whenever
i < j < k, and

S(~a;~c) := {x; ∀i < k C(ai, x) = ci} 6-ε

⌊
N

2k
(1− 2ε)k+1

⌋
− 1.

(We can make the induction hypothesis Σb
1(G) by Lemma 3.14, as in the proof of Theo-

rem 3.19.) The base step k = 0 amounts to N 6-ε bN(1 − 2ε)c − 1, which follows from
Theorem 3.8 and rWPHP . Assume the statement holds for k, we will show it for k + 1. We
have S(~a;~c) 6= ∅, we may thus pick any ak ∈ S(~a;~c). The set S(~a;~c) can be divided into
nodes x such that C(ak, x) = 0, nodes such that C(ak, x) = 1, and node ak itself, hence

S(~a;~c) = {ak} ∪ S(~a, ak;~c, 0) ∪ S(~a, ak;~c, 1).

We have 1 -ε 1, and⌊
(1 + 2ε)

(
1 + 2

(
bN2−(k+1)(1− 2ε)k+2c − 1

))⌋
≤

≤
⌊
2(1 + 2ε)N2−(k+1)(1− 2ε)k+2 − (1 + 2ε)

⌋
≤ bN2−k(1− 2ε)k+1 − 1c,
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hence

S(~a, ak;~c, ck) 6-ε

⌊
N

2k+1
(1− 2ε)k+2

⌋
− 1

for some ck < 2 by Theorem 3.13.
Let ~a, ~c be the sequences given by the statement above for k = |N |−2. We have S(~a;~c) 6-ε

0, hence there exists ak ∈ S(~a;~c). There exists c < 2 such that |{i < k; ci = c}| ≥ dk/2e,
then {ai; ci = c} ∪ {ak} is a homogeneous set of size d|N |/2e. �

The Ramsey theorem was, of course, proved in bounded arithmetic by Pudlák [30]. The
point of Theorem 4.1 is that (apart from a few ε sprinkled here and there) the argument
follows almost literally the usual combinatorial proof of the theorem, without the need to
resort to ad hoc functions for simulation of counting by WPHP .

Our first real result will be the tournament principle (originally discovered by Erdős [13]),
whose provability in bounded arithmetic was posed as a problem by Kraj́ıček [9, 23]. Recall
that a tournament is a directed graph G in which there exists exactly one directed edge
between any pair of distinct vertices (“players”); if there is an edge going from a to b, we
write a→ b, and say that a beats b. A dominating set is a set D of vertices such that every
player outside of D is beaten by some player in D.

Theorem 4.2 (Tournament principle) (in T 1
2 (G) + rWPHP(PV2(G))) A tournament G

with N players has a dominating set of size at most |N |.

Proof: Informally, the argument is as follows. There are N(N−1)/2 edges in the tournament,
hence we may choose a player a0 who beats at least (N − 1)/2 other players. We repeat the
process with the subtournament consisting of the unbeaten players, halving the size at each
step. After at most |N | steps, we reach the empty set, hence we obtaining a dominating set
of size |N |. We now give the formal proof.

We can work in S2
2(G) + sWPHP(PV2(G)) by Theorem 2.1. Choose ε−1 ∈ Log such that

(1 + ε)8(|N |+1) < 2. If 〈ai; i < k〉 is a sequence of vertices, we denote

G(~a) = {x < N ; ∀i < k x→ ai}.

By Σb
2(G)-LIND on k ≤ |N | + 1, we will prove that there exists a sequence 〈ai; i < k〉 such

that

(∗) G(~a) -ε

⌊
N

2k
(1 + ε)8k

⌋
.

The case k = |N | + 1 then gives G(~a) = ∅, i.e., ~a is a dominating set of size |N | + 1. (How
to get rid of the + 1 is left as an exercise. Hint: in real world, the bound |N | is not tight.)

The base case k = 0 is obvious. Assume that (∗) holds for k, we will show it for k + 1.
Find s such that G(~a) -ε bs(1 + ε)c, G(~a) 6-ε s− 1. Notice that s ≤ N2−k(1 + ε)8k. We have

{〈x, y〉 ∈ G(~a); x 6= y} ⊆ G(~a)2 -ε bs2(1 + ε)4c ≤ 2
⌊

s2

2
(1 + ε)4

⌋
+ 1
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by Corollary 3.12, hence

{〈x, y〉 ∈ G(~a)2; y → x} -ε

⌊
s2

2
(1 + ε)6

⌋
or {〈x, y〉 ∈ G(~a)2; x→ y} -ε

⌊
s2

2
(1 + ε)6

⌋
by Theorem 3.17, and properties of the tournament. In the former case, there exists an
x ∈ G(~a) such that

G(~a, x) = {y ∈ G(~a); y → x} -ε

⌊s

2
(1 + ε)8

⌋
≤

⌊
N

2k+1
(1 + ε)8(k+1)

⌋
by Theorem 3.20. The latter case is symmetric. �

As proved by E. and G. Szekeres [35], every tournament has a dominating set of size
|N | − ||N || + O(1). We could formalize this stronger result with no additional difficulty; we
skip the proof as it involves lengthy quotes from [35] with no particular benefit for our purpose
(which is to illustrate the machinery developed in Section 3).

For the sake of completeness, we mention that Erdős [13] proved a lower bound of |N | −
2||N ||+ O(1) on the minimal size of a dominating set in random tournaments, and Razborov
[31] provided tournaments computable by AC0[2]-circuits with the same property. We do
not know how to prove these lower bounds in bounded arithmetic. (Ojakian [28] formalizes
Erdős’s proof in a different setting, where N ∈ Log.) An explicit construction of tournaments
without small dominating sets was given in [16]: if p ≡ −1 (mod 4) is a prime, the tournament
with p players defined by

a→ b iff
(

a− b

p

)
= 1

has no dominating set of size 1
2 |p| − ||p||. However, their proof depends on Weil’s Riemann

hypothesis for curves over finite fields, which we cannot expect to prove in bounded arithmetic
by any stretch of imagination.

It turns out that generalizations of the tournament principle are more useful in applications
than the principle itself. We provide such a generalization next. The statement seems to be
new even outside the context of bounded arithmetic; it was inspired by a variant of the
tournament principle introduced in [14] (our Corollary 4.4), and a combinatorial principle
implicit in [26] (Corollary 4.5).

In order to explain it, let us consider first Corollary 4.4, which is a symmetric generalization
of the tournament principle to arbitrary binary relations that may not be tournaments. We
can reformulate it as follows: given a colouring of ordered pairs of points of a by two colours,
there is a colour i < 2, and a set D of size log a with the following property: for any point x,
there is an i-coloured pair whose ith coordinate is x, and the other coordinate belongs to D.
Now we can generalize the statement to higher dimensions as follows (this is the special case
of Theorem 4.3 with ai = a, pi = 1/d, mi = 1): given a colouring of d-tuples of points of a by
d colours, there exists a colour i < d, and a set D of (d−1)-tuples of size (d−1) log a with the
following property: for any point x, there exists an i-coloured d-tuple whose ith coordinate
is x, and the tuple consisting of the remaining coordinates belongs to D.

In order to accommodate Corollary 4.5, we introduce as an extra complication the pos-
sibility that the colouring is not total. We only require that it is “dense”, in the sense that
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every hypercube with sufficiently large sides (sets of size m) contains a tuple whose colour
is defined. The conclusion is modified so that the d-tuple only needs to be i-coloured if its
colour is defined, and there will be an exceptional small (of size less than m) set M whose
points x ∈ M are exempt from the existence condition. To guard against trivializing the
conclusion, we also require that any tuple from D can be extended to a d-tuple with defined
colour (D ⊆ Si in the notation below). Finally, we allow each coordinate to use a different
value of a and m for extra generality, as it does not change the proof, and indeed it simplifies
the notation used in the proof in that it allows us to conveniently specify which coordinate
in the product ad are we referring to.

Theorem 4.3 (in T 1
2 (C) + rWPHP(PV2(C))) Let 0 < d ∈ Log. Let 〈ai; i < d〉 and

〈mi; i < d〉 be sequences of positive integers such that mi ∈ Log, 〈pi; i < d〉 a sequence
of rationals pi ∈ QLog such that 0 < pi < 1, and C a partial function from

∏
i<d ai to d.

Assume that
∑

i<d pi ≤ 1, and dom(C) ∩
∏

i<d Mi 6= ∅ for every sequence 〈Mi; i < d〉 of
subsets Mi ⊆ ai such that |Mi| = mi. Put

Si =
{
〈xj ; j 6= i〉 ∈

∏
j 6=i

aj ; ∃xi ∈ ai ~x ∈ dom(C)
}

.

Then there exists an i < d, a set D ⊆ Si of size at most

2 + blog(1−pi)−1(ai/mi)c ≤ 1 + (p−1
i − 1)|bai/mic|,

and a set M ⊆ ai of size |M | < mi with the following property: for every xi ∈ ai r M there
exists 〈xj ; j 6= i〉 ∈ D such that C(~x) = i or ~x /∈ dom(C).

Proof: The statement is ∀Σb
2(C), we can thus work in S2

2(C) + sWPHP(PV2(C)). We
write C(~x)↑ for ~x /∈ dom(C). If ~x ∈

∏
j 6=i aj , and x ∈ ai, we will write C(~x, x) instead

of C(x0, . . . , xi−1, x, xi+1, . . . , xd−1) if i is clear from the context.
For each i < d, put ci = 2 + blog(1−pi)−1(ai/mi)c. As ci ∈ Log, and ai(1 − pi)ci−1 < mi,

we can construct δi ∈ QLog such that 0 < δi < pi, and ai(1− δi)ci < mi. Then there exists an
0 < ε ∈ QLog such that

(
1− pi(1 + ε)−19

)
(1 + ε)3 ≤ 1− δi for every i < d.

By Σb
2(C)-LMAX , we can find the maximal k such that there exist sequences 〈ki; i < d〉,

〈~xi,j ; i < d, j < ki〉 satisfying k =
∑

i ki, ki ≤ ci, ~xi,j ∈ Si, and

Mi := {x < ai; ∀j < ki ∃` 6= i C(~xi,j , x) = `} -ε bai(1− δi)kic

for every i < d. If |Mi| < mi for some i < d, the conclusion of the theorem holds with
M = Mi, D = {~xi,j ; j < ki}. We thus assume |Mi| ≥ mi (which implies ki < ci by the choice
of δi) for every i < d, and we intend to reach a contradiction. We put X =

∏
j Mj ∩ dom(C),

Xi = {~x ∈ X; C(~x) = i}, Ni = Si ∩
∏

j 6=i Mj , and Oi = (Ni ×Mi) r X.
The intuition is as follows. For any i and ~x ∈ Si, we have

|{x ∈Mi; ∃` 6= i C(~x, x) = `}| ≥ ai(1− δi)ki+1 ≥ |Mi|(1− δi)

by maximality of ki, hence Prx∈Mi(C(~x, x)↑ ∨ C(~x, x) = i) ≤ δi. Consequently,

1 =
∑

i

Pr~x∈X(C(~x) = i) ≤
∑

i

Pr~x∈Ni×Mi
(C(~x)↑ ∨ C(~x) = i) ≤

∑
i

δi < 1
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using nonemptiness of X, which is a contradiction. Now we formalize this argument using
approximate counting.

By assumption, X 6= ∅, hence we can find a t > 0 such that X -ε bt(1 + ε)c, X 6-ε t− 1
by Σb

2(C)-LIND . Fix i < d, and let wi be such that Mi -ε bwi(1 + ε)c, and Mi 6-ε wi − 1.
Consequently, wi ≤ bai(1− δi)kic.

Take any ~x ∈ Si. By Theorem 3.17, we have

(∗) {x ∈Mi; C(~x, x)↑ ∨ C(~x, x) = i} -ε

⌊
bwipi(1 + ε)−18c(1 + ε)2

⌋
≤ bwipi(1 + ε)−16c

or

{x ∈Mi; ∃` 6= i C(~x, x) = `} -ε

⌊(
bwi(1 + ε)c − bwipi(1 + ε)−18c − 1

)
(1 + ε)2

⌋
≤ bwi

(
1− pi(1 + ε)−19

)
(1 + ε)3c ≤ bai(1− δi)ki+1c.

The latter however contradicts the maximality of ki, hence (∗) holds for every ~x ∈ Si. Find
vi such that Ni -ε bvi(1 + ε)c, Ni 6-ε vi − 1. We have

(∗∗) Pi := {~x ∈ Ni ×Mi; C(~x)↑ ∨ C(~x) = i} -ε bviwipi(1 + ε)−11c

by Theorem 3.19, and (∗). Let Oi -ε bui(1 + ε)c, Oi 6-ε ui − 1. We claim

(∗∗∗) viwi ≤ b(t + ui)(1 + ε)6c.

Note that Ni ×Mi ⊆ X ∪ Oi -ε b(t + ui)(1 + ε)3c by Theorem 3.13. Assume first vi ≥ 2/ε.
We have Ni 6-ε vi − 1 ≥

⌊
bvi(1 + ε)−2c(1 + 2ε)

⌋
, hence

b(t + ui)(1 + ε)3c > wibvi(1 + ε)−2c ≥ viwi(1 + ε)−3

by Theorem 3.20. The case wi ≥ 2/ε is symmetric. If vi, wi ≤ 2/ε, then in particular
vi, wi ∈ Log, and we can derive Ni ×Mi 6-ε dviwi(1 + ε)−1e − 1 easily by exact counting,
which implies (∗∗∗) as above.

The definition of Si implies X ⊆ Ni ×Mi, hence Pi = Oi ∪̇Xi. We thus obtain

Oi ∪̇Xi -ε bviwipi(1 + ε)−11c ≤ b(t + ui)pi(1 + ε)−5c ≤ btpi(1 + ε)−5c+ duipi(1 + ε)−5e

from (∗∗) and (∗∗∗), which implies

Oi -ε

⌊(
duipi(1 + ε)−5e − 1

)
(1 + ε)2

⌋
≤ dui(1 + ε)−3e − 1 or Xi -ε btpi(1 + ε)−3c

by Theorem 3.17. The former contradicts the choice of ui, hence the latter holds for every
i < d. As t > 0, we obtain

X =
⋃
i

Xi -ε

⌊
(1 + ε)2

∑
i

tpi(1 + ε)−3
⌋
≤ bt(1 + ε)−1c ≤ t− 1

from Corollary 3.18, which contradicts the definition of t. �

26



Corollary 4.4 (in T 1
2 (R)+ rWPHP(PV2(R))) Let R be a binary relation on a. There exists

a set D ⊆ a of size at most |a|+ 1 such that

∀x < a∃y ∈ D R(x, y) ∨ ∀y < a∃x ∈ D¬R(x, y).

Proof: Use Theorem 4.3 with d = 2, ai = a, pi = 1/2, mi = 1, and C the (total) characteristic
function of R. �

Corollary 4.5 (in T 1
2 (R) + rWPHP(PV2(R))) Let c ∈ Log, and let a[i] denote the set of

i-element subsets of a. Assume that R ⊆ a[c] × a is a relation satisfying

∀X ∈ a[c+1] ∃x ∈ X R((X r {x}), x).

Then there exists a set D ⊆ a[c] of size |D| ≤ c|a|, and a set M ⊆ a of size at most c, such
that

∀x ∈ a r
(
M ∪

⋃
D

)
∃X ∈ D R(X, x).

Proof: Apply Theorem 4.3 with d = mi = c + 1, ai = a, pi = 1/d, and

C(x0, . . . , xc) =

{
min{i ≤ c; R({xj ; j 6= i}, xi)} if xi are pairwise distinct,

undefined otherwise.

Observe that ~x ∈ Si iff the elements of ~x are pairwise distinct. �

The collapse of the bounded arithmetic hierarchy implies the collapse of the polynomial-
time hierarchy. The original result is by Kraj́ıček et al. [26], who prove that T i

2 = S2 implies
ΣP

i+1 ⊆ ∆P
i+1/poly (hence also PH = ΣP

i+2 = ΠP
i+2). Buss [3] formalized a weaker conclusion

inside the bounded arithmetic: if T i
2 = Si+1

2 , then T i
2 proves Σb

i+1 ⊆ Πb
i+1/poly , and Σb

∞ =
B(Σb

i+2) (cf. also Zambella [37]). We will show that the stronger collapse from [26] can be
formalized in bounded arithmetic as well. Surprisingly, this also allows us to strengthen the
collapse to PH = B(ΣP

i+1), using a result from [12].

Theorem 4.6 If T i
2 = Si+1

2 , then T i
2 proves Σb

i+1 ⊆ ∆b
i+1/poly.

Proof: It suffices to formalize in T i
2 the proofs of [26, Thm. B, L. 2.2], also repeated (with

a slightly different notation) in [23, Thm. 10.2.4, L. 10.2.2]. We assume the reader has one
of these two proofs at hand, but we sketch an outline of the proof here for convenience. We
consider a Σb

i+1-predicate ∃w ≤ v B(v, w), where B ∈ Πb
i , we need to show that there is an

FPΣb
i -function g(u, v) and a polynomially bounded advice function h(n) such that

∃w ≤ v B(v, w)→ B(v, g(h(|v|), v)).

We consider the ∆b
i+1-relation

R(〈v1, . . . , vr〉, 〈w1, . . . , ws〉)⇔ s ≤ r ∧ ∀` ≤ s (w` ≤ v` ∧B(v`, w`)).

By an application of the KPT witnessing theorem to an instance of Σb
i+1-LMAX , provable

in T i
2 by assumption, we obtain a combinatorial principle called Ωi which states that we can
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compute a length-maximal b such that R(a, b) from a by a certain counterexample compu-
tation in constantly many rounds. Using Ωi, we define a certain algorithm for computing a
pair 〈`, w〉 from a = 〈v1, . . . , vk〉. Let V1 = {|v| = n; ∃w ≤ v B(v, w)}. If Q is a (k − 1)-
element subset of V1, and v ∈ V1 r Q, we say that Q helps v [23] or 〈Q, v〉 is good [26], if
there is an ordering {v1, . . . , v`−1, v`+1, . . . , vk} of Q such that the algorithm assigns 〈`, w〉 to
〈v1, . . . , v`−1, v, v`+1, . . . , vk〉, where w is a witness for v (i.e., w ≤ v ∧B(v, w)). (Here, k is a
constant parameter we obtain along with the principle Ωi.) Using a counting argument, we
constructs sets V1 ⊇ V2 ⊇ · · · ⊇ Vt and Qj ⊆ Vj for some t = O(n) so that Qj have k − 1
elements, Qj helps all elements of Vj rVj+1, and |Vt| ≤ k. Then we can compute a witness for
v by a FPΣb

i -function g given the sets Q1, . . . , Qt, Vt as well as witnesses for all their elements,
which will be encoded in the advice h(n).

Now we turn to the formalization. Notice that the assumption T i
2 = Si+1

2 implies T i
2 = S2

by [3], hence we actually work in full bounded arithmetic; in particular, we can apply our
results above to approximately count sets defined by arbitrary bounded formulas.

By inspection of the proof as given in [23] or [26], we see that T i
2 proves the principle Ωi

(as the conclusion of the KPT witnessing theorem is provable, not just true), the analysis
of the algorithm constructing 〈`, w〉 (straightforward, as the number of steps is a standard
constant), as well as the final definition of the function g (obvious). The missing part is the
construction the sets Q1, . . . , Qt−1, Vt and the advice string h(n). We close this gap by an
application of Corollary 4.5, where c = k − 1, and R(Q, v) is the “Q helps v” relation. �

Corollary 4.7 If T i
2 = Si+1

2 , then T i
2 proves Σb

∞ = B(Σb
i+1), and Σb

i+1 ⊆ Πb
i+1/O(1).

Proof: Cook and Kraj́ıček [12] show (in a two-sorted setting) that Theorem 4.6 implies
Corollary 4.7 when i = 0. Their results relativize in a straightforward way. �

After showing that PV1 ` NP ⊆ P/poly implies PV1 ` PH = BH (where BH = B(NP) is
the Boolean hierarchy), Cook and Kraj́ıček [12] also asked whether the converse holds. We
can answer their question affirmatively:

Corollary 4.8 If T i
2 proves Σb

∞ = B(Σb
i+1), then T i

2 proves Σb
i+1 ⊆ ∆b

i+1/poly.

Proof: The assumption implies T i
2 = S2 by Zambella [37], which gives the conclusion by

Theorem 4.6. �

The base case i = 0 of Corollary 4.8 was meanwhile independently shown by Beyersdorff and
Müller [1] using a direct proof.

Kraj́ıček [24, 25] has studied connections between validity of variants of PHP in first-
order structures M , and existence of certain types of abstract counting functions which map
definable sets of M to elements of a ring (or semiring), and behave reasonably wrt embeddings,
disjoint unions, and Cartesian products. In particular, a structure which admits a so-called
nontrivial approximate Euler characteristic (see below) satisfies iWPHP2n

n , and conversely,
any structure which satisfies iWPHP2n

n and an additional principle (any two definable sets are
comparable wrt definable embedding) admits a nontrivial approximate Euler characteristic.
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Definition 4.9 If R is a partially ordered commutative ring, we write a ≤̇ b if for every
rational q > 1 there exist k, l ∈ N such that l/k < q and ka ≤ lb. We also put a

.= b iff
a ≤̇ b ∧ b ≤̇ a.

Let M be a first-order structure, and Def(M) the set of all subsets of Mk, k ∈ N, definable
with parameters from M . An approximate Euler characteristic is a function ξ : Def(M)→ R,
where R is a partially ordered commutative ring, such that

(i) ξ(A) = |A| for finite A,

(ii) ξ(A ∪̇B) .= ξ(A) + ξ(B),

(iii) ξ(A×B) .= ξ(A) · ξ(B),

(iv) ξ(A) ≤̇ ξ(B) if A is definably embeddable into B,

for all A,B ∈ Def(M). ξ is trivial if R = 0.
We also consider extra conditions

(v) ξ(A) ≤̇ cξ(B) if ξ(f−1[b]) ≤̇ c for all b ∈ B,

(vi) cξ(B) ≤̇ ξ(A) if c ≤̇ ξ(f−1[b]) for all b ∈ B,

where c ∈ R, and f : A→ B is a definable injection.

Let M be a model of bounded arithmetic formulated in a purely relational language (i.e.,
we replace functions with their graphs), and consider an interval [0, a]M as its substructure.
Then definable sets in [0, a] are definable in M by a bounded formula, hence [0, a] satisfies
iWPHP2n

n if M � iWPHP2n
n (Σb

∞). On the other hand, it is not known to satisfy the principle
of comparing cardinalities (and it seems rather unlikely to hold in general). Nevertheless, we
can show the following.

Theorem 4.10 Let M be a model of S2(α), and a ∈ M . Then [0, a]M with the induced
structure admits a (totally ordered) nontrivial approximate Euler characteristic satisfying the
extra conditions (v,vi).

Proof: W.l.o.g. assume that a is nonstandard. Let R be the totally ordered ring whose
nonnegative part is M . Notice that x ≤̇ y iff x ≤ (1 + c−1)y for some c > ω. Fix ε = 1/n,
where n ∈ Log(M) r ω (say, n = |a|). If A is a definable set in [0, a], then A is definable in
M by a Σb

∞(α)-formula, hence there exists an s ∈ M such that M � (A -ε s ∧ A 6-ε s − 1);
we define ξ(A) = s. Then ξ is an approximate Euler characteristic by 3.10, 3.13, 3.17, 3.12,
3.16, and 3.11 (as any injection defined by a bounded formula has a retraction definable by a
bounded formula). The extra conditions hold for ξ because of Theorems 3.19 and 3.20. �

The complexity class SP
2 , defined independently by Russell and Sundaram [33], and

Canetti [6], consists of languages L for which there exists a poly-time predicate R such that

x ∈ L⇒ ∃y ∀z R(x, y, z),

x /∈ L⇒ ∃z ∀y ¬R(x, y, z),
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where |y|, |z| are implicitly bounded by a polynomial in |x|. The class SP
2 occupies an inter-

esting position inside the second level of PH : obviously SP
2 ⊆ ΣP

2 ∩ ΠP
2 , we also know that

MA ⊆ SP
2 (hence BPP ⊆ SP

2 ), and PSP
2 = SP

2 (hence ∆P
2 ⊆ SP

2 ) [33], and the standard proof
of the Karp–Lipton theorem shows that NP ⊆ P/poly implies PH = SP

2 . The definition of SP
2

does in no way guarantee abundance of witnesses for the existential quantifiers; surprisingly,
Cai [5] has shown that nevertheless SP

2 ⊆ ZPPNP . We will formalize this result in bounded
arithmetic. (The other results mentioned above are also easy to prove in bounded arithmetic,
we leave the details to the reader.)

Theorem 4.11 (in T 1
2 + rWPHP(PV2)) The complexity class SP

2 is contained in ZPPNP .

Proof: Let L ∈ SP
2 . Fix a constant c, and a poly-time relation R such that

x ∈ L⇒ ∃y < 2|x|
c ∀z < 2|x|

c
R(x, y, z),

x /∈ L⇒ ∃z < 2|x|
c ∀y < 2|x|

c ¬R(x, y, z).

By the relativization of the formalized Wilkie’s witnessing theorem [18, P. 1.16] applied to
Corollary 4.4, there exists a ZPPNP -predicate P definable in T 1

2 + rWPHP(PV2) such that
the same theory proves

P (x)⇒ ∃D ⊆ 2|x|
c ∀z < 2|x|

c ∃y ∈ D R(x, y, z),

¬P (x)⇒ ∃D ⊆ 2|x|
c ∀y < 2|x|

c ∃z ∈ D¬R(x, y, z).

Clearly, the conditions implied by x ∈ L and ¬P (x) are contradictory, and vice versa, hence
x ∈ L iff P (x). �

Another application of approximate counting in computational complexity is the equiva-
lence of public-coin and private-coin interactive protocols [15]. We illustrate it on the example
of the isomorphism problem: given two structures G0 and G1 (as tables) of the same signa-
ture, determine whether G0 ' G1. (The most prominent, and indeed universal, special case
is when the structures are graphs.) The problem is obviously in NP , and its complement
admits a simple private-coin interactive proof system: the verifier picks randomly an i < 2,
and a permutation π, and sends π(Gi) to the prover, who has to determine i. If G0 6' G1, a
(computationally unlimited) prover can succeed with probability 1, whereas if G0 ' G1, no
prover can do any better (or worse, for that matter) than 1/2. It is much harder to construct
a public-coin proof system (i.e., an AM -algorithm) for the same problem, and it requires
approximate counting.

Theorem 4.12 (in T 1
2 + sWPHP(PV2)) The isomorphism problem is in coAM .

Proof: For simplicity, we will ignore floor and ceiling signs. Put ε = 1/42. As in the proof
of Lemma 3.14, there exists a definable prAM -problem L = 〈L+, L−〉 such that

Xb 6-ε a⇒ 〈a, b〉 ∈ L+,

Xb -ε
42
43a⇒ 〈a, b〉 ∈ L−
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for any parametric family of NP -sets Xb. As prAM is closed under bounded existential
quantification, conjunction, and disjunction, we can define a prAM problem L = 〈L+, L−〉
such that

∃a
((

A0 6-ε a ∨A1 6-ε a
)
∧W0 ∪W1 6-ε

3n!
2a

)
⇒ 〈G0, G1〉 ∈ L+,

∀a
((

A0 -ε
42
43a ∧A1 -ε

42
43a

)
∨W0 ∪W1 -ε

4n!
3a

)
⇒ 〈G0, G1〉 ∈ L−,

where G0, G1 are structures with domain n, and Ai and Wi are the Σb
1-sets

Ai = Aut(Gi) = {π ∈ Sn; π(Gi) = Gi},
Wi = {π(Gi); π ∈ Sn},

where Sn is the set of all permutations of n. It suffices to show

G0 6' G1 ⇒ 〈G0, G1〉 ∈ L+,

G0 ' G1 ⇒ 〈G0, G1〉 ∈ L−.

Claim 1

(i) If Ai -ε a, and Wi -ε b, then ab ≥ 5
6n!.

(ii) If Ai 6-ε a, and Wi 6-ε b, then ab ≤ 10
9 n!.

Proof: (i): if H ∈ Wi, and π0 is any permutation such that H = π0(Gi), then the mapping
π 7→ π0 ◦ π is a poly-time bijection of Ai onto M(H) := {π; π(Gi) = H}, with π 7→ π−1

0 ◦ π

being its inverse. It follows that M(H) -ε
43
42a by Corollary 3.11, thus

M := {〈π, π(Gi)〉; π ∈ Sn} =
.⋃

H∈Wi

M(H) -ε
9
8ab

by Theorem 3.19. Clearly π 7→ 〈π, π(Gi)〉 is a bijection of Sn onto M . Moreover, there exists
a poly-time enumeration of Sn by n!, hence 7

6ab � n!, which implies n! ≤ 6
5ab by sWPHP .

(ii): similar. � (Claim 1)

Assume G0 6' G1, and find a0, a1 such that Ai 6-ε ai, Ai -ε
43
42ai. We have Wi 6-ε 13n!/16ai

by (i). The sets Wi are disjoint, hence

W0 ∪W1 6-ε
3n!
4

(
1
a0

+
1
a1

)
≥ 3n!

2ai

for some i by Theorem 3.17, thus 〈G0, G1〉 ∈ L+.
On the other hand, assume G0 ' G1, and let ai be such that Ai -ε

42
43ai, Ai 6-ε

20
21 . Then

W0 ∪W1 = Wi -ε 7n!/6ai by (ii), as W0 = W1. Consequently 〈G0, G1〉 ∈ L−. �

Notice that if we change the definition of AM formalized in bounded arithmetic to use -
instead of � (which might be a good idea anyway), the statement of Theorem 4.12 becomes
∀Σb

2, hence we can prove it already in T 1
2 + rWPHP(PV2).
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[18] Emil Jeřábek, Dual weak pigeonhole principle, Boolean complexity, and derandomization,
Annals of Pure and Applied Logic 129 (2004), pp. 1–37.

[19] , The strength of sharply bounded induction, Mathematical Logic Quarterly
52 (2006), no. 6, pp. 613–624.

[20] , On independence of variants of the weak pigeonhole principle, Journal of
Logic and Computation 17 (2007), no. 3, pp. 587–604.

[21] , Approximate counting in bounded arithmetic, Journal of Symbolic Logic 72
(2007), no. 3, pp. 959–993.
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