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EMIL JEŘÁBEK, TOMÁŠ KEPKA, DAVID STANOVSKÝ

Abstract. We study groupoids satisfying the identities x ·xy = y and x ·yz =

xy · xz. Particularly, we focus our attention at subdirectly irreducible ones,

find a description a charecterize small ones.

1. Introduction

A left symmetric left distributive groupoid (shortly an LSLD groupoid) is a non-
empty set equipped with a binary operation (usually denoted multiplicatively) sat-
isfying the equations:

x · xy = y(left symmetry)

x · yz = xy · xz(left distributivity)

An LSLDI groupoid is an idempotent LSLD groupoid, i.e. an LSLD groupoid
satisfying the equation xx = x. For example, given a group G, the derived op-
eration x ∗ y = xy−1x, usually called the core of G, is left symmetric, left dis-
tributive and idempotent. LSLDI groupoids were introduced in [10] and they (and
their applications) were studied by several authors mainly in 1970’s and 1980’s. A
reader is referred to the survey [8] for details. For a long time, it seemed that the
non-idempotent case did not play any significant role in self-distributive structures
(whether symmetric or not). This was certainly true for the two-sided case, but
recently, due to the book [2] of P. Dehornoy, one-sided non-idempotent selfdistribu-
tive groupoids enjoyed certain attention. The purpose of the present note is to
continue the investigations of non-idempotent LSLD groupoids started in [4] and,
in particular, to get a better insight into the structure of subdirectly irreducible
ones. Our main results are Theorems 4.2, 4.3 and 5.9.

As far as we know, the only papers concerning non-idempotent LSLD groupoids
are [4] and [9]. Subdirectly irreducible idempotent left symmetric medial groupoids
were characterized by B. Roszkowska [7] and simple idempotent LSLD groupoids
by D. Joyce [3].

Our notation is rather standard and usually follows the book [1]. A reader can
look at [5] for various notions concerning groupoids (i.e. sets with a single binary
operation).
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Let G be a groupoid. For every a ∈ G, we denote La the selfmapping of G
defined by La(x) = ax for all x ∈ G and call it the left translation by a in G. By
an involution we mean a permutation of order two.

Lemma 1.1. Let G be a groupoid. Then
(1) G is LSLD, iff every left translation in G is either the identity, or an

involutive automorphism of G;
(2) if G is LSLD, then Lϕ(a) = ϕLaϕ

−1 for every a ∈ G and every automor-
phism ϕ of G.

(3) if G is LSLD, then the mapping λ : a 7→ La is a homomorphism of G into
the core of the symmetric group over G.

Proof. (1) Left symmetry says that every left translation La satisfies L2
a = idG.

Left distributivity says that every La is an endomorphism.
(2) Since ϕLa(b) = ϕ(ab) = ϕ(a)ϕ(b) = Lϕ(a)ϕ(b) for every a, b ∈ G, we have

ϕLa = Lϕ(a)ϕ and thus Lϕ(a) = ϕLaϕ
−1.

(3) It follows from (2) for ϕ = La that Lab = LaLbL
−1
a = LaLbLa. �

Example. The following are all (up to an isomorphism) two-element LSLD grou-
poids (one idempotent, the other not).

S 0 1
0 0 1
1 0 1

T 0 1
0 0̃ 0
0̃ 0̃ 0

Example. The following are all (up to an isomorphism) three-element idempotent
LSLD groupoids. S1 is a right zero groupoid, S2 is a dual differential groupoid and
S3 is a commutative distributive quasigroup and it forms the smallest Steiner triple
system. S3 is simple and S2 is subdirectly irreducible.

S1 0 1 2
0 0 1 2
1 0 1 2
2 0 1 2

S2 0 1 2
0 0 2 1
1 0 1 2
2 0 1 2

S3 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Example. The following are all (up to an isomorphism) three-element non-idem-
potent LSLD groupoids. Both are subdirectly irreducible.

T1 e 0 0̃
e e 0 0̃

0, 0̃ e 0̃ 0

T2 e 0 0̃
e e 0̃ 0

0, 0̃ e 0̃ 0

Example. We define an operation ◦ on the Prüfer 2-group Z2∞(+) by x ◦ y =
2x − y + a, where a ∈ Z2∞ is an element satisfying a 6= 0 = 2a. The groupoid
Z2∞(◦) is an infinite subdirectly irreducible idempotent-free LSLD groupoid.

A non-empty subset J of a groupoid G is called a left ideal of G, if ab ∈ J
for every a ∈ G and b ∈ J . Note that the set consisting of all left ideals in a
left symmetric groupoid and the empty set is closed under intersection, union and
complements. If {a} is a left ideal of G, we call the element a right zero.

Let G be an LSLD groupoid. We put

IdG = {x ∈ G : xx = x} and KG = {x ∈ G : xx 6= x}.
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Each of IdG and KG is either empty or a left ideal of G. Further, we define relations

pG = {(x, y) ∈ G×G : Lx = Ly}
qG = {(a, b) ∈ IdG × IdG : La|KG

= Lb|KG
} ∪ idG

ipG = {(x, xx) : x ∈ G} ∪ idG

and a mapping oG : G→ G by oG(x) = xx.

Lemma 1.2. Let G be an LSLD groupoid. Then
(1) pG and qG are congruences of G and ipG ⊆ pG;
(2) ipG is a congruence of G, G/ipG is idempotent and ipG is the smallest con-

gruence such that the corresponding factor is idempotent; moreover, every
non-trivial block of ipG is isomorphic to T;

(3) oG is either the identity, or an involutive automorphism of G.

Proof. (1) The relation pG is the kernel of the homomorphism λ from Lemma 1.1(3),
hence it is a congruence.

The relation qG is an equivalence, so consider a, b ∈ IdG such that La|KG
=

Lb|KG
. Then Laz|KG

= Lbz|KG
for all z ∈ G, since for every k ∈ KG we have

az · k = a(z · ak) = a(z · bk) = b(z · bk) = bz · k (because z · bk ∈ KG). And
also Lza|KG

= Lzb|KG
for all z ∈ G, because for every k ∈ KG we have za · k =

z(a · zk) = z(b · zk) = zb · k (because zk ∈ KG). Consequently, qG is a congruence.
Finally, xy = x(x · xy) = xx · (x · xy) = xx · y for every x, y ∈ G and thus

ipG ⊆ pG.
(2) Since xx ·xx = x ·xx = x for every x ∈ G, the relation ipG is symmetric and

transitive and every non-trivial block of ipG consists of two elements and thus is
isomorphic to T. Further, xz = xx·z for every z ∈ G due to (1) and (zx, z·xx) ∈ ipG
because z · xx = zx · zx; hence ipG is a congruence. Clearly, G/ipG is idempotent
and ipG is the smallest congruence with this property.

(3) oG is an involution (or the identity) according to (2) and oG(xy) = xy ·xy =
x · yy = xx · yy = oG(x)oG(y) for all x, y ∈ G. �

Corollary 1.3. T is the only (up to an isomorphism) simple non-idempotent LSLD
groupoid.

Let G be a groupoid, e /∈ G and ϕ : G → G. We denote G[ϕ] the groupoid
defined on the set G∪ {e} so that G is a subgroupoid of G[ϕ], e is a right zero and
ex = ϕ(x) for every x ∈ G.

Lemma 1.4. Let G be an LSLD groupoid, e /∈ G and ϕ : G→ G. Then
(1) G[ϕ] is an LSLD groupoid, iff ϕ = idG or ϕ is an involutive automorphism

of G with Lx = Lϕ(x) for all x ∈ G;
(2) G[idG] and G[oG] are LSLD groupoids and G[oG][idG[oG]], G[idG][oG[idG]]

are isomorphic.

Proof. This is a straightforward calculation. �

Note that the three-element non-idempotent LSLD groupoids are isomorphic to
T[idT] and T[oT], respectively. One can check that (T[idT])[oT[idT]] is the only
four-element subdirectly irreducible non-idempotent LSLD groupoid.

The following technical lemmas become useful later.
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Lemma 1.5. Let G be an LSLD groupoid and ϕ ∈ {idG, oG}. Then the set Aϕ =
{a ∈ G : La = ϕ} is either empty, or a left ideal of G.

Proof. Let a ∈ Aϕ. By Lemma 1.1 Lxa = LxLaLx for every x ∈ G. If La = ϕ =
idG, then Lxa = LxLx = idG = ϕ. If La = ϕ = oG, then Lxa(y) = xoG(xy) =
x(xy · xy) = x(x · yy) = oG(y) for every y ∈ G and thus Lxa = oG = La. Hence Aϕ
is a left ideal. �

Lemma 1.6. Let G be an LSLD groupoid and J a left ideal of G. Then the relation
ρJ = ((ipG)|J) ∪ idG is a congruence of G.

Proof. The claim follows from Lemma 1.2. �

Lemma 1.7. Let G be an LSLD groupoid and a ∈ G a right zero. Then
(1) x · ay = a · xy and xy = ax · y for all x, y ∈ G;
(2) the relation νa = {(x, ax) : x ∈ G} ∪ idG is a congruence of G; moreover,

every non-trivial block of νa has two elements.

Proof. (1) is calculated as follows: x ·ay = xa ·xy = a ·xy and ax ·y = (ax)(a ·ay) =
a(x · ay) = a(a · xy) = xy.

(2) Clearly, νa is both reflexive and symmetric and it follows from (1) that νa
is compatible with the multiplication of G. We show that νa is transitive. If
(x, y) ∈ νa, (y, z) ∈ νa, x 6= y 6= z, then y = ax and z = ay = a · ax = x and thus
(x, z) ∈ νa. The rest becomes clear now. �

Lemma 1.8. Let G be an LSLD groupoid and let ρ be a congruence of KG such
that (u, v) ∈ ρ implies (au, av) ∈ ρ and (ua · z, va · z) ∈ ρ for all a ∈ IdG and
z ∈ KG. Define a relation σ on IdG by (a, b) ∈ σ iff (au, bv) ∈ ρ for every pair
(u, v) ∈ ρ. Then ρ ∪ σ is a congruence of G.

Proof. This straightforward calculation is omitted. �

2. Basic facts about subdirectly irreducible LSLD groupoids

It is well known that a groupoid G is subdirectly irreducible (shortly SI), if and
only if G possesses a smallest non-trivial congruence (called the monolith of G), i.e.
a congruence µG 6= idG such that µG ⊆ ν for every congruence ν 6= idG on G.

Lemma 2.1. Let G be an SI non-idempotent LSLD groupoid. Then
(1) if J ⊆ KG is a left ideal, then J = KG;
(2) ipG is the monolith of G;
(3) La|KG

6= Lb|KG
for every a, b ∈ IdG with a 6= b; in other words, qG = idG;

(4) ϕ|KG
6= ψ|KG

for all automorphisms ϕ,ψ of G with ϕ 6= ψ.

Proof. (1) Let J ⊂ KG be a left ideal. Then J ′ = KG r J is a left ideal too and
ρJ , ρJ′ are non-trivial congruences, since both J and J ′ contain at least two ele-
ments. However, ρJ ∩ ρJ′ = idG yields a contradiction with subdirect irreducibility
of G.

(2) We have µG ⊆ ipG. Put J = {u ∈ KG : (u, uu) ∈ µG}. Then J is a left ideal,
because µG is a congruence, and thus J = KG and µG = ipG.

(3) According to Lemma 1.2(1), qG is a congruence. It is trivial, because qG ∩
ipG = idG.

(4) Assume that ϕ|KG
= ψ|KG

and we show that ϕ|IdG
= ψ|IdG

too. Observe
that ϕ|KG

= ψ|KG
iff ϕ−1|KG

= ψ−1|KG
, because every automorphism of G maps
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KG onto itself. Now, given a ∈ IdG and u ∈ KG, we have ϕ(a)u = ϕ(a)ϕϕ−1(u) =
ϕ(aϕ−1(u)) and, because aϕ−1(u) = aψ−1(u) ∈ KG, we have also ϕ(aϕ−1(u)) =
ψ(aψ−1(u)) = ψ(a)u. Thus Lϕ(a)|KG

= Lψ(a)|KG
and, by (3), ϕ(a) = ψ(a). �

Proposition 2.2. Let G be a non-idempotent LSLD groupoid and H a subgroupoid
of G such that KG ⊆ H. Assume that H is subdirectly irreducible. Then G is
subdirectly irreducible, iff qG = idG.

Proof. The direct implication was proved in Lemma 2.1(3). So assume qG = idG
and let ρ be a non-trivial congruence on G. If ρ|H 6= idH , then ipH ⊆ ρ|H . But
ipG = ipH ∪ idG and thus ipG ⊆ ρ. Hence assume that ρ|H = idH . If (a, b) ∈ ρ
for some a, b ∈ IdG, a 6= b, then au 6= bu for some u ∈ KG by Lemma 2.1(3) and
we have (au, bu) ∈ ρ|KG

= idKG
, a contradiction. If (a, u) ∈ ρ for some a ∈ IdG

and u ∈ KG, then (a, uu) = (aa, uu) ∈ ρ and, again, (u, uu) ∈ ρ|KG
= idKG

, a
contradiction. Consequently, G is subdirectly irreducible. �

Corollary 2.3. Let G be a non-idempotent LSLD groupoid such that KG is subdi-
rectly irreducible. Then G is subdirectly irreducible, iff qG = idG.

Lemma 2.4. Let G be an SI non-idempotent LSLD groupoid and a, b ∈ G right
zeros. Then

(1) La ∈ {idG, oG};
(2) a = b, iff La = Lb;
(3) G contains at most two right zeros.

Proof. (1) Let νa be the congruence from Lemma 1.7. If νa = idG, then La = idG.
If νa 6= idG, then µG = ipG ⊆ νa and thus La|KG

= oG|KG
. Hence La = oG

according to Lemma 2.1(4).
The statement (2) follows from Lemma 2.1(3) and (3) is an immediate conse-

quence of (1) and (2). �

Lemma 2.5. Let G be an SI non-idempotent LSLD groupoid and let a ∈ G be
a right zero. Then H = G r {a} is an SI non-idempotent LSLD groupoid and it
contains no right zero b with Lb = La|H .

Proof. Clearly, H is a left ideal of G and thus a subgroupoid of G. Moreover, if ρ
is a non-trivial congruence of H, then σ = ρ∪{(a, a)} is a (non-trivial) congruence
of G (because La ∈ {idG, oG}) and thus ipG = µG ⊆ σ. So ipH ⊆ ρ and H is
subdirectly irreducible. Finally, if b is a right zero in H, then it is also a right zero
in G and so Lb 6= La|H by Lemma 2.4. �

Lemma 2.6. Let G be an SI non-idempotent LSLD groupoid and ϕ ∈ {idG, oG}.
Then G[ϕ] is subdirectly irreducible, iff G contains no right zero a with La = ϕ.

Proof. The direct implication follows from Lemma 2.5. On the contrary, if G con-
tains no right zero a with La = ϕ, then Aϕ = ∅ (by Lemmas 1.5 and 2.1(3) |Aϕ| ≤ 1,
hence any element b with Lb = ϕ is a right zero), so qG[ϕ] = id and Proposition 2.2
applies. �

Corollary 2.7. Let G be an SI non-idempotent LSLD groupoid with no right zero.
Then

G, G[idG], G[oG] and G[idG][oG[idG]]
are pairwise non-isomorphic SI LSLD groupoids.
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Corollary 2.8. Let G be an SI non-idempotent LSLD groupoid and let A be the
set of right zeros in G. Then |A| ≤ 2, H = G r A is a left ideal of G, H is an SI
non-idempotent LSLD groupoid with no right zero and G is isomorphic to exactly
one of

H, H[idH ], H[oH ] and H[idH ][oH[idH ]].

3. Groupoids of involutions

Let ε be a binary relation on a non-empty set X. We denote Inv(X, ε) the set of
all permutations ϕ of X such that ϕ2 = idX and (x, y) ∈ ε implies (ϕ(x), ϕ(y)) ∈ ε.
It is easy to see that Inv(X, ε) is a subgroupoid of the core of the symmetric group
over X and thus it is an idempotent LSLD groupoid.

An equivalence ε is called a pairing (a semipairing, resp.), if every block of ε
consists of (at most, resp.) two elements. Let α(m) = |Inv(m, ε)|, where ε is a
pairing on a cardinal number m (α(m) is defined for even and infinite cardinals
only).

Proposition 3.1. α(2) = 2, α(4) = 6 and α(m) = 2α(m− 2) + (m− 2)α(m− 4)
for every even 6 ≤ m < ω. Further, α(m) = 2m for every infinite m.

Proof. Assume that m is finite even and the blocks of ε are the sets {2k, 2k + 1}2,
k = 0, . . . , m2 − 1. The claim is trivial for m ∈ {2, 4}, so assume m ≥ 6. Let
Ik = {ϕ ∈ Inv(m, ε) : ϕ(0) = k} for 0 ≤ k ≤ m − 1. Then Inv(m, ε) =

⋃m−1
k=0 Ik

and Ik’s are pairwise disjoint. If ϕ ∈ I0, then ϕ(1) = 1. If ϕ ∈ I1, then ϕ(1) = 0.
Consequently, |I0| = |I1| = α(m− 2). On the other hand, if ϕ ∈ Ik for k ≥ 2, then
ϕ(1) = k′, where k′ 6= k is such that (k, k′) ∈ ε, and thus ϕ(k) = 0, ϕ(k′) = 1.
Hence |Ik| = α(m− 4) and |Inv(m, ε)| = 2α(m− 2) + (m− 2)α(m− 4).

If m is infinite, consider all involutions of the form (x1 y1)(x2 y2) . . . , where
{x1, y1}, {x2, y2}, . . . are pairwise different blocks of ε. They belong to Inv(m, ε)
and thus α(m) ≥ 2m. Hence α(m) = 2m. �

m 2 4 6 8 10 12 14 16 18 20
α(m) 2 6 20 76 312 1384 6512 32400 168992 921184

For every semipairing ε on X there is a unique mapping oε ∈ Inv(X, ε) such that
(x, oε(x)) ∈ ε and oε(x) = x iff {x} is a one-element block of ε. It is easy to see
that idX and oε are right zeros in Inv(X, ε) and that idX ∗ϕ = ϕ and oε ∗ϕ = ϕ for
every ϕ ∈ Inv(X, ε). Let Inv−(X, ε) = Inv(X, ε) r {idX , oε}. Clearly, it is either
empty, or a left ideal of Inv(X, ε).

Finally, let Aut2(G) = {ϕ ∈ Aut(G) : ϕ2 = id}. If G is an LSLD groupoid,
then Aut2(G) is a subgroupoid of Inv(G, ipG), Lx ∈ Aut2(G) for every x ∈ G and
the mapping x 7→ Lx is a homomorphism of G into Aut2(G). Let Aut−2 (G) =
Aut2(G) ∩ Inv−(G, ipG).

Proposition 3.2. Let G be an SI non-idempotent LSLD groupoid with at least one
idempotent element. Then the mapping

η : IdG → Aut2(KG), a 7→ La|KG

is an injective homomorphism.

Proof. It follows from Lemmas 1.1 and 2.1(3). �
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Corollary 3.3. Let G be an SI LSLD groupoid with |KG| = m 6= 0. Then

|IdG| ≤ α(m) and |G| ≤ α(m) +m.

It will be shown in the next section that the upper bound on |IdG| is best
possible.

4. A description of subdirectly irreducible LSLD groupoids

Lemma 4.1. Let K be an idempotent-free LSLD groupoid and I a subgroupoid of
Aut2(K). Put G = I ∪K. Then the following conditions are equivalent.

(1) The operations of I and K can be extended onto G so that G becomes an
LSLD groupoid with ϕ · u = ϕ(u) for all ϕ ∈ I, u ∈ K.

(2) LuϕLu ∈ I for all ϕ ∈ I, u ∈ K.
Moreover, if the conditions are satisfied, the operation of G is uniquely determined
and u · ϕ = LuϕLu for all ϕ ∈ I, u ∈ K.

Proof. Clearly, uϕ ∈ I = IdG for every u ∈ K, ϕ ∈ I. Since u(ϕv) = (uϕ)(uv)
for every u, v ∈ K, ϕ ∈ I, we have Lu(ϕ(v)) = (uϕ)(Lu(v)) and thus uϕ =
Luϕ(Lu)−1 = LuϕLu. Indeed, this is possible, iff LuϕLu ∈ I for all ϕ ∈ I, u ∈ K.
We omit the straightforward calculation showing that the resulting groupoid G is
LSLD. �

The groupoid G from Lemma 4.1 will be denoted by I t K. The groupoid
Aut2(K) tK will be called the full extension of K and denoted Full(K).

I tK ψ v
ϕ ϕψϕ ϕ(v)
u LuψLu uv

Theorem 4.2. Let G be an SI non-idempotent LSLD groupoid. Then there exists
an injective homomorphism η : G→ Full(KG) such that

η(u) = u for every u ∈ KG and η(a) = La|KG
for every a ∈ IdG.

Thus G is isomorphic (via η) to the subgroupoid η(IdG) tKG of Full(KG).

Proof. It is straightforward to check that η is a homomorphism and it is injective
according to Proposition 3.2. �

Remark. Let K be an idempotent-free LSLD groupoid and assume the set S of SI
subgroupoids G of Full(K) with KG = K. The set S is non-empty, iff Full(K) ∈ S;
in this case, the set S has minimal elements, say H1, . . . ,Hk, and it follows from
Proposition 2.2 that G ∈ S, iff G is a subgroupoid of Full(K) and Hi ⊆ G for at
least one 1 ≤ i ≤ k.

Theorem 4.3. The following conditions are equivalent for an idempotent-free LSLD
groupoid K:

(1) There exists an SI LSLD groupoid G with KG = K.
(2) The groupoid Full(K) is SI.
(3) The groupoid Full−(K) is SI.
(4) If ρ is a non-trivial Aut2(K)-invariant congruence of K, then ipK ⊆ ρ.



8 EMIL JEŘÁBEK, TOMÁŠ KEPKA, DAVID STANOVSKÝ

Proof. The implication (1) ⇒ (2) follows from Proposition 2.2, (2) ⇒ (3) follows
from Lemma 2.5 and (3) ⇒ (1) is trivial.

Now, assume that (4) is true and let σ be a non-trivial congruence of Full(K). If
σ|K 6= idK , then ipK ⊆ σ by (4) and thus Full(K) is SI. So assume that ρ = σ|K =
idK . If (ϕ,ψ) ∈ σ for some ϕ,ψ ∈ Aut2(K), ϕ 6= ψ, then there is at least one u ∈ K
with ϕ(u) 6= ψ(u) and we have (ϕ(u), ψ(u)) ∈ ρ, a contradiction. Thus (ϕ, u) ∈ σ
for some ϕ ∈ Aut2(K), u ∈ K. In this case, (ϕ, uu) ∈ σ and so (u, uu) ∈ ρ, a
contradiction again.

Finally, assume (2) and consider a non-trivial Aut2(K)-invariant congruence ρ
of K. Define a relation σ on Aut2(K) by (ϕ,ψ) ∈ σ iff (ϕ(u), ψ(v)) ∈ ρ for every
pair (u, v) ∈ ρ. According to Lemma 1.8, ρ ∪ σ is a congruence of Full(K) and so
ipK ⊆ ρ. �

A groupoid K satisfying the conditions of Theorem 4.3 will be called pre-SI.

Example. Let ε be a pairing on a non-empty set K. We equip the set K with
an operation such that Lu = oε for every u ∈ K. Clearly, K is an idempotent-free
LSLD groupoid and Aut2(K) = Inv(K, ε). Using Theorem 4.3, we prove that K is
pre-SI and thus G = Full(K) is an SI LSLD groupoid of size α(|KG|) + |KG| (cf.
Corollary 3.3).

Let ρ be a non-trivial Aut2(K)-invariant congruence on K. We claim that ipK =
oε ⊆ ρ. Indeed, if (u, oK(u)) ∈ ρ for some u ∈ K, then for every v ∈ K the
involution ϕ = (u v)(oK(u) oK(v)) belongs to Aut2(K) and thus (v, oK(v)) ∈ ρ.
Thus ipK ⊆ ρ. On the other hand, if (u, v) ∈ ρ, u 6= v 6= oK(u), then the involution
ψ = (v oK(v)) belongs to Aut2(K) and thus (u, o(v)) = (ψ(u), ψ(v)) ∈ ρ and so
(v, o(v)) ∈ ρ.

Example. Consider the following four-element groupoid K.

K 0 0̃ 1 1̃
0, 0̃ 0̃ 0 1̃ 1
1, 1̃ 0 0̃ 1̃ 1

One can check thatK is an LSLD groupoid, Aut2(K) = {idK , (0 0̃), (1 1̃), (0 0̃)(1 1̃)}
and the relation ρ = {(0, 0̃), (0̃, 0)}∪ idK is an Aut2(K)-invariant congruence of K.
However, ipK 6⊆ ρ and thus K is not pre-SI.

5. Few idempotent elements

In this section, let G be a finite SI non-idempotent LSLD groupoid with IdG 6= ∅
and r, s, α, β will denote non-negative integers.

Let n = |IdG| and 2m = |KG|. We put K1(a) = {u ∈ KG : au = u}, K2(a) =
{u ∈ KG : au = uu} and K3(a) = KG r (K1(a) ∪K2(a)) for every a ∈ IdG.

Lemma 5.1. |K1(a)|, |K2(a)| are even numbers and |K3(a)| is divisible by 4.

Proof. |K1(a)| is even, because u ∈ K1(a), iff uu ∈ K1(a) (and analogously for
|K2(a)|). Furthermore, the sets {v, vv, av, a · vv}, v ∈ K3(a), are four-element and
pairwise disjoint. �

Let r(a) = 1
2 |K1(a)| and s(a) = 1

2 |K2(a)|. Hence m − r(a) − s(a) is a (non-
negative) even number.

Lemma 5.2. r(xa) = r(a) and s(xa) = s(a) for all a ∈ IdG, x ∈ G.
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Proof. If v ∈ K1(a), then xa · xv = x · av = xv and so xv ∈ K1(xa). Conversely,
if w ∈ K1(xa), then xw = x(xa · w) = (x · xa)(xw) = a · xw and so xw ∈ K1(a).
Thus Lx maps bijectively K1(a) onto K1(xa) and, in particular, r(a) = |K1(a)| =
|K1(xa)| = r(xa). Analogously, s(a) = s(xa). �

Let I(r, s) = {a ∈ IdG : r(a) = r, s(a) = s}. Indeed, if I(r, s) 6= ∅, then m−r−s
is a non-negative even number. It follows from Lemma 5.2 that I(r, s) is either
empty, or a left ideal of G.

Lemma 5.3. (1) If r ≥ m and I(r, s) 6= ∅, then r = m, s = 0 and |I(r, s)| = 1.
(2) If s ≥ m and I(r, s) 6= ∅, then r = 0, s = m and |I(r, s)| = 1.

Proof. (1) Since m ≥ r + s, we have r = m and s = 0. Consequently, I(r, s) =
I(m, 0) = {a ∈ IdG : au = u for every u ∈ KG}, and hence |I(r, s)| = 1 by Lemma
2.1(3). (2) is analogous. �

LetK(r, s, α, β) be the set of all u ∈ KG such that |{a ∈ I(r, s) : u ∈ K1(a)}| = α
and |{a ∈ I(r, s) : u ∈ K2(a)}| = β.

Lemma 5.4. Either K(r, s, α, β) = ∅, or K(r, s, α, β) = KG.

Proof. Assume that J = K(r, s, α, β) 6= ∅. We prove that J is a left ideal. Since
a · xu = xu iff xa · u = u for every u ∈ J , x ∈ G, a ∈ IdG, we have Lx({b ∈ I(r, s) :
b · xu = xu}) = {c ∈ I(r, s) : cu = u} (use the fact that I(r, s) is a left ideal)
and, in particular, |{b ∈ I(r, s) : xu ∈ K1(b)}| = α. Similarly, |{b ∈ I(r, s) : xu ∈
K2(b)}| = β and thus xu ∈ J . Consequently, J = KG by Lemma 2.1(1). �

Consequently, for every r, s there is a unique pair (α, β) such that K(r, s, α, β) =
KG and K(r, s, α′, β′) = ∅ for all (α′, β′) 6= (α, β).

Lemma 5.5. If K(r, s, α, β) = KG, then αm = rt and βm = st, where t = |I(r, s)|.

Proof. Since |{a ∈ I(r, s) : au = u}| = α and |{a ∈ I(r, s) : au = uu}| = β for every
u ∈ KG, we have |L| = 2αm, where L = {(a, u) ∈ I(r, s) ×KG : au = u}. On the
other hand, |L| = 2rt by the definition of I(r, s). Thus αm = rt. Considering the
set {(a, u) ∈ I(r, s)×KG : au = uu}, a similar proof yields βm = st. �

Lemma 5.6. If K(r, s, α, β) = KG, I(r, s) 6= ∅ and the numbers m and t = |I(r, s)|
are relatively prime, then just one of the following cases takes place:

(1) r = s = α = β = 0.
(2) r = m, s = 0, α = 1, β = 0 and t = 1.
(3) r = 0, s = m, α = 0, β = 1 and t = 1.

Proof. By Lemma 5.5, αm = rt and βm = st. If r = s = 0, then obviously
α = β = 0. If r ≥ 1, then m divides r and thus r ≥ m. If s ≥ 1, then m divides s
and thus s ≥ m. In both cases, Lemma 5.3 applies. �

Proposition 5.7. If I(r, s) 6= ∅, r+ s ≥ 1 and the numbers m and t = |I(r, s)| are
relatively prime, then G contains a right zero.

Proof. Choose α, β such that K(r, s, α, β) = KG. It follows from Lemma 5.6 that
t = 1 and thus I(r, s) consists of a right zero. �

Proposition 5.8. If m is not divisible by any prime number p ∈ {2, . . . , n− 2, n},
then either G contains a right zero, or n = 3, m is even and u 6= au 6= uu for all
a ∈ IdG, u ∈ KG.
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Proof. If n = 1, then IdG = {a} and a is a right zero; so we may assume that
n ≥ 2. Obviously, if I(r, s) = ∅ for all r, s with r + s ≥ 1, then u 6= au 6= uu
for all a ∈ IdG, u ∈ KG, and thus m is divisible by 2 according to Lemma 5.1.
Consequently, 2 = n− 1 and thus n = 3.

So assume that there are r, s such that r + s ≥ 1 and t = |I(r, s)| ≥ 1. If m and
t are relatively prime, then Lemma 5.7 yields the result. If p is a prime dividing
both m and t, then p ≤ t ≤ n, and therefore p = n − 1, t = n − 1 and the only
a ∈ IdG r I(r, s) is a right zero. �

Theorem 5.9. Let G be a finite SI non-idempotent LSLD groupoid with |KG| =
2m ≥ 4 and let p be the least prime divisor of m. If |IdG| < p, then either IdG
contains precisely three elements which are not right zeros, or every element of IdG
is a right zero and thus |IdG| ≤ 2 and KG is subdirectly irreducible.

Proof. Let H = G r A, where A is the set of all right zeros of G. According to
Corollary 2.8, H is an SI LSLD groupoid with no right zeros. However, if IdH 6= ∅,
then H contains a right zero by Proposition 5.8, a contradiction. The rest follows
from Corollary 2.8 too. �

6. Small subdirectly irreducible LSLD groupoids

In this section we apply the theory developed above to search for small SI non-
idempotent LSLD groupoids. The procedure for finding all SI LSLD groupoids G
with m > 0 non-idempotent elements follows.

(1) We find all m2 -element LSLDI groupoids.
(2) We find all m-element idempotent-free LSLD groupoids by extending grou-

poids found in the first step and check which of them are pre-SI (using
Theorem 4.3).

(3) For each pre-SI groupoid K found in the second step, we characterize sub-
groupoids I of Aut−2 K with the property 4.1(2) and check which I tK are
subdirectly irreducible.

(4) Each SI LSLD groupoid found in the third step can be extended by idG,
oG, none or both (see Corollary 2.7).

Two non-idempotents. Let G be an SI LSLD groupoid with |KG| = 2. Then
KG ' T and IdG is either empty, or isomorphic to a subgroupoid of Aut2(T) =
Inv(T, ipT) = {idT, oT}. Hence

T, T[idT], T[oT] and T[idT][oT[idT]]

are the only (up to an isomorphism) SI LSLD groupoids with two non-idempotent
elements.

Four non-idempotents. Let G be an SI LSLD groupoid with |KG| = 4. Then
KG/ipKG

is isomorphic to S, the only two-element LSLDI groupoid. Clearly, the
following groupoids K1, K2, K3 are the only (up to an isomorphism) 4-element
idempotent-free LSLD groupoids:

K1 0 0̃ 1 1̃
0, 0̃ 0̃ 0 1̃ 1
1, 1̃ 0̃ 0 1̃ 1

K2 0 0̃ 1 1̃
0, 0̃ 0̃ 0 1 1̃
1, 1̃ 0 0̃ 1̃ 1

K3 0 0̃ 1 1̃
0, 0̃ 0̃ 0 1̃ 1
1, 1̃ 0 0̃ 1̃ 1
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K1 and K2 are pre-SI, K3 is not (see the last example in the fourth section). Hence
KG is isomorphic to one of K1, K2. Now, we designate a = (0 0̃), b = (1 1̃),
c = (0 1)(0̃ 1̃), d = (0 1̃)(0̃ 1) the elements of I = Aut−2 (K1) = Aut−2 (K2). The
multiplication table of I is

I a b c d
a a b d c
b a b d c
c b a c d
d b a c d

Thus I contains three non-trivial subgroupoids I1 = {a, b}, I2 = {c, d} and I3 =
{a, b, c, d}. Neither K1 nor K2 is SI. Since both I1 tK1, I1 tK2 contain the left
ideal {0, 0̃}, they are not SI. In I2 t K1, the element c is a right zero, because
Lx = oK1 for every x ∈ K1, and thus LxcLx = c; so I2 tK1 is not SI by Corollary
2.8. On the other hand, it is easy to check that I2tK2, I3tK1 and I3tK2 are SI.

Proposition 6.1. There are 12 (up to an isomorphism) SI LSLD groupoids with
four non-idempotent elements:

I3 tK1, I2 tK2, I3 tK2

and their extensions by right zeros.

Six non-idempotents. Let G be an SI LSLD groupoid with |KG| = 6. Then
KG/ipKG

is isomorphic to one of S1, S2, S3 (see the list of three-element LSLDI
groupoids in the introduction). S2 cannot be isomorphic to KG/ipKG

, because the
ipKG

-block corresponding to the element 0 of S2 is always a proper left ideal inside
KG (every automorphism of G preserves this block), a contradiction with Lemma
2.1(1). Now, one can check that the following groupoids K4, K5, K6, K7 are the
only (up to an isomorphism) 6-element idempotent-free LSLD groupoids such that
their factorgroupoid over ip is one of S1, S3.

K4 0 0̃ 1 1̃ 2 2̃
0, 0̃ 0̃ 0 1̃ 1 2̃ 2
1, 1̃ 0̃ 0 1̃ 1 2̃ 2
2, 2̃ 0̃ 0 1̃ 1 2̃ 2

K5 0 0̃ 1 1̃ 2 2̃
0, 0̃ 0̃ 0 1 1̃ 2 2̃
1, 1̃ 0 0̃ 1̃ 1 2 2̃
2, 2̃ 0 0̃ 1 1̃ 2̃ 2

K6 0 0̃ 1 1̃ 2 2̃
0, 0̃ 0̃ 0 1̃ 1 2 2̃
1, 1̃ 0 0̃ 1̃ 1 2̃ 2
2, 2̃ 0̃ 0 1 1̃ 2̃ 2

K7 0 0̃ 1 1̃ 2 2̃
0, 0̃ 0̃ 0 2̃ 2 1̃ 1
1, 1̃ 2̃ 2 1̃ 1 0̃ 0
2, 2̃ 1̃ 1 0̃ 0 2̃ 2

K4 and K5 are pre-SI, K6 and K7 aren’t. Hence KG is isomorphic to one of K4,
K5. One can compute that I = Inv−(K4, ipK4) = Aut−2 (K4) = Aut−2 (K5) contains
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the following non-trivial subgroupoids:

I1 = {(x x̃) : x = 0, 1, 2},
I2 = {(x x̃)(y ỹ) : x, y = 0, 1, 2, x 6= y},
I3,1 = {(x y)(x̃ ỹ) : x, y = 0, 1, 2, x 6= y},

I3,2 = {(0 1̃)(0̃ 1), (0 2̃)(0̃ 2), (1 2)(1̃ 2̃)},

I3,3 = {(0 1̃)(0̃ 1), (1 2̃)(1̃ 2), (0 2)(0̃ 2̃)},

I3,4 = {(0 2̃)(0̃ 2), (1 2̃)(1̃ 2), (0 1)(0̃ 1̃)},
I3 = {(x y)(x̃ ỹ), (x ỹ)(x̃ y) : x, y = 0, 1, 2, x 6= y} = I3,1 ∪ I3,2 ∪ I3,3 ∪ I3,4,
I4,1 = {(x ỹ)(x̃ y)(z z̃) : {x, y, z} = {0, 1, 2}},

I4,2 = {(0 1)(0̃ 1̃)(2 2̃), (0 2)(0̃ 2̃)(1 1̃), (1 2̃)(1̃ 2)(0 0̃)},

I4,3 = {(0 1)(0̃ 1̃)(2 2̃), (1 2)(1̃ 2̃)(0 0̃), (0 2̃)(0̃ 2)(1 1̃)},

I4,4 = {(0 2)(0̃ 2̃)(1 1̃), (1 2)(1̃ 2̃)(0 0̃), (0 1̃)(0̃ 1)(2 2̃)},
I4 = {(x ỹ)(x̃ y)(z z̃), (x y)(x̃ ỹ)(z z̃) : {x, y, z} = {0, 1, 2}} = I4,1 ∪ · · · ∪ I4,4,
I3,i ∪ I4,i, i = 1, 2, 3, 4,
all unions of I1, I2, I3, I4.

Clearly, |I1| = |I2| = |I3,i| = |I4,i| = 3, i = 1, . . . , 4 and |I3| = |I4| = 6. Now,
none of K4, K5 is SI. The following table shows, which of J t K4, J t K5 (J a
subgroupoid of I) are subdirectly irreducible. (An empty space means it does not
satisfy the condition 4.1(2).)

t I1 I2 I3,1 I3,2, I3,3, I3,4 I3 I4,1 I4,2, I4,3, I4,4 I4
K4 − − − − + − − +
K5 − − + +

t I3,1 ∪ I4,1 I3,i ∪ I4,i I1 ∪ I2 Ii ∪ Ij Ii ∪ Ij ∪ Ik I
i = 2, 3, 4 i 6= j, {i, j} 6= {1, 2} i 6= j 6= k 6= i

K4 − − − + + +
K5 − + + +

Proposition 6.2. There are 96 (up to an isomorphism) SI LSLD groupoids with
six non-idempotent elements: the 24 without right zeros described in the table above
and their extensions by right zeros.

The following table displays the number of SI LSLD groupoids with 2, 4 and 6
non-idempotent elements and a respective number of idempotent elements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 1
0 0 1 2 3 4 2
0 0 0 0 0 0 4 8 4 8 16 8 6 12 6 4 8 4 2 4 2

More non-idempotents.
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Lemma 6.3. Let G be an SI LSLD groupoid with |KG| = 8. Then KG/ipKG
is

isomorphic to one of R1, R2.

R1 0 1 2 3
0 0 1 2 3
1 0 1 2 3
2 0 1 2 3
3 0 1 2 3

R2 0 1 2 3
0 0 1 3 2
1 0 1 3 2
2 1 0 2 3
3 1 0 2 3

Proof. For every u ∈ KG, let t(u) be the number of v ∈ KG such that uv ∈ {v, vv}.
We have t(u) = t(xu) for every x ∈ G (because xy · z = z iff y · xz = xz), hence the
set {u ∈ KG : t(u) = t} is a left ideal of G for every t. Consequently, there is t such
that t(u) = t for every u ∈ KG (see Lemma 2.1(1)) and thus all left translations in
R = KG/ipKG

have the same number t
2 of fixed points. Let us denote the elements

of R by 0,1,2,3. Clearly, t
2 ≥ 1 is an even number. If t

2 = 4, then R is the right
zero band R1. Otherwise t

2 = 2 and we may assume that 0, 1 are the only fix points
of L0, i.e. L0 = (2 3). Then 1 · 0 = (0 · 1)(0 · 0) = 0(1 · 0) (left distributivity)
and hence 1 · 0 is a fix point of L0. Therefore 1 · 0 = 0 and so L1 = L0. Now,
L2·0 = L2L0L2 = L2L1L2 = L2·1. Since L2(0), L2(1) 6= 2 and L0 = L1 6= L3

(because L0(3) 6= L3(3)), we have {2 · 0, 2 · 1} = {0, 1}. Hence L2 = (0 1), because
it has two fixed points. Analogously also L3 = (0 1). �

Proposition 6.4. There is no SI idempotent-free LSLD groupoid with 8 elements.

Proof. Since both R1, R2 contain proper left ideals, so does any 8-element SI
idempotent-free LSLD groupoid, a contradiction with Lemma 2.1(1). �

Lemma 6.5. Let G be an SI LSLD groupoid with |KG| = 10. Then KG/ipKG
is

isomorphic to one of R3, R4.

R3 0 1 2 3 4
0 0 1 2 3 4
1 0 1 2 3 4
2 0 1 2 3 4
3 0 1 2 3 4
4 0 1 2 3 4

R4 0 1 2 3 4
0 0 2 1 4 3
1 3 1 4 0 2
2 4 3 2 1 0
3 2 4 0 3 1
4 1 0 3 2 4

Proof. Proceed similarly as in the proof of Lemma 6.3. �

Proposition 6.6. There is no SI idempotent-free LSLD groupoid with 10 elements.

Proof. Assume that K = {0, 0̃, 1, 1̃, 2, 2̃, 3, 3̃, 4, 4̃} is an idempotent-free LSLD grou-
poid, where blocks of ipK are the sets {k, k̃} for every k = 0, . . . , 4. Then K/ipK '
R4 and without loss of generality we put 0 ·1 = 2̃, 0 ·3 = 4̃, 1 ·2 = 4̃, 1 ·0 = 3̃. Then
1̃ · 0̃ = 3, 1̃ · 2̃ = 4 and thus 2 · 0 = 4̃, 2 · 1 = 3̃, because L0 is an automorphism.
Also 3 · 0 = 2̃, 2 · 1 = 4̃, 4 · 0 = 1̃, 4 · 2 = 3̃, because L2 is an automorphism, and the
operation on K is determined. We see that ρ = {0, 1, 2, 3, 4}2 ∪ {0̃, 1̃, 2̃, 3̃, 4̃}2 is a
congruence on K and ρ ∩ ipK = idK . Hence K is not subdirectly irreducible. �
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Proposition 6.7. The following groupoid is the smallest SI idempotent-free LSLD
groupoid with more than two elements.

K8 0 0̃ 1 1̃ 2 2̃ 3 3̃ 4 4̃ 5 5̃
0, 0̃ 0̃ 0 1 1̃ 4̃ 4 5̃ 5 2̃ 2 3̃ 3
1, 1̃ 0 0̃ 1̃ 1 5̃ 5 4̃ 4 3̃ 3 2̃ 2
2, 2̃ 4̃ 4 5̃ 5 2̃ 2 3 3̃ 0̃ 0 1̃ 1
3, 3̃ 5 5̃ 4 4̃ 2 2̃ 3̃ 3 1 1̃ 0 0̃
4, 4̃ 2̃ 2 3 3̃ 0̃ 0 1 1̃ 4̃ 4 5 5̃
5, 5̃ 3 3̃ 2̃ 2 1̃ 1 0 0̃ 4 4̃ 5̃ 5

Proof. Subdirect irreducibility of K8 can be checked easily from the multiplication
table and non-existence of a smaller one was proved above. �

7. The group generated by left translations

In the last section, we find another criterion for recognizing that a groupoid is
not SI or pre-SI.

Let G be an LSLD groupoid. We denote L(G) the subgroup of Aut(G) generated
by all left translations in G. For a subset N of L(G) we define a relation ρN by
(x, y) ∈ ρN , iff there exists ϕ ∈ N such that ϕ(x) = y.

Lemma 7.1. Let G be an LSLD groupoid and N a normal subgroup of L(G). Then
ρN is a congruence of G.

Proof. Clearly, ρN is an equivalence on G. Let (x, y) ∈ ρN and z ∈ G. We
have yz = ϕ(x)z = Lϕ(x)Lx(xz) = ϕLxϕ

−1Lx(xz), and so (xz, yz) ∈ ρN via the
automorphism ϕLxϕ

−1Lx ∈ N . Further, zy = zϕ(x) = zϕ(z · zx) = LzϕLz(zx),
and so (zx, zy) ∈ ρN via the automorphism LzϕLz ∈ N . �

Proposition 7.2. Let G be an SI non-idempotent or a pre-SI idempotent-free LSLD
groupoid and let N be a non-trivial normal subgroup of L(G). Then for every u ∈ G
there exists ϕ ∈ N such that ϕ(u) = uu.

Proof. If G is SI non-idempotent, then ipG ⊆ ρN , because ρN is a non-trivial con-
gruence. If G is pre-SI idempotent-free, one must check (in a view of Theorem 4.3)
that ρN is also Aut2(G)-invariant. If (x, y) ∈ ρN , ϕ(x) = y, and ψ ∈ Aut2(G), then
(ψϕψ−1)(ψ(x)) = ψϕ(x) = ψ(y), and thus (ψ(x), ψ(y)) ∈ ρN via the automorphism
ψϕψ−1 ∈ N . �

Example. Recall the groupoid K3 from the previous section. It is easy to calculate
that L(K3) = {id, (0 0̃), (1 1̃), (0 0̃)(1 1̃)}, and thus N = {id, (0 0̃)} is a normal
subgroup. However, there is no ϕ ∈ N such that ϕ(1) = 1̃, hence K3 is not pre-SI
by Proposition 7.2.

Remark. Let G be a simple LSLD groupoid. Then the subgroup of L(G) generated
by all LxLy, x, y ∈ G, is a smallest non-trivial normal subgroup of L(G) and thus
L(G) is subdirectly irreducible. This is a result of H. Nagao [6] and it can be proved
similarly. However, due to Corollary 1.3, it is interesting in the idempotent case
only.
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Caen, 1999.
[6] H. Nagao, A remark on simple symmetric sets, Osaka J. Math., 16 (1979), 349-352.

[7] B. Roszkowska-Lech, Subdirectly irreducible symmetric idempotent entropic groupoids, Demon-

stratio Math., 32/3 (1999), 469-484.
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