Recently, the utilization of invariant aggregation operators, i.e., aggregation operators not depending on a given scale of measurement was found as a very current theme. One type of invariantness of aggregation operators is the homogeneity what means that an aggregation operator is invariant with respect to multiplication by a constant. We present here a complete characterization of homogeneous aggregation operators. We discuss a relationship between homogeneity, kernel property and shift-invariance of aggregation operators. Several examples are included.
Keywords: aggregation operator; homogeneity; kernel property;
AMS: 26B99; 68T37;
BACK to VOLUME 42 NO.3