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Different length scales in magnetization dynamics

Time dependent Subatomic length scales,
Spin-polarized computationally heavy.
Density Functional  Magnetization density as
Theory (TD-SDFT)  field m(r)

Micromagnetics Micron lengths, can simulate
complete devices.
magnetization density as
field m(r)



Different length scales in magnetization dynamics

UPPSALA

UNIVERSITET Time dependent Subatomic length scales,

Spin-polarized computationally heavy.
Density Functional  Magnetization density as
Theory (TD-SDFT)  field m(r)

Atomistic Spin Nanometer length scales,

Dynamics magnetization density as
discrete set of atomic
magnetic moments m.

Micromagnetics Micron lengths, can simulate
complete devices.
magnetization density as
field m(r)




Motivations for use of atomistic spin dynamics for

studies of dilute magnetic systems
B RS
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* Investigate the magnetization temperature

dependence in equilibrium; at varying dopant and
defect concentrations.

* Investigate correlation functions, response
functions etc.

This can be achieved with Monte Carlo simulations —
what can be gained with atomistic spin dynamics?

« The (real) time evolution of the magnetization
« Time evolution of correlation functions
e Dynamic response functions

Spin dynamics studies on

Mn-doped GaAs: Hellsvik et al, PRB 78, 144419 (2008)
The spin glass alloy CuMn : Skubic et al, PRB 79, 024411
(2009)




Equations of motion: Atomistic Landau-Lifshitz Equation
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r = —ym; X |B; + b;(t)] —v—m; x (m; x [B; + b;(t)])
dt m

Precession Damping term
term

m; atomic magnetic moment 7/ gyromagnetic ratio

B, effective magnetic field (v damping term

b;(t) stochastic magnetic field

Magnetic exchange is mapped 7 —
onto a Heisenberg Hamiltonian

Derived from spin-polarized KS-Hamiltonian following
V. P. Antropov et al. PRB 54, 1019 (1996).

Our approach and implementation described in
B. Skubic et al. JPhys: Cond Mat 20, 315203 (2008).




Equations of motion: Atomistic Landau-Lifshitz Equation

UPSALA dIIlz- o)
UNIVERSITET = Tym; X B; +b;(t)] —7v—m; x (m; x [B; + b;(t)])
dt m

Precession Damping term
term

Simulation cells typically
have periodic boundary
conditions.

Precession of a single
atomic moment in the
effective magnetic field.




Trajectories at T=0K resp 300K
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Finite temperature effects are treated within a
Langevin dynamics approach. The fluctuating
magnetic field is normal distributed with an amplitude
related to the damping parameter.
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The ensemble
UPPSALA average of the
UNIVERSITET magnetization
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o0 Monte Carlo
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The equilibrium
configurations
conform with those
obtained in Monte
Carlo simulations.
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Ao Primary variables of TD-SDFT
UP;LA n(r,t) = Z<IIJ ‘(‘)(r —1;) ‘IIJ> Particle density

UNIVERSITET :
: . Maagnetization
m(r.t) = pp Y (F|od(r — 1) T) genaity

qh
HB — 7

Uy =
2me V= W(ry, 1.

Derivation of equations of motion from the
spin-polarized Kohn-Sham Hamiltonian

N f2v2
HYS = Y | = +u,(r,t) — pupo - B,(r, t)

2m

{

55 ""hTf B.(r.t) = B(r,t) + B,.(r, 1)
()7
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Z Vio(r—r;) +0o(r—r;)V;

Current . h

operator J(I.t) = S

UPPSALA i

KS spin-current T ) = s ZM}‘J @ Ji(r.1)|P)
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Evaluate the commutator of the magnetic operator and
the KS-Hamiltonian

dm(r,t) 1
dt  h

(|[H"", m(r.1)]|D)

The magnetic operator commutes with the scalar
potential but not with the magnetic potential or the
Kinetic energy (non-relativistic case)

dm(r, t)
dt

+ V- JES (1 t) = m(r,t) x Bs(r,?)

2me




dm(r, t)

+ V- JES(rt) = ! m(r,?) x Bs(r,?)

dt ) '2 me

UPPSALA
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systems where:
1. rigid atomic
moments

2.. Spin currents
can be discarded

V- JE(r,t) =0

But in standard LDA (or GGA): ™) | Bue(r, 1)
- and no torque would drive the magnetization!

Remedies? Depart from strict LDA
Map to Heisenberg Hamiltonian (our approach)

Construct new xc-Functionals (OEP, EXX)




| Other approaches to atomistic spin dynamics
SRR Constrained local moments model (Stocks)
(builds on constrained DFT)

Spin cluster expansion (Fahnle)
(Extension of cluster expansion
techniques in alloy theory)

Hybrid MC-SD (Landau)
Thermalization of spin system with

Monte Carlo simulation, thereafter

spin dynamics evolution at zero
Temperature)

(this listing is by no means complete!)

Stocks et al, Phil. Mag 78, 665 (1998)
Fahnle et al., Comp. Mat. Sci. 32, 118 (2005)
Tao, Landau et al, Phys. Rev. Lett 95, 087207 (2005)




Application: SD Simulation of Mn-doped GaAs

savenener  Lattice structure: Zincblende with 5% of Ga atoms
substituted with Mn atoms. Varying Arsenide antisite
concentration. This screenshot for T=100 K and no
antisites

Only Mn atoms
are shown in
visualization

Mn-doped GaAs: Hellsvik et al, PRB 78, 144419 (2008)




What size of simulations cell is necessary?
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==L =30 .
o[-l Different

-¢-L=50  cell sizes:
L=30, 40,
50

(i.e. 5400,
12800 or

25000 Mn
atoms)

Same J_ij exchange values as in
J. Kudrnovsky et al. PRB 69, 115208 (2004)
L. Bergquvist et al. PRL 93,137202, PRB 72, 195210
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the magnetic

order parameter
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FIG. 4. (Color online) Time evolution of the average normalized
magnetization starting from ferromagnetic (blue) and random (red)
spin configurations for L=40, with As Antisite concentration y
=0.25% at temperature T=100 K and with a damping parameter of
0.03. Similar simulations but with a damping parameter of 0.1 are
shown in green and black for the random and ferromagnetic con-
figurations, respectively.

The time scale is affected by:

Cell size (as for MC simulations)
T /Tc ratio, crit. slowing down  (as for MC simulations)
The damping parameter




Time evolution of the equal time pair correlation
function

UPALA Gz’j (t) <mz (t) 1 (t))
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Time evolution of the equal time pair correlation
function

UPPSALA Gii(t) = (m;(t) - m;(t))

UNIVERSITET
(m(r;,t) - m(r;, 1))

—G—DLI{/It=Ops y=125%
“atonncre | T=100K

— & —-DLMt=5ps
— + —DLMt=10ps
—6—FM t=0ps
—&—FM t=1ps

—0—FM t=5ps above T
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Two-time correlation functions are powerful tools to
UPPSALA study relaxation.
UNIVERSITET
For magnetic (model Hamiltonian) systems the
simplest two-time correlation is the autocorrelation

C:FU(IL'-U.-‘ _’_ IL IL'-U-‘) — <In'i(f’ﬂ-’) ' In’i(tu:- + IL)>

The autocorrelation is not directly measurable -
but relates to the zero (low field) magnetic
susceptibility in experiments

1\”1.3: (f-:u:-_ f-)fh-

The autocorrelation function has been used to study
model Heisenberg Hamiltonian spin glass systems
L. Berthier, AP. Young PRB 69, 184423 (2004)




Autocorrelation G, y=0.25%, T=10K (T _~160K)
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simulation:;

S
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configuration
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The system s
ferromagnetic and
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a simpler
compound such
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Autocorrelation G, y=175%, T=10K (T ~30K)
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UNIVERSITET ~ In equilibrium the

average
magnetization for
y=1.75% is ~0.5M .
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Autocorrelation G, y=2.00%, T=10K (T <10K)
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The canonical spin glass alloy CuMn:
Frustrated magnetic system without long range order

Lattice structure: fcc with Cu substituted by Mn.

Does clustering of Mn occur? Magnet short range
order?

The electronic structure
was investigated with
EMTO

Effective pair chemical and
magnetic exchange
iInteractions were
calculated.

Atomic short range order
L, and magnetic short range
5 - 1520 order studied

Coordination shell

Peil et al, New J. of Physics 10, 083026 (2008)



The canonical spin glass alloy CuMn

UrpeALA Does clustering of Mn occur? Magnet short range

UNIVERSITET
order?

Atomic short range order
and magnetic short range
order were investigated by
Monte Carlo simulations.

The resulting atomic short
range order shows a peak
for the superstructure
vector

q=(1,1/2,0)

Magnetic short range order
for the vector

g_)m — (l 1/2:1:55“]

Peil et al, New J. of Physics 10, 083026 (2008)
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Skubic et al, PRB 79, 024411 (2009)




A=0.32+0.02

2 Fitting of the
UPPSALA autocorrelation

im‘-

UNIVERSIEEL function to two E
exponential S o
functions ER

105100 200 300 400 500
Time (1s)

FIG. 5. (Color online) Autocorrelation C(z,t,=0) for four val-
ues of the damping parameter: a=0.01 (circles), a=0.0316 (boxes),
a=0.1 (triangles). and a=0.316 (crosses). The dashed line is a lin-
ear fit to the points for 10 fs=¢r=40 fs; the slope is equal to /7
of Eq. (12). The slope of the solid lines corresponds to the damping
relaxation rate 1/7, in Eq. (12).

C(1,0) = (1 =A)e™" 1+ Ae™"72, (12)

The initial decay 0<t< 40 fs is independent of alpha and
corresponds to relaxation rate 1/tau.

The decay 40<t<150 fs corresponds to 1/tau_ with
tau_ dependent on alpha
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Time evolution
of the spin
correlation
function

Typical motion
of a single spin
after different
waiting times
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Application: Investigations on spin wave instabilities

We study in simulations how the magnitude of the
local magnetization can decay in precession around
an anisotropy axis.

1
- mp = — My
Here local magnetization PN Z ki
IS the average over the ¢

atomic magnetic moments , ; ,
in the simulation cell. m = \/ ma 4 my, +m;

a. Bloch-Bloembergen b. Gilbert damping <
damping (IM|=const.)
(IM,=const.)
5 Different

Phenomeno-
logical
relaxation
processes for
the local

magnetization



UPPSALA
UNIVERSITET

These kinds of collapse of the local magnetization
are referred to as a spin wave instabilities (SWI).
Interest into SWis is motivated not least as they can
enable faster switching of magnetization in applied
field.

Well known underlying mechanisms for SWI are the
Suhl instability, 2-magnon scattering and 4-magnon
scattering. But, all these rely on the magnetostatic
(dipolar) interaction!

Here we exclude dipolar interaction and the effect
arise due to the magnetocrystalline anisotropy
energy (MAE).

SWI caused by MAE have been studied by:
Safonov et al. PRB 63, 094419 (2001)
Kashuba, PRL 96, 047601 (2006)

Garanin et al. EPL 82, 17007 (2008)

In our study we focus on the behavior at finite
temperature and on zero versus finite damping.




The distribution of
| | magnetic moments
UPPSALA at zero (a) and finite
TR PN (b) temperatures.

UNIVERSITET

Precession in
external field (c ) or
around anisotropy
axis (d)

The external field
does not change
magnetic moment
distributions.

The anisotropy axis

Hellsvik et al. arXiv:0903.2186v1 changesthe
moment distribution
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FIG. 2: The plots illustrate the change of the magnetic mo-
ment due to an external field, easy-axis anisotropy and an
easy-plane anisotropy. The graphs on the left hand side give
the magnitude |Om/0t| while the graphs on the right hand
side give the angular velocity of the atomic spins with respect
to angle 8 between spin and applied field or anisotropy axis.
Note that in the case of a uniaxial anisotropy field 6 is defined
as the angle between moment and a fixed crystallographic di-
rection of the anisotropy field (e.g. 100). H is the strength of
the external field and K the strength of the anisotropy field.



Relaxation of magnetization starting with the local
2 magnetization at angle 45 or 90 degrees to the
e uniaxial easy anisotropy axis.
These simulations for an unrealistically high value of
the MAE, Ku=-2.0mRy /atom (xxx MJ/m3)
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These simulations with 10 times smaller MAE

UPPSALA

UNIVERSITET Also here the value of the damping is crucial
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Figure 16: Uniaxial anisotropy —0.2 mRy, # =
90°, At =1 as.

Figure 15: Uniaxial anisotropy —0.2 mRy, # =
90°, At = 10 as.

Dependence on time step used in SDE solver!




Dissipation of magnetic energy?
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Conclusions

Implementation of an atomistic spin dynamics, at
finite temperatures, method

Application to the dilute magnetic
semiconductor Mn-doped GaAs corresponds to
Monte Carlo results — and yields additional
information

The slow magnetic relaxation of the alloy CuMn
reveals its character as a spin glass compound.

Spin wave instabilities in presence of
magnetocrystalline anisotropy depends on
geometry, MAE strength and the damping.

In simulations so far, complete shrinking of the macro
spin occur only for unrealistically high values of the
MAE.. But, incomplete SWI phenomena present also
for more realistic values of the MAE.




| Outlook

UNIVERSITET o [ntegration with real-space electronic code for
calculations on finite (very small) systems.

Inclusion of bi-quadratic and higher order terms in
Heisenberg parametrization within generalized
perturbation method.

Sharing of code — User manual and binaries posted on

http:/ /www.fysik.uu.se /cmt/webserver4 /index.php

Source code available upon request.



http://www.fysik.uu.se/cmt/webserver4/index.php

Thank you for your attention!
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