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Motivation

Magnetic moments and Curie temperatures are the most impor-
tant characteristics of the magnetic state. Their determinations
from first-principles are of great importance for understanging of
the origin of magnetism. This is in particular true for magnetic

alloys.

A. Magnetic moments

e Elemental magnets and ordered magnetic alloys = realiable de-
termination of M, in the framework of the LSDA. In magnetic
alloys in addition to M;,; exist also local magnetic moments on
constituent atoms (problem: space partition between atoms)

e Random magnetic alloys represent much more involved prob-
lem, and some systems still represent challenge to solid state
theory, e.g., DMS, random Heusler alloys, etc. The problem is
typically solved using two possible approaches:
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1. supercell approach = very accurate LSDA methods are used
but incorrect local environments (e.g. bcc-A59Bso vs CsCl =
SQS - artificial MLs with correct environment to first few NNs,
numerically demanding, special concentrations only, damping
due to alloy disorder is neglected

2. CPA = reliable concentration trends, the effect of alloy dis-
order is included, less accurate LSDA methods are used which
gives correct results for closed-packed lattices

B. Curie temperatures T,

e Determination of T, in the framework of the first-principle ap-
proach represents a big challenge to the solid state state theory,
in particular for random magnetic alloys

e [wo-step approach was succesfully used for elemental magnets
and ordered magnetic alloys (e.g. Heusler alloys) and recently
applied also to random alloys (DMS alloys in particular)
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e Ist step: total LSDA energies of low-lying excitations (small
spin-deviations from reference ferromagnetic state) are mapped
onto the classical Heisenberg Hamiltonian (HH). During map-
ping pair-wise magnetic exchange interactions are obtained.
For random alloys is generalization in the framework of the CPA
more convenient and natural than supercell-approach (various
concentrations, numerical feasibility). Local environment ef-
fects on magnetic interactions are, however, more naturally
captured by supercell approach.

e 2nd step: Statistical study of HH = classical HH properly in-
cludes transversal spin-fluctuations reducing the magnetization
with temperature (contrary to the Stoner-excitation modell!).
Curie temperature (T.) can be estimated in the framework of
the MFA, RPA, and Monte-Carlo (MC) methods (RPA and MC

gives usually similar T .-estimates, MFA overestimate T,).



e Two-step approach is well-justified for large rigid moments
(Fe,Mn, ..) but it has limited validity for soft-magnetic mo-
ments like e.g. Ni. In the framework of the constrained

LSDA theory was this limitation removed recently leading to
the renormalized RPA approach (rRPA)

e Statistical treatment of random magnetic alloys may be quite
difficult = DMS alloys. The averaged lattice model (ALM)
can be used (i) for concentrated alloys; (ii) if exchange inter-
actions have spatially delocalized character; and (iii) magnetic
moments are on both constituent atoms (the ALM fails e.g. in
DMS alloys!).
= The problem of random alloys in the ALM is mapped into
crystal-like case with effective exchange interactions (concen-
tation weighted values of atom constituents in A, B;_, alloy):
1?*AA+22(1 —2)AB + (1 — 2)’BB
= Indirect effect of disorder on perfect magnetic-sublattice:
(Cu,Ni)MnSb alloy (Mn-sublattice is also 'crystal-like")
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Magnetic percolation: toy model - MFA vs MC (Bergqvist)

MC simulation of diluted spin system on a fcc lattice with J i~ 1/ r3
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e Some basic equations: classical Heisenberg Hamiltonian

Z Jeff

7]

Magnetic moments are included in the definition of Jf]ff (e; are
thus spin-directions); .J;; RIS O/Jeff > 0 = FM/AFM coupling

e Exchange interactions: magnetic alloy A,B,_, (@, Q'=A,B)

/ Im Eg / /
I3 =1 [ AR g2 (2) AY g% (2)| dE

A% are exchange splittings on a given atom Q and gnga( )
propagates an electron of a given spin ¢ in random alloys between
sites 7, 7 occupied by atoms (), (). Then

eff _ 2 7AA AB 2 1BB
Jiit =at 5+ 2x(1 —x) J7 + (1 —2)° J;

t]
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e Curie temperature: various estimates

kg TM™ = §J(O) J(0)=J(q) for q=0

Quantity J(q) is the lattice Fourier tranform of real-space Jgff

3

= oy 2170~ 3]

( kB TRPA)

k TRPA )_1
MA

kB TrRPA _ kB TRPA(l — 6

Remark 1: TRPA is smaller than TMFA

Remark 2: Constraining magnetic fields which appear as La-
grange multipliers in the constrained DFT are included in recent

approach leading to renormalized J's/RPA (Bruno 2003)
= rRPA enhances T, as compared to conventional RPA
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Computational tools

e Density functional theory (DFT) in the framework of local spin-
density approximation: TB-LMTO method with chemical dis-
order described in the framework of the multi-sublattice CPA.

e Magnetic disorder or disorder is spin-orientations in fcc-NiMn/
(Cu,Ni)MnSb alloys (Mn-atoms) = included approximately in
terms of the uncompensated DLM model = 'random’ alloy

of Mn* and Mn~ atoms in varying proportion of x* and x~
(x™+x~=1) by using the CPA (x™=x"=0.5 is the DLM case)

e Two-step model generalized to random alloys with Curie tem-
peratures estimated within the MFA, RPA, and rRPA in the
framework of the ALM model.



Our aim and motivation: Ni-based alloys

Determination of concentration trends of magnetic moments and
Curie temperatures for fcc-NiCu, fcc-NiPd, fcc-NiFe, fcc-NiMn,
and fcc-NiCo magnetic alloys and comparison with experiment
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Magnetic moments (Bohr magnetons)
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e Random fcc-Ni;_,Cu, alloys (only one atom is magnetic)
e Linear decrease of MV" = textbook example but in fact a
delicate balance of sp-d charge transfer (M“* is almost zero)
e Very good agreement of T, for the rRPA model
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Magnetic moments (Bohr magnetons)
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e Random fcc-Ni;_,Pd, alloys (Pd is hihgly polarizable)

e M?"? increases with Pd-content while M*? varies only weakly
and collaps for xpg close to 1.

e Very good agreement of T, for the rRPA model
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Effect of structure on magnetic moment and T:
fcc- vs bee-Permalloy (PY: xp,=0.25)

e Triple wedge MBE-technology = GaAs|bcc-PY and
GaAs|Au|fcc-PY are grown up to 20-25 MLs

(scaling extrapolation of T, to infinite samples)

e Experiment: fcc/bcc-PY = M=1.07/1.03 ug
Theory: fcc/becc-PY = M,;=1.12/1.09 up

fcc- /bee-Permalloy: Curie temperatures

system TMFA TRPA - rRPA TP
bcc Py 605 466 586 553
fccPy 723 608 812 871 (858)

e [he renormalized RPA gives best agreement with experiment
o Thee < Tlee — Jower coordination of bec-lattice while

exchange integrals are comparable for fcc-/bec-lattices
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Scalar-relativistic ferromagnetic fce-Ni

Scalar-relativistic ferromagnetic fce-Ni
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e Bloch spectral functions for PY=fcc-Nij 75Feq o5 alloys:
different influence of disorder on maj/min states
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Magnetic moments (Bohr magnetons)
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e Random fcc-Niy_,Fe, alloys: M¥* and M*¢ varies weakly with
Fe-content = linear increase of M,,; with Xg,

e Dramatic concentration dependence of T, unexpected from the
linear dependence of M,,; on composition
= pronounced maximum for T .=f(xg,)

e Reasonable agreement of T, for the rRPA model with a shift
of T.-maximum to higher xg.
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e Random fcc-Ni;_,Fe, alloys: J's increase with xp, but the
frustration (antiferromagnetic interactions) increase strongly
for larger xg. = T, maximum
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M agnetic moments (Bohr magnetons)
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e Random fcc-Ni;_,Mn, alloys: ferromagnetic description fails
to reproduce M,,; and MM™ concentration dependence

e Uncompensated DLM model explains experiment succesfully:
= XxT:x~ ratio for each xy;, was determined selfconsistently
from the total-energy minimization

e A good agreement of T, for the rRPA model with a shift of
magnetism extinction to a slightly lower xyy,.
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e Random fcc-Ni;_,Mn, alloys: decrease of the Curie temper-
ature with Mn-content is due to dominating negative Mn-Mn
exchange interactions. Exchange interactions were obtained
from the reference ferromagnetic state even for concentrations
where uDLM is the ground state (rigidity of Mn-moments)
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Magnetic moments (Bohr magnetons)
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e Random fcc-Ni;_,Co, alloys: MY and MM™ are almost con-
centration independent = linear dependence of M;,; on com-
position

e A good agreement of calculated T, for the rRPA model with
experiment only for Ni-rich alloys = an improvement can be
obtained by including electronic entropy for larger Co-content
but in general Co-represents a problem for the theory
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Conclusions: Ni-based TM-alloys

First-principles study of magnetic and thermodynamical prop-
erties of a broad range of Ni-based fcc-ferromagnetic alloys
including NiCu, NiPd, NiFe, NiMn, and NiCo systems over the
whole concentration range.

There is very good agreement of calculated M, (and of com-
ponent magnetic moments if available) with experiment.

Only uncompensated DLM model (and not the ferromagnetic
one) describe properly behavior of fcc-NiMn alloys

Only the renormalized RPA approach decribe reasonable well
the concentration dependence of the Curie temperature while
the MFA /RPA are in much worse quantitative agreement with
the experiment. The agreement between theory and experi-
ment is worse in Co-rich NiCo alloy.

Exchange interactions allows to understand a complex behavior
of T.=f(xg), @=Fe,Mn random magnetic alloys
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Our aim and motivation: (Cu,Ni)MnSb alloys

Theoretical study of properties of semiHeusler (Cu,Ni)MnSb
alloys from first-principles = Heusler alloys are promissing
materials for spintronics and represent also interesting physics
(non-stoichiometric alloys: magnetocalometric effect (NiMnSn))

structurally are compatible with semiconductors: 4 fcc lattices

along [111] = (Cu,Ni)-Mn-I-Sb vs Ga-As-I1-12

Curie temperature can be well above room T

reliable experiments can also serve as suitable tests for more

complex systems (e.g. diluted magnetic semiconductors), in

particular for ab-initio approaches

complex study comprising electronic, magnetic, thermodynamic

(Curie T), and transport properties using a unified first-principles
approach = predictive power

a possibility to study the effect of substitutional (Cu-Ni) and

magnetic disorders (NiMnSb - FM, CuMnSb - AFM)
possible effect of electron correlations in narrow Mn-bands
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Experiment: Concentration dependence of magnetic moments
in (Cu,Ni)MnSb alloys
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e Abrupt change of M=f(x¢,) dependence at x¢, ~ 0.7
e A weak M=f(xc,) dependence of M for x¢, < 0.7
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Experiment: Concentration dependence of Curie T
of (Cu,Ni)MnSb alloys
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23



Experiment: Concentration dependence of resistivity
of (Cu,Ni)MnSb alloys
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e Abrupt change of p=f(xc,) dependence at about x¢, ~ 0.7
e Strong T-dependence of resistivity
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A simple qualitative explanation of experiment

e NiMnSb is the ferromagnet, CuMnSb is the antiferromagnet

e Phase transition ferromagnet = antiferromagnet starts at cer-
tain X¢, and leads to magnetic disorder (disorder in spin-orientations)
on structurally non-random Mn-sublattice

e Magnetic disorder leads to an abrupt reduction of magnetiza-
tion and to an abrupt increase of residual resistivity as com-
pared to the reference ferromagnetic state

e Pair exchange interactions for large rigid magnetic moments
like those on Mn-sites are only weakly influenced by magnetic
disorder = smooth concentration dependence of T,

Our aim

A quantitative explanation of experiment in the framework of
parameter-free theory based on DFT-formalism
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Conductivity: residual resistivity

Ab initio theory of residual resistivity is based on two steps:

e Selfconsistent electronic structure within the LSDA-CPA:
the same as that used for mapping to the Heisenberg model

e Residual resistivity formulated in the Kubo-Greenwood linear-
response theory with all quantities (matrix elements, Green-
function elements) expressed in terms of Kohn-Sham orbitals
and one-electron Hamiltonian

e Disorder-induced vertex corrections are included

e T[he Kubo-Greenwood theory neglects:
1. the effect of phonons
2. the effect of thermodynamical fluctuations related to
the spin-spin correlation function G;

Gij:<Si.Sj>—<Si>.<Sj>
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e Effect of phonons = weak monotonic increase of resistivity
with temperature

e Effect of thermodynamical fluctuations =- resistivity varies with
temperature and exhibits a maximum at the Curie temperature

e Present theory thus describes reliably the low-temperature limit
of the resistivity where the impurity and/or magnetic-scatterings
dominate
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Bulk residual resistivity: TB-LMTO-CPA

e The conductivity tensor for spin A (A =T, |) (u = z,¥, 2):

02,/ x Tr(¢°(EL))YD,(¢° (ER))D,, + vertex part

where
D, =[R,,S| (u==xy,x) is the effective velocity

e present formulation leads to nonrandom velocity operator =
vertex part is obtained straightforwardly in the CPA method
o residual resistivity: p,, =1/(0], + 7}.)

e Typical resistivity of concentrated metal alloys =

p~ 01+1x10°Qm or 10-=100uQcm
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(Cu,Ni)MnSb alloys: electronic properties - LDOS

FM-NiMnSb alloy: spd
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e Effect of alloying:

1. halfmetallic behavior = to metallic behavior
2. Ef moves toward unoccupied Mn d-level

e Strong Cu-Ni disorder
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(Cu,Ni)MnSb alloys: electronic properties - LDOS (cont.)

AFM[100]-CuMnSb alloy: spd DLM-CuMnSb aloy: spd AFM[111]-CuMnSb alloy: spd
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e Effect of magnetic arrangements: AFM with spin-orientations
changing along [100]- and [111]-directions vs DLM-state for
CuMnShb
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(Cu,Ni)MnSb alloys: electronic properties - BSF

Bloch spectral function A(k,E) (states/spin/Ry)
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(Cu,Ni)MnSb alloys: magnetic properties

Cu,Ni;_ MnSh semi-Heusler alloy (spd)
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Cu-concentration Cu-concentration

e Model: — ferromagnetic state for xc, < 0.7
— uncompensated DLM state for x¢, > 0.7 =
~ =(5/3) (x — 0.7), i.e., the concentration of
oppositely oriented spins increases linearly with xq,
so that for xcy, = 1 we have the DLM-state
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(Cu,Ni)MnSb alloys: Mn-Mn exchange interactions

(Cuy,Niq_, )MnSb aloys (spd)
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e Dominating exchange interactions depend weakly on composi-
tion with exception of 1st NN = decreases due to increasing
superexchange (Ef moves toward unoccupied Mn d-states)
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(Cu,Ni)MnSb alloys:

(/a3 MM (mRy)

e Exchange interactions along [110]-directions dominate
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e Halfmetal NiMnsb = exponential damping

e Metal CuMnSb = oscillatory behavior (RKKY-like)
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(Cu,Ni)MnSb alloys: Q-Mn exchange interactions (Q=Ni,Cu)

(Cuy,Niq1_, )MnSb aloys (spd)
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e Interactions are strongly localized (only 1st NN are relevant)
and weakly concentration dependent
e Problem: interactions due to induced magnetic moments =-
neglected (Sandratskii & Bruno 2007)
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(Cu,Ni)MnSb alloys: Curie temperatures

Cu,Ni,_,MnSb semi-Heusler alloy (spd)

300 L DA-model L DA-+U-model "'Q

O ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]
0O 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 1

Cu-concentration Cu-concentration

e RPA agrees reasonably with experiment (MFA overestimate T..)

e LDA+U slightly improves agreement with experiment as com-
pared to LDA
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(Cu,Ni)MnSb alloys: magnetic stability

FM-(Cuy_Ni,)MnSb, LDA: spd
12

Mn-Mn

J(@) (MRy)

e Lattice Fourier transformation of exchange integrals
(J(q)) indicates transition at about xc, =~ 0.7 — 0.8
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Resistivity (102 Q m)

(Cu,Ni)MnSb alloys: residual resistivity (T=0K)

CuyNi;_,MnSb semi-Heusler alloy (g-DLM LDA, spd)
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Cu-concentration Cu-concentration

e Simple model (the same as for magnetic moments): ferromag-
netism for xc, < 0.7 and uncompensated DLM for x¢, > 0.7
explains concentration trend of residual resistivities

e Possible vacancies and interstitial /swapping defects can further
Increase exp. resistivity as compared to theoretical one
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Resistivity (102 Q m)

(Cu,Ni)MnSb alloys: residual resistivity (T=0K, AFM models)
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Alternative models of spin-disorder: AFM100/AFM111 with
spin-disorder on one-sublatice for xc, > 0.7 also explains con-
centration trend of residual resistivities. M,=f(xcy) for both
models is almost identical to uDLM model
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CuMnSb alloy: magnetic ground state

e Experiment: AFM[111] = simple fcc 2 NN-Ising model for
AFM[111] requires Jo < O while calculations give robust Jo >
0, J; &~ 0 and thus lead to AFM[100]-ground state

5
[0,0,1] [0,0,0]
AFM[001] FM
0} J A
[1/2,1/2,1/2]
AFM[111]
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CuMnSb alloy: magnetic ground state (cont.)

e Total energy calculations = TB-LMTO (exp/th. lattconsts)
and FP-LAPW (exp.lattconst) confirm AFM[100]-ground state

e Relativistic TB-LMTO (exp. lattconst) also confirm AFM[100]-
ground state

e Variation of volume by 5% (increase/decrease) also leads to
AFM[100]-ground state

e TB-LMTO-LDAU lowers energy difference between AFM[100]
and AFM[111] but AFM[100] is still-ground state

Origin of discrepancy is unknown (Jahn-Teller effect?)
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Conclusions: (Cu,Ni)MnSb semi-Heusler alloys

First-principles study of a broad range of physical properties
of quaternary semiHeusler alloys (Cu,Ni)MnSb including elec-
tronic, magnetic, thermodynamical, and transport ones has
been presented

The two-step procedure for determination of the alloy Curie
temperature in the framework of the RPA was used

Residual resistivity of alloys has been determined using Kubo-
Greenwood linear-response approach

The abrupt change in concentration dependences of magnetic
moments and resistivities can be explained by a gradual FM
to AFM transition due to magnetic disorder on Mn-sublattice
modelled as uncompensated DLM state

Overall good quantitative agreement between theory based on
a unified model without adjustable parameters and experiment
has been obtained

Open problem: magnetic ground-state of CuMnSb
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Exchange integrals: effect of disorder

30 L fce-Cuy, My, + x=0.005 |
M o x=0.02
20 - $ >t x=005
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d/aaong (110)-direction
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Exchange intergrals: effect

Mn, Ni (mRy)
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Example of residual resistivity: AgPd alloy

40 - fcc Ag-Pd

30 TB-LMTO
25
20

15

residual resistivity (UQ cm)

10

0 0.2 0.4 0.6 0.8 1
Ag concentration
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