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Motivation

Magnetic moments and Curie temperatures are the most impor-
tant characteristics of the magnetic state. Their determinations
from first-principles are of great importance for understanging of
the origin of magnetism. This is in particular true for magnetic
alloys.

A. Magnetic moments

• Elemental magnets and ordered magnetic alloys ⇒ realiable de-
termination of Mtot in the framework of the LSDA. In magnetic
alloys in addition to Mtot exist also local magnetic moments on
constituent atoms (problem: space partition between atoms)

• Random magnetic alloys represent much more involved prob-
lem, and some systems still represent challenge to solid state
theory, e.g., DMS, random Heusler alloys, etc. The problem is
typically solved using two possible approaches:
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1. supercell approach ⇒ very accurate LSDA methods are used
but incorrect local environments (e.g. bcc-A50B50 vs CsCl ⇒
SQS - artificial MLs with correct environment to first few NNs,
numerically demanding, special concentrations only, damping
due to alloy disorder is neglected

2. CPA ⇒ reliable concentration trends, the effect of alloy dis-
order is included, less accurate LSDA methods are used which
gives correct results for closed-packed lattices

B. Curie temperatures Tc

• Determination of Tc in the framework of the first-principle ap-
proach represents a big challenge to the solid state state theory,
in particular for random magnetic alloys

• Two-step approach was succesfully used for elemental magnets
and ordered magnetic alloys (e.g. Heusler alloys) and recently
applied also to random alloys (DMS alloys in particular)
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• 1st step: total LSDA energies of low-lying excitations (small
spin-deviations from reference ferromagnetic state) are mapped
onto the classical Heisenberg Hamiltonian (HH). During map-
ping pair-wise magnetic exchange interactions are obtained.
For random alloys is generalization in the framework of the CPA
more convenient and natural than supercell-approach (various
concentrations, numerical feasibility). Local environment ef-
fects on magnetic interactions are, however, more naturally
captured by supercell approach.

• 2nd step: Statistical study of HH ⇒ classical HH properly in-
cludes transversal spin-fluctuations reducing the magnetization
with temperature (contrary to the Stoner-excitation model!).
Curie temperature (Tc) can be estimated in the framework of
the MFA, RPA, and Monte-Carlo (MC) methods (RPA and MC
gives usually similar Tc-estimates, MFA overestimate Tc).
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• Two-step approach is well-justified for large rigid moments
(Fe,Mn, ..) but it has limited validity for soft-magnetic mo-
ments like e.g. Ni. In the framework of the constrained
LSDA theory was this limitation removed recently leading to
the renormalized RPA approach (rRPA)

• Statistical treatment of random magnetic alloys may be quite
difficult ⇒ DMS alloys. The averaged lattice model (ALM)
can be used (i) for concentrated alloys; (ii) if exchange inter-
actions have spatially delocalized character; and (iii) magnetic
moments are on both constituent atoms (the ALM fails e.g. in
DMS alloys!).
⇒ The problem of random alloys in the ALM is mapped into
crystal-like case with effective exchange interactions (concen-
tation weighted values of atom constituents in AxB1−x alloy):
x2AA + 2x(1 − x)AB + (1 − x)2BB
⇒ Indirect effect of disorder on perfect magnetic-sublattice:
(Cu,Ni)MnSb alloy (Mn-sublattice is also ’crystal-like’)
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Magnetic percolation: toy model - MFA vs MC (Bergqvist)
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• Some basic equations: classical Heisenberg Hamiltonian

H = −
∑

i6=j

Jeff
ij ei · ej

Magnetic moments are included in the definition of Jeff
ij (ei are

thus spin-directions); Jeff
ij > 0/Jeff

ij > 0 ⇒ FM/AFM coupling

• Exchange interactions: magnetic alloy AxB1−x (Q,Q′=A,B)

JQQ′

i,j =
Im

4π

∫ EF

trL

[

∆Q
i ḡQQ′,↑

i,j (z) ∆Q′

j ḡQ′Q,↓
j,i (z)

]

dE

∆Q
i are exchange splittings on a given atom Q and ḡQ′Q,σ

i,j (z)
propagates an electron of a given spin σ in random alloys between
sites i, j occupied by atoms Q,Q′. Then

Jeff
ij = x2 JAA

i,j + 2x(1 − x) JAB
i,j + (1 − x)2 JBB

i,j
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• Curie temperature: various estimates

kB TMFA
c =

2

3
J(0) , J(0) = J(q) for q = 0

Quantity J(q) is the lattice Fourier tranform of real-space Jeff
ij

(kB TRPA
c )−1 =

3

2N

∑

q

[J(0) − J(q)]−1

kB T rRPA
c = kB TRPA

c (1 − 6
kB TRPA

c

M∆
)−1

Remark 1: TRPA
c is smaller than TMFA

c

Remark 2: Constraining magnetic fields which appear as La-
grange multipliers in the constrained DFT are included in recent
approach leading to renormalized J’s/RPA (Bruno 2003)
⇒ rRPA enhances Tc as compared to conventional RPA

8



Computational tools

• Density functional theory (DFT) in the framework of local spin-
density approximation: TB-LMTO method with chemical dis-
order described in the framework of the multi-sublattice CPA.

• Magnetic disorder or disorder is spin-orientations in fcc-NiMn/
(Cu,Ni)MnSb alloys (Mn-atoms) ⇒ included approximately in
terms of the uncompensated DLM model ⇒ ’random’ alloy
of Mn+ and Mn− atoms in varying proportion of x+ and x−

(x++x−=1) by using the CPA (x+=x−=0.5 is the DLM case)

• Two-step model generalized to random alloys with Curie tem-
peratures estimated within the MFA, RPA, and rRPA in the
framework of the ALM model.
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Our aim and motivation: Ni-based alloys

Determination of concentration trends of magnetic moments and
Curie temperatures for fcc-NiCu, fcc-NiPd, fcc-NiFe, fcc-NiMn,
and fcc-NiCo magnetic alloys and comparison with experiment
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• Random fcc-Ni1−xCux alloys (only one atom is magnetic)
• Linear decrease of MNi ⇒ textbook example but in fact a

delicate balance of sp-d charge transfer (MCu is almost zero)
• Very good agreement of Tc for the rRPA model
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• Random fcc-Ni1−xPdx alloys (Pd is hihgly polarizable)
• MNi increases with Pd-content while MPd varies only weakly

and collaps for xPd close to 1.
• Very good agreement of Tc for the rRPA model

12



Effect of structure on magnetic moment and Tc:
fcc- vs bcc-Permalloy (PY: xFe=0.25)

• Triple wedge MBE-technology ⇒ GaAs|bcc-PY and
GaAs|Au|fcc-PY are grown up to 20-25 MLs
(scaling extrapolation of Tc to infinite samples)

• Experiment: fcc/bcc-PY ⇒ Mtot=1.07/1.03 µB

Theory: fcc/bcc-PY ⇒ Mtot=1.12/1.09 µB

fcc-/bcc-Permalloy: Curie temperatures

system TMFA
c TRPA

c T rRPA
c T exp

c

bcc Py 605 466 586 553
fcc Py 723 608 812 871 (858)

• The renormalized RPA gives best agreement with experiment
• Tbcc

c < Tfcc
c ⇒ lower coordination of bcc-lattice while

exchange integrals are comparable for fcc-/bcc-lattices
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different influence of disorder on maj/min states
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• Random fcc-Ni1−xFex alloys: MNi and MFe varies weakly with
Fe-content ⇒ linear increase of Mtot with xFe

• Dramatic concentration dependence of Tc unexpected from the
linear dependence of Mtot on composition
⇒ pronounced maximum for Tc=f(xFe)

• Reasonable agreement of Tc for the rRPA model with a shift
of Tc-maximum to higher xFe
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• Random fcc-Ni1−xFex alloys: Jeff ’s increase with xFe but the
frustration (antiferromagnetic interactions) increase strongly
for larger xFe ⇒ Tc maximum
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• Random fcc-Ni1−xMnx alloys: ferromagnetic description fails
to reproduce Mtot and MMn concentration dependence

• Uncompensated DLM model explains experiment succesfully:
⇒ x+:x− ratio for each xMn was determined selfconsistently
from the total-energy minimization

• A good agreement of Tc for the rRPA model with a shift of
magnetism extinction to a slightly lower xMn.

17



-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0.5  1  1.5  2  2.5

JQ
Q

’ (d
) 

(m
R

y)

distance (d/a)

fcc-Ni0.85Mn0.15

QQ’=NiNi

QQ’=NiMn

QQ’=MnMn

• Random fcc-Ni1−xMnx alloys: decrease of the Curie temper-
ature with Mn-content is due to dominating negative Mn-Mn
exchange interactions. Exchange interactions were obtained
from the reference ferromagnetic state even for concentrations
where uDLM is the ground state (rigidity of Mn-moments)
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• Random fcc-Ni1−xCox alloys: MNi and MMn are almost con-
centration independent ⇒ linear dependence of Mtot on com-
position

• A good agreement of calculated Tc for the rRPA model with
experiment only for Ni-rich alloys ⇒ an improvement can be
obtained by including electronic entropy for larger Co-content
but in general Co-represents a problem for the theory
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Conclusions: Ni-based TM-alloys

• First-principles study of magnetic and thermodynamical prop-
erties of a broad range of Ni-based fcc-ferromagnetic alloys
including NiCu, NiPd, NiFe, NiMn, and NiCo systems over the
whole concentration range.

• There is very good agreement of calculated Mtot (and of com-
ponent magnetic moments if available) with experiment.

• Only uncompensated DLM model (and not the ferromagnetic
one) describe properly behavior of fcc-NiMn alloys

• Only the renormalized RPA approach decribe reasonable well
the concentration dependence of the Curie temperature while
the MFA/RPA are in much worse quantitative agreement with
the experiment. The agreement between theory and experi-
ment is worse in Co-rich NiCo alloy.

• Exchange interactions allows to understand a complex behavior
of Tc=f(xQ), Q=Fe,Mn random magnetic alloys
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Our aim and motivation: (Cu,Ni)MnSb alloys
Theoretical study of properties of semiHeusler (Cu,Ni)MnSb
alloys from first-principles ⇒ Heusler alloys are promissing
materials for spintronics and represent also interesting physics
(non-stoichiometric alloys: magnetocalometric effect (NiMnSn))

• structurally are compatible with semiconductors: 4 fcc lattices
along [111] ⇒ (Cu,Ni)-Mn-I-Sb vs Ga-As-I1-I2

• Curie temperature can be well above room T
• reliable experiments can also serve as suitable tests for more

complex systems (e.g. diluted magnetic semiconductors), in
particular for ab-initio approaches

• complex study comprising electronic, magnetic, thermodynamic
(Curie T), and transport properties using a unified first-principles
approach ⇒ predictive power

• a possibility to study the effect of substitutional (Cu-Ni) and
magnetic disorders (NiMnSb - FM, CuMnSb - AFM)

• possible effect of electron correlations in narrow Mn-bands
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Experiment: Concentration dependence of magnetic moments
in (Cu,Ni)MnSb alloys
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• Abrupt change of M=f(xCu) dependence at xCu ≈ 0.7
• A weak M=f(xCu) dependence of M for xCu ≤ 0.7
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Experiment: Concentration dependence of Curie T
of (Cu,Ni)MnSb alloys
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Smooth Tc=f(xCu) dependence
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Experiment: Concentration dependence of resistivity
of (Cu,Ni)MnSb alloys
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• Abrupt change of ρ=f(xCu) dependence at about xCu ≈ 0.7
• Strong T-dependence of resistivity
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A simple qualitative explanation of experiment

• NiMnSb is the ferromagnet, CuMnSb is the antiferromagnet
• Phase transition ferromagnet ⇒ antiferromagnet starts at cer-

tain xCu and leads to magnetic disorder (disorder in spin-orientations)
on structurally non-random Mn-sublattice

• Magnetic disorder leads to an abrupt reduction of magnetiza-
tion and to an abrupt increase of residual resistivity as com-
pared to the reference ferromagnetic state

• Pair exchange interactions for large rigid magnetic moments
like those on Mn-sites are only weakly influenced by magnetic
disorder ⇒ smooth concentration dependence of Tc

Our aim

A quantitative explanation of experiment in the framework of
parameter-free theory based on DFT-formalism
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Conductivity: residual resistivity

Ab initio theory of residual resistivity is based on two steps:

• Selfconsistent electronic structure within the LSDA-CPA:
the same as that used for mapping to the Heisenberg model

• Residual resistivity formulated in the Kubo-Greenwood linear-
response theory with all quantities (matrix elements, Green-
function elements) expressed in terms of Kohn-Sham orbitals
and one-electron Hamiltonian

• Disorder-induced vertex corrections are included

• The Kubo-Greenwood theory neglects:
1. the effect of phonons
2. the effect of thermodynamical fluctuations related to

the spin-spin correlation function Gij

Gij =< Si.Sj > − < Si > . < Sj >
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• Effect of phonons ⇒ weak monotonic increase of resistivity
with temperature

• Effect of thermodynamical fluctuations ⇒ resistivity varies with
temperature and exhibits a maximum at the Curie temperature

• Present theory thus describes reliably the low-temperature limit
of the resistivity where the impurity and/or magnetic-scatterings
dominate
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Bulk residual resistivity: TB-LMTO-CPA

• The conductivity tensor for spin λ (λ = ↑, ↓) (µ = x, y, z):

σλ
µν ∝ Tr 〈gσ(E+

F )〉Dν〈g
σ(E−

F )〉Dµ + vertex part

where

Dµ = [Rµ, S] (µ = x, y, x) is the effective velocity

• present formulation leads to nonrandom velocity operator ⇒
vertex part is obtained straightforwardly in the CPA method

• residual resistivity: ρµµ = 1/(σ↑
µµ + σ↓

µµ)

• Typical resistivity of concentrated metal alloys ⇒

ρ ≈ 0.1 ÷ 1 × 10−6 Ω m or 10 ÷ 100 µΩ cm

28



(Cu,Ni)MnSb alloys: electronic properties - LDOS
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• Effect of alloying:
1. halfmetallic behavior ⇒ to metallic behavior
2. Ef moves toward unoccupied Mn d-level

• Strong Cu-Ni disorder
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(Cu,Ni)MnSb alloys: electronic properties - LDOS (cont.)
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• Effect of magnetic arrangements: AFM with spin-orientations
changing along [100]- and [111]-directions vs DLM-state for
CuMnSb
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(Cu,Ni)MnSb alloys: electronic properties - BSF

-0.6

-0.4

-0.2

 0

 0.2

 0.4

E
(k

) 
(R

y)

maj

FM-NiMnSb

L Γ X

 

 

 

 

 

 

-0.6 -0.4 -0.2  0  0.2

B
lo

ch
 s

pe
ct

ra
l f

un
ct

io
n 

A
(k

,E
) 

(s
ta

te
s/

sp
in

/R
y)

Energy (Ry)

FM-(Cu0.5,Ni0.5)NiMnSb maj

min

L Γ X

 

 

 

 

 

 

-0.6 -0.4 -0.2  0  0.2
Energy (Ry)

FM-(Cu0.5,Ni0.5)NiMnSb min

k=L

Λ

k=Γ

∆

k=X

31



(Cu,Ni)MnSb alloys: magnetic properties
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• Model: − ferromagnetic state for xCu ≤ 0.7
− uncompensated DLM state for xCu > 0.7 ⇒

x− = (5/3) (x − 0.7), i.e., the concentration of
oppositely oriented spins increases linearly with xCu

so that for xCu = 1 we have the DLM-state
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(Cu,Ni)MnSb alloys: Mn-Mn exchange interactions
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• Dominating exchange interactions depend weakly on composi-
tion with exception of 1st NN ⇒ decreases due to increasing
superexchange (Ef moves toward unoccupied Mn d-states)
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(Cu,Ni)MnSb alloys: asymptotic behavior of JMn,Mn
s ([110])
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• Exchange interactions along [110]-directions dominate
• Halfmetal NiMnsb ⇒ exponential damping
• Metal CuMnSb ⇒ oscillatory behavior (RKKY-like)
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(Cu,Ni)MnSb alloys: Q-Mn exchange interactions (Q=Ni,Cu)
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• Interactions are strongly localized (only 1st NN are relevant)
and weakly concentration dependent

• Problem: interactions due to induced magnetic moments ⇒
neglected (Sandratskii & Bruno 2007)

35



(Cu,Ni)MnSb alloys: Curie temperatures
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• RPA agrees reasonably with experiment (MFA overestimate Tc)
• LDA+U slightly improves agreement with experiment as com-

pared to LDA
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(Cu,Ni)MnSb alloys: magnetic stability
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• Lattice Fourier transformation of exchange integrals
(J(q)) indicates transition at about xCu ≈ 0.7 − 0.8
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(Cu,Ni)MnSb alloys: residual resistivity (T=0K)
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• Simple model (the same as for magnetic moments): ferromag-
netism for xCu ≤ 0.7 and uncompensated DLM for xCu > 0.7
explains concentration trend of residual resistivities

• Possible vacancies and interstitial/swapping defects can further
increase exp. resistivity as compared to theoretical one
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(Cu,Ni)MnSb alloys: residual resistivity (T=0K, AFM models)
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• Alternative models of spin-disorder: AFM100/AFM111 with
spin-disorder on one-sublatice for xCu > 0.7 also explains con-
centration trend of residual resistivities. Mtot=f(xCu) for both
models is almost identical to uDLM model
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CuMnSb alloy: magnetic ground state

• Experiment: AFM[111] ⇒ simple fcc 2 NN-Ising model for
AFM[111] requires J2 < 0 while calculations give robust J2 >
0, J1 ≈ 0 and thus lead to AFM[100]-ground state

 0
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[0,0,0]
FM

[0,0,1]
AFM[001]

[1/2,1/2,1/2]
AFM[111]
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CuMnSb alloy: magnetic ground state (cont.)

• Total energy calculations ⇒ TB-LMTO (exp/th. lattconsts)
and FP-LAPW (exp.lattconst) confirm AFM[100]-ground state

• Relativistic TB-LMTO (exp. lattconst) also confirm AFM[100]-
ground state

• Variation of volume by 5% (increase/decrease) also leads to
AFM[100]-ground state

• TB-LMTO-LDAU lowers energy difference between AFM[100]
and AFM[111] but AFM[100] is still-ground state

Origin of discrepancy is unknown (Jahn-Teller effect?)
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Conclusions: (Cu,Ni)MnSb semi-Heusler alloys

• First-principles study of a broad range of physical properties
of quaternary semiHeusler alloys (Cu,Ni)MnSb including elec-
tronic, magnetic, thermodynamical, and transport ones has
been presented

• The two-step procedure for determination of the alloy Curie
temperature in the framework of the RPA was used

• Residual resistivity of alloys has been determined using Kubo-
Greenwood linear-response approach

• The abrupt change in concentration dependences of magnetic
moments and resistivities can be explained by a gradual FM
to AFM transition due to magnetic disorder on Mn-sublattice
modelled as uncompensated DLM state

• Overall good quantitative agreement between theory based on
a unified model without adjustable parameters and experiment
has been obtained

• Open problem: magnetic ground-state of CuMnSb
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Exchange integrals: effect of disorder
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Exchange intergrals: effect of halfmetallicity
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CURIE TEMPERATURES:

NiMnSb
__________________________________

Ni2MnSb

MFA:     1106 K        575 K

RPA:        880 K        360 K

MCS:       910 K        380 K

RPA(*)    852 K        356 K

Exp:         732 K        363 K
===============================

MCS and RPA(*)are obtained by
neglecting Mn-Ni interactions 
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Example of residual resistivity: AgPd alloy
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