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Bounded arithmetic and complexity

-

There iIs a correspondence between theories and
complexity classes:

» first-order theories (S, T¢): levels of polynomial
hierarchy

® second-order theories: ACY, TC°, NC!, L, ...

Meaning of the correspondence:

# witnessing theorems, provably total computable
functions

# reasoning about computation in the theories

# translation of open problems: inclusion of classes vs.
conservativity of theories
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Randomized classes

-

Theories of BA typically correspond to deterministic
classes. What about probabilistic algorithms?

Examples: ZPP, BPP, AM
Connections to weak pigeonhole principle:

» [Wilkie] x%-consequences of Si + dWPHP(PV) are
withessed by TFRP-algorithms

» [J.] we can reason about FRP in S} + dWPHP(PV)

Goal of this talk: generalize to other classes of randomized
algorithms

|
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Approximate counting
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We need to reason about probabilities, but we do not need
exact results:

|

3
Pr,<on(A(x,y) accepts) > 1 or Pr,.on(A(z,y) accepts) <

Estimate of the probability within a small error suffices.

Equivalently: approximate counting of definable bounded
sets

# given X C |0,2") defined by a poly-size circuit and
e > 1/poly(n), approximate | X| with accuracy 2"

How to express it in bounded arithmetic?
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Reminder
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First-order bounded arithmetic [Buss 1986]:
> Ianguage <O7 S) —I_a " Sa #7 ‘QZ“, L%J>

® ¥’ and I1? formulas: count alternations of bounded
guantifiers, ignore sharply bounded quantifiers

® S{= BASIC + X0-PIND

p(0) AVz < a(p(|3]) — (@) — ¢(a)

Equational theory PV [Cook 1975].
# function symbols for all poly-time algorithms
# derivation rule simulating open PIND
LTheory PV [KPT 1991]: first-order variant of PV J
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Dual weak pigeonhole principle
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® PHP}(f): If we put a pigeons in b < a holes, some hole
must accommodate two pigeons

® JPHPy(f): if we put a pigeons in b > a holes, some hole
remains vacant

ﬁ dJy < bVx <af(x)#y

o Weak PHP/dPHP: a and b differ by (much) more than 1

For our purposes: dWPHP(f) means

VeVa > 0dPHP!) . (f) k

a(le]+1

Over S3, dWPHP(PV) is equivalent to Va > 1 dPHP".(PV),
but we want PV, as a base theory
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Counting functions
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Consider X, Y C 2". We have: | X| > |Y| Iff there exists a
function f which maps X onto Y

f: X—>Y

We could use it as a definition of counting, but a
modification is needed to ensure
#® fis computable by a poly-size circuit, if X and Y are,

® PV + dWPHP(PV) proves the existence of such
counting functions
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Counting functions (cont’d)

-

fDefinition. Let X,Y C 2" and ¢ € |0, 1]. We say that the size
of Y Is approximately less than the size of X with error ¢,
written as Y <. X, Iif there exist

® anumberv >0, and

# a circuit C' which maps v copies of the disjoint union of
X and [0,£2™) onto v copies of Y

C:ox (XUe2") »ouxY
X~.Ymeans X <. Y AY <. X.
Counting is a special case of comparison:

X =~:.s5 & X =.[0,s) E&

o |
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Nisan-Wigderson generator
The pseudorandom generator NW: 2t — o T
# seedlength ¢/ = O(logn)
# computable in time poly(n)
# “fools” circuits C': 2" — 2 of size poly(n)
# needs a table of a hard Boolean function f in ©(logn)
variables

INW 1994] P = BPP, if there exists ¢ > 0 and a uniform
family of Boolean functions f;: 2 — 2 which cannot be
approximated by circuits of size 2¢* with advantage 275,

o |
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Nisan-Wigderson generator (cont’d)
fWe use the NW generator to construct counting functions. T

# We don’t need uniformity. Nonuniformly, Boolean
functions with exponential hardness exist, and
PV) + dWPHP(PV') proves it.

# The behaviour of the generator can be analyzed
constructively: the conclusion

Prycon(C(x) = 1) — Prycoe(C(NWy(u)) = 1)| < 1/poly(n)

IS witnessed by counting functions computable by small
circuits, which can be extracted from the proof.

o |

Approximate counting in bounded arithmetic ~ p.10/15



Existence of counting functions
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Theorem. The following is provable in PV; + dWPHP(PV).

Let X be a subset of 2" definable by a Boolean circuit C,
and 0 < £ < 1 s.t. 21/¢ exists. Then there exists s < 2" s.t.

X =~ s.

More precisely, there exists v < poly(ne~1|C|) and circuits
Go, Ho, G1, Hy of size poly(ne~t|C|) such that

Go: v(s+e2") » v x X Gi:vx (XUe2") — vs
Hy: v x X — v(s+e2") Hi:vs — v x (X Ue2")

Go(Ho(z)) = @ Gi(Hi(y) =y
Lfor every z € v x X and y < vs. kJ
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Applications

B .

The rest is (mostly) easy—we can do in PV + dWPHP(PV)

# counting trivia: inclusion-exclusion principle, Chernoff
bound, ...

# formalize randomized complexity classes: BPP, prBPP,
APP, MA, prMA
» basic definitions
s amplify success probability
s Simulate randomness by nonuniformity
s place it on the correct level of PH

Everything relativizes. We can do AM and prAM In
T} + dWPHP(FP™).
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Definability questions
- -

Are all problems from the above mentioned classes
“provably total” in PV; + dWPHP(PV)?

#® syntactic classes (prBPP, prMA): trivial/meaningless
#® APP: yes, It also turns out to be a syntactic class

# semantic classes (FRP, BPP, MA):

s If true (for whatever theory), relativizing techniques
cannot show it [Thapen]

s can be reduced to provability of Yx¢-sentences

o |
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Problems
L -

We cannot count “sparse” sets, which arise In

# combinatorial arguments: Ramsey theorem,
tournament principle, ...

® interactive protocols: graph nonisomorphism,
IP[O(1)] =AM

o ...

Q: Does Sipser-style counting via hash functions work in

bounded arithmetic?
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That’s the end.
Thank you for attention!
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