
Spectral line broadening ... Dr. Stéphane Vennes, FIT

Spectral line broadening in stellar
atmospheres

• Motivation:

1 Line broadening theory is a key ingredient in the con-
struction of model atmospheres and synthetic spectra.

2 Useful temperature, density, abundance diagnostics.

• This lecture will discuss

1 The quasi-static line broadening theory applied to hy-
drogen line profiles. In particular will show that in the
line wings the line opacity is well described by:

α(∆ν) ∝ ∆ν−5/2

2 applications to

white dwarfs: Teff, log g,

δ Scuti stars: Teff, [Fe/H], v sin i.

• These lecture notes are based on:

1 Griem, H.R., Spectral line broadening by plasmas,

2 Sobel’man, I.I., Vainshtein, L.A., Yukov, E.A., Exci-
tation of atoms and broadening of spectral lines,

3 Gray, D.F., The observation and analysis of stellar
photospheres.
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1. Spectral lines as a temperature, density and abun-
dance diagnostic.

Figure 1: Spectral lines (H I Balmer, Ca II, Fe I, etc...) in white

dwarfs and a giant F star (δScuti variable).
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1. What is the microscopic situation ?

1.1: the motion of the test particle (an atom) and the
perturbing particles is “classical”.

1.2: trajectory is rectilinear.

1.3: the perturbation is adiabatic ... the encounter
does not change the state of the atom

Figure 2: A test particle (H atom) is besieged by positively charged

perturbers (Gray, The Observation and Analysis of Stellar

Photospheres).
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In addition, we may assume

1.3: that only the nearest particle contributes to line
broadening ... binary interactions or nearest-neighbor
hypothesis.

1.5: that the perturbers move slowly ... the quasi-
static hypothesis.

1.6: or, in the impact broadening approximation,
that spectral line shift are caused by instantaneous
collisions.
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2. What happens to a spectral line ?

2.1: assume that the energy levels involved in a line
transition are perturbed (shifted) differently resulting
in a net spectral line shift.

2.2: and describe that shift by:

κ = ∆ω = 2π∆ν = CnR
−n

n describes the form of the interaction field,
Cn is an interaction constant, and
R is the separation between the atom and a single
perturber.

2.3: For example, in a simple electrostatic field n = 2:

∆ω = C2R
−2 = C2

F

Ze
(C2 ≈ 1 cm2/s)

from which we can conclude that the nearest neigh-
bor is responsible for the largest shift :

R << → ∆ω >>
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3. The nearest neighbor approximation ...

3.1: the field caused by the nearest particle is known

F (R) (or E(R))

3.2: what is the most probable distribution of this
nearest perturber

W (R)dR

knowing that there are

N =
(4π

3
R3

0

)−1

such perturber per unit volume ?Find the probability
that the nearest particle is in the range (R, R+dR):

P(empty up to R) × P(perturber inside dV)

where dV = 4πR2dR is the volume of a shell at R.
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3.3: The probabilities that the perturber be inside dV
or not are simply:

P(perturber inside dV) =
dV

V0
= NdV

P(no perturber inside dV) = 1−NdV

where V0 is the volume occupied by a single perturber

V0 =
4π

3
R3

0 =
1

N

Next, we evaluate the probability that the perturber
is not within < R:

P(empty up to R+dR)

= P(empty up to R)× P(no perturber inside dV)

that is:

P(empty up to R+dR) = P(empty up to R)× (1−NdV )

P(empty up to R+dR) − P(empty up to R)

P(empty up to R)
= −NdV

dP

P
= −NdV

ln P ′
∣∣∣P
1

= −NV ′
∣∣∣V
0

P(empty up to R) = e−NV = e−V/V0
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3.4 We now have the two ingredients required to describe
the spatial distribution of a single perturber:

W (R)dR = P(empty up to R)× P(perturber inside dV)

W (R)dR = e−V/V0
dV

V0

Is that probability distribution normalized ?∫ ∞

0

W (R)dR =

∫ ∞

0

e−V/V0
dV

V0
=

∫ ∞

0

e−udu = 1

Recalling the density of perturber N

1

V0
= N

We now have the distance distribution for the near-
est neighbor:

W (R)dR = e−
4
3πR3N 4πR2NdR = 3

( R

R0

)2

e−(R/R0)
3dR

R0
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3.5 All distributions

distance to nearest neighbor W (R)dR

resulting field at the atom W (F )dF

resulting line distribution I(∆ω)d∆ω

follow the same distribution law:

I(∆ω)d∆ω = W (F )dF = W (R)dR

where ∆ω is measured from the line center ...
So we may now calculate a normalized line distribu-
tion:

I(∆ω) = W (R)
∣∣∣ dR

d∆ω

∣∣∣
For the frequency shift we have that in general:

∆ω = CnR
−n → R = C1/n

n ∆ω−1/n

∆ω = CnR
−n
0 → R0 = C1/n

n ∆ω
−1/n∣∣∣ dR

d∆ω

∣∣∣ =
C

1/n
n

n
∆ω−(n+1)/n

I(∆ω) =
( 3

R0

( R

R0

)2

e−(R/R0)
3
)(C

1/n
n

n
∆ω−(n+1)/n

)
=

(3∆ω
1/n

C
1/n
n

(∆ω

∆ω

)−2/n

e−(∆ω/∆ω)−3/n
)(C

1/n
n

n
∆ω−(n+1)/n

)
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And re-grouping factors together and with a few can-
cellations, we have a more digestible:

I(∆ω) =
3

n
∆ω

3/n
∆ω−(n+3)/ne−(∆ω/∆ω)−3/n

The nearest neighbor approximation is only valid
far in the line wing:

∆ω >> ∆ω

and the exponential factor ≈ 1:

I(∆ω) ≈ 3

n
∆ω

3/n
∆ω−(n+3)/n

Adopt a simple Coulomb interaction n = 2, and the
result is a classic line-wing approximation for the cal-
culation of line opacities in stellar atmospheres:

I(∆ω) ≈ 3

2
∆ω

3/2
∆ω−5/2

I(∆ω) ∝ ∆ω−5/2
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4. Holtsmark lifted the nearest neighbor restriction
because it neglects the line centers.

The nearest neighbor at

R << R0

interacts strongly with the atomic energy levels (the
”classical oscillator”) and dominates the line wings at

∆ω >> ∆ω

Holtsmark theory includes a large number of dis-
tant neighbors

R ∼> R0

which dominate low fields F and the corresponding
line center

∆ω ∼< ∆ω
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4.1 Holtsmark theory ... the field distribution in three-
dimension is the integral over a volume V of

W0(F) =

∫
...

∫ ∫
δ(F−

n∑
j=1

Fj)P (r1, r2, ...rn)d
3r1d

3r2...d
3rn

The integral weighs in the many possibilities for r1, r2, ...rn

leading to the desired value of F:

F =

n∑
j=1

Fj

since the particles are uncorrelated each set r1, r2, ...rn

has a probability:

P (r1, r2, ...rn) =
1

V
· 1

V
... · 1

V
=

1

V n

where V is the volume containing all n particles, so

W0(F) =
1

V n

∫
...

∫ ∫
δ(F−

n∑
j=1

Fj) d3r1d
3r2...d

3rn

Necessarily , the vector integral of the probability dis-
tribution over all field strengths is normalized∫

W0(F)dF = 1

The Fourier transform A(k) of this challenging inte-
gral is more amenable (after you’re done, take the
inverse transform to obtain W0(F)).
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4.2 Fourier transform of the field distribution W0(F).

A(k) =

∫
eik·FW0(F)dF

Inserting our definition for the probability distribution
W0(F):

A(k) =

1

V n

∫
eik·F

[ ∫
...

∫ ∫
δ(F−

n∑
j=1

Fj) d3r1d
3r2...d

3rn

]
dF

and invert the order of integration:

A(k) =

1

V n

∫
...

∫ ∫ [ ∫
eik·Fδ(F−

n∑
j=1

Fj)dF
]
d3r1d

3r2...d
3rn

after integrating over dF

A(k) =
1

V n

∫
...

∫ ∫
eik·

∑n
j=1 Fj d3r1d

3r2...d
3rn

and each integral is independent and identical

A(k) =
1

V n

∫
eik·F1 d3r1

∫
eik·F2 d3r2 ...

∫
eik·Fn d3rn

A(k) =
[ 1

V

∫
eik·F1 d3r1

]n

=
[ 1

V

∫
eik·F d3r

]n

after dropping the subscript j.
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4.3 Solving the Fourier transform A(k):

A(k) =
[ 1

V

∫
eik·F d3r

]n

= In(k)

where

I(k) =
1

V

∫
eik·F d3r

Lets define a few things in spherical geometry:
(1) the dot product:

k · F = kF cos θ

(2) the volume element:

d3r = r2 sin θdrdθdφ

(3) and happily integrate:

I(k) =
1

V

∫
r2dr

∫ 2π

0

dφ

∫ π

0

sin θdθeikF cos θ

F = F (r) so wait before integrating r, go ahead with
φ = [0, 2π], and substitute u = kF cos θ:

I(k) =
2π

V

∫
r2dr

∫ kF

−kF

du

kF
eiu

(in eiu = cos u + i sin u, cos u is an ”even” function
and the integral vanishes, but sin u is ”odd”)

I(k) =
2π

V

∫
r2dr(

sin u

kF
)
∣∣∣kF

−kF
=

4π

V

∫
r2dr

sin kF

kF
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We complete the calculation of I(k) with the integra-
tion over r:

I(k) =
4π

V

∫
r2dr

sin kF

kF

I(k) =
4π

V

∫
r2dr − 4π

V

∫
r2dr +

4π

V

∫
r2dr

sin kF

kF
V was taken large enough to include all n perturber
that affect the line profile, so r is integrated over V :

I(k) = 1− 4π

V

∫
r2dr +

4π

V

∫
r2dr

sin kF

kF

I(k) = 1− 4π

V

∫ [
1− sin kF

kF

]
r2dr

Recall that the electric field F is given by:

F =
Ze

r2

so introduce the variable Y

Y ≡ kF =
kZe

r2
→ r2 =

kZe

Y
→ dr =

1

2

(kZe)1/2

Y 3/2

I(k) = 1− 4π

V

1

2
(kZe)3/2

∫ ∞

0

[
1− sin Y

Y

] dY

Y 5/2

This last definite integral is known (look it up in
Abramowitz and Stegun!):∫ ∞

0

[
1− sin Y

Y

] dY

Y 5/2
=

4

15
(2π)1/2



Ondřejov May 2007 ... 16

And we finally have for I(k):

I(k) = 1− 4π

V

1

2
(kZe)3/2

4

15
(2π)1/2

simplify and regroup factors:

I(k) = 1− 1

V

4

15
(2π)3/2(Ze)3/2k3/2

The volume V is the volume chosen to contain all n
perturber ... so the density of perturber is

Np =
n

V
→ 1

V
=

Np

n

I(k) = 1− 1

n

4

15
(2π)3/2(Ze)3/2Npk

3/2

The quantity F0 is now defined as the ”normal field
strength”:

4

15
(2π)3/2(Ze)3/2Np ≡ F

3/2
0 → F0 = 2π(4/15)2/3ZeN 2/3

p

F0 = 2.603ZeN 2/3
p

Note that you could directly estimate F0 = Ze/R2
0

using Np = (4π/3)R3
0 and obtain

F0 = 2.595ZeN 2/3
p

Close enough, but not exact.
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Anyway we can now complete our estimate of the
Fourier transform of W0(F):

A(k) = In(k) =
[
1− 1

n
F

3/2
0 k3/2

]n

Take n as large as you want! the limit is very useful:

lim
n→∞

[
1− 1

n
x
]n

= e−x

So that A(k) is isotropic and a simple exponential:

A(k) = e−F
3/2
0 k3/2

= e−(kF0)
3/2

4.4 We are now ready to determine the field distribu-
tion W0(F) by taking the inverse transform (in three-
dimensions):

W0(F) =
1

(2π)3

∫
e−ik·FA(k)dk

We’re again integrating in 3D so we wont repeat ev-
erything, but note that:

k · F = kF cos θ

dk = 2πk2dk sin θdθ

and the integration over θ is quickly performed, leav-
ing the integration over k

W0(F) =
1

(2π)2

∫
A(k)

2 sin (kF )

kF
k2dk
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And simplifying a little:

W0(F) =
1

(2π)2
2

F

∫
A(k) sin (kF )kdk

We do expect the distribution to be isotropic (no pre-
ferred directions in space), so we can now estimate
the probability W (F ) inside the shell 4πF 2:

W (F ) = 4πF 2W0(F) = 4πF 2 1

(2π)2
2

F

∫
A(k) sin (kF )kdk

W (F ) =
2

π
F

∫
A(k) sin (kF )kdk

And recall our result for the Fourier transform:

A(k) = e−(kF0)
3/2

W (F ) =
2

π
F

∫
e−(kF0)

3/2
sin (kF )kdk

With one last change of variable:

x = kF0

W (F ) =
2

π
F

∫
e−x3/2

sin (x
F

F0
)
x

F0

dx

F0

and define the dimensionless variable β = F/F0:

W (F ) =
2

π

β

F0

∫
e−x3/2

sin (xβ)x dx
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4.5 And FINALLY, introduce the Holtsmark distri-
bution H(β):

H(β)dβ = W (F )dF

and since β = F/F0:

H(β) = F0W (F )

H(β) =
2

π
β

∫ ∞

0

e−x3/2
sin (xβ)x dx

How does one integrate this? Numerically! For β >>:
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A general solution for β >> can be obtained by ex-
panding the integrand in a series and obtain:

H(β) =
2

π

∞∑
n=1

(−1)n+1

n!
Γ(

3n + 4

2
) sin (

3nπ

4
)β−(3n+2)/2

and retaining only the n = 1 term of the series:

H(β) ≈ 1.496β−5/2 ∝ ∆ω−5/2

in agreement with the nearest neighbor:

H(β) ≈ 1.5β−5/2 ∝ ∆ω−5/2

But we did not exclude weak fields, so we expect the
distribution to be correct everywhere in the line pro-
file.



Ondřejov May 2007 ... 21

4.6 How does Holtsmark theory compare to recent
calculations ? Line opacities αν are given by:

α(∆ν)d(∆ν) = H(β)dβ

In red, the line wing behavior, in blue, the Doppler
profile, with adashed line, the Holtsmark theory,
and with a full line, the full impact/Holtsmark theory
of Vidal, Cooper, and Smith (1973).
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5.1 White dwarfs. Computed using Vennes & Kawka
codes (employs Lemke and Vidal, Cooper & Smith
line profiles based on Holtsmark theory in the line
wings, and impact broadening theory in the center).

Figure 3: Temperature and gravity diagnostics for the low-mass white

dwarf LP400-22 (MV = 9.1).
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Figure 4: Temperature and gravity diagnostics for the high-mass white

dwarf NLTT 44986 (MV = 14.5).
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Figure 5: H-R diagram for white dwarfs built using temperature and

gravity diagnostics based on Balmer line profiles.
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5.2 δ Scuti stars. Computed using Kurucz’s ATLAS codes
(employs Holtsmark theory).

Figure 6: Atmospheric diagnostics for a δ Scuti star.
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Figure 7: Atmospheric diagnostics for a δ Scuti star. Note the

rotationally broadened line profiles.
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Figure 8: H-R diagram for a sample of variable giants and sub-giants

built using line profile diagnostics.


