Spectral line broadening ... Dr. Stéphane Vennes, FIT

Spectral line broadening in stellar
atmospheres

e Motivation:

1 Line broadening theory is a key ingredient in the con-
struction of model atmospheres and synthetic spectra.

2 Usetul temperature, density, abundance diagnostics.
e This lecture will discuss

1 The quasi-static line broadening theory applied to hy-
drogen line profiles. In particular will show that in the
line wings the line opacity is well described by:

a(Av) o< Av=/?
2 applications to
white dwarts: T, log g,
0 Scuti stars: Tog, [Fe/H], vsini.
e These lecture notes are based on:

1 Griem, H.R., Spectral line broadening by plasmas,

2 Sobel'man, [.I., Vainshtein, L.A., Yukov, E.A., Exci-
tation of atoms and broadening of spectral lines,

3 Gray, D.F., The observation and analysis of stellar
photospheres.
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1. Spectral lines as a temperature, density and abun-
dance diagnostic.
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Figure 1: Spectral lines (H I Balmer, Ca II, Fe I, etc...) in white

dwarfs and a giant F star (§Scuti variable).
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1. What is the microscopic situation 7

1.1: the motion of the test particle (an atom) and the
perturbing particles is “classical”.

1.2: trajectory is rectilinear.

1.3: the perturbation is adiabatic ... the encounter
does not change the state of the atom

—~—— H atom

———— /
—— -~

o 1 N

(+) «— lon

Figure 2: A test particle (H atom) is besieged by positively charged
perturbers (Gray, The Observation and Analysis of Stellar
Photospheres).
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In addition, we may assume

1.3: that only the nearest particle contributes to line
broadening ... binary interactions or nearest-neighbor
hypothesis.

1.5: that the perturbers move slowly ... the quasi-
static hypothesis.

1.6: or, in the impact broadening approximation,
that spectral line shift are caused by instantaneous
collisions.
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2. What happens to a spectral line 7

2.1: assume that the energy levels involved in a line
transition are perturbed (shifted) differently resulting
in a net spectral line shift.

2.2: and describe that shift by:
k=Aw=2nrAv=C,R™"

n describes the form of the interaction field,

(', 1s an interaction constant, and

R is the separation between the atom and a single
perturber.

2.3: For example, in a simple electrostatic field n = 2:
F
Aw = CQR_Q = C2Z— (CQ ~ 1cm2/s)
€

from which we can conclude that the nearest neigh-
bor is responsible for the largest shift :

R << — Aw >>
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3. The nearest neighbor approximation ...

3.1: the field caused by the nearest particle is known
F(R)  (or £(R))

3.2: what is the most probable distribution of this
nearest perturber

W(R)dR
knowing that there are
A7 —1

V- (3H)
such perturber per unit volume ? Find the probability
that the nearest particle is in the range (R, R+dR):

P(empty up to R) x P(perturber inside dV)

where dV = 47 R%dR is the volume of a shell at R.

\ — _’——_-\\\
<)
. /R
( /
\\ % H atom
~—
———
\____.__—”/
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3.3: The probabilities that the perturber be inside dV'
or not are simply:

P(perturber inside dV) = ci/_V = NdV

0
P(no perturber inside dV) =1 — NdV

where V} is the volume occupied by a single perturber

A 1
Vo=—Ri=—
"T 30T N

Next, we evaluate the probability that the perturber
is not within < R:

P(empty up to R+dR)
= P(empty up to R) x P(no perturber inside dV)
that is:
P(empty up to R+dR) = P(empty up to R)x (1-NdV)
P(empty up to R+dR) — P(empty up to R)

= —NdV
P(empty up to R)
dP
— = —NdV
P
P 14
ImnP| =-NV'
1 0

Plempty upto R) = eV = ¢ V/



Ondftejov May 2007 o 8

3.4 We now have the two ingredients required to describe
the spatial distribution of a single perturber:

W(R)dR = P(empty up to R) x P(perturber inside dV)
vtV

Vo
Is that probability distribution normalized 7

/ W(R)dR = / e VIV = / e ‘du =1
0 0 Vo 0

Recalling the density of perturber N

1
— N
Vo

We now have the distance distribution for the near-
est neighbor:

W(R)dR = e

2
W(R)AR = e "N 4x R2NdR = s(g) o~ (/o)
0

R
Ry
W(R)
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3.5 All distributions
distance to nearest neighbor W(R)dR

resulting field at the atom W (F)dF
resulting line distribution I(Aw)dAw

follow the same distribution law:
I(Aw)dAw = W(F)dF = W(R)dR

where Aw is measured from the line center ...
So we may now calculate a normalized line distribu-
tion:

dR
dAw

For the frequency shift we have that in general:

Aw=C,R" — R=CYrAp "

[(Aw) = W(R)

Aw=C,R;" — Ry=CY"Au /
1/n
AR C —(n+1)/n

dAw n
I(Aw) = (% (}%)2@ (R/Ro) )(Cn/ Aw_(n+1)/n)

——1/n n
_ (%“’ (f) - ”e—<Aw/A_w>—3/”) (C / <n+1>/n)
cr \NAw n
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And re-grouping factors together and with a few can-
cellations, we have a more digestible:

[(Aw) — émii/n Aw—(n—i—3)/ne—(Aw/A_w)—3/n
n

The nearest neighbor approximation is only valid
far in the line wing:

Aw >> Aw

and the exponential factor ~ 1:

3 ——3/n
[(Aw) =~ 2R A=)/
n

Adopt a simple Coulomb interaction n = 2, and the
result is a classic line-wing approximation for the cal-
culation of line opacities in stellar atmospheres:

[(Aw) =~ ;A—wg/z Aw ™5/

I(Aw) oc Aw ™5/
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4. Holtsmark lifted the nearest neighbor restriction
because it neglects the line centers.

D
\

/

Q,.)‘ — S _——— H atom
~ .
\ \\\

O e
(\{) < lon

The nearest neighbor af—
R << Ry

interacts strongly with the atomic energy levels (the
”classical oscillator”) and dominates the line wings at

Aw >> Aw

Holtsmark theory includes a large number of dis-

tant neighbors
R > Ry

which dominate low fields F' and the corresponding
line center

Aw < Aw
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4.1 Holtsmark theory ... the field distribution in three-
dimension is the integral over a volume V' of

:/...//5(F—ZF]-)P(I'1,I’2,...rn)dgrldgrg...d?’rn
j=1

The integral weighs in the many possibilities for rq, ro, ...1,,
leading to the desired value of F'

F = zn:Fj
j=1

since the particles are uncorrelated each set ry, ro, ...1,,
has a probability:

1 1 1 1

vV Vv v

where V' is the volume containing all n particles, so

1 n
Wy (F) :W///(S(F_E F.,) d’rid’ry...d°r,,
j=1

Necessarily , the vector integral of the probability dis-
tribution over all field strengths is normalized

/Wo )JdF =1

The Fourier transform A(k) of this challenging inte-
gral is more amenable (after you're done, take the
inverse transform to obtain Wy(F)).

P(ry,ro,...1,) =
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4.2 Fourier transform of the field distribution Wy(F').
A(k) = / e Wy (F)dF

Inserting our definition for the probability distribution
W0<F>Z

Alk) =
% eik'F{/...//(5(F—ZF]-)d3r1d3r2...d3rn}dF
j=1

and invert the order of integration:

Alk) =

% / / / { / eik'Fa(F—zn: Fj)dF} & drs...dr,
j=1

after integrating over dF

1 o
A(k) :W/... / / ek 2= Fi PBr dPry.. . dPr,

and each integral is independent and identical

A(k) = % / e FL Pr) / e F2 Pry / e Fn Py,
A(k) _ [i/ez’k-Fl dgrl}n _ [i/eik-F dgr}n
1% 1%

after dropping the subscript j.
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4.3 Solving the Fourier transform A(k):
1 n
A(k) = [V / ezk-Fcﬁr} — (k)

where
1

I(k) = V/eik'Fd3r

Lets define a few things in spherical geometry:
(1) the dot product:

k-F=FkFcos0
(2) the volume element:
d°r = r*sin Odrdfdo
(3) and happily integrate:

27
/ 2d7“/ dqb/ sin Ode™™F cos?

F = F(r) so wait before integrating r, go ahead with
¢ = |0, 2], and substitute u = kF cos 6:

27r o = du -
rdr
(in €™ = cosu + ¢sinu, cosu is an ”even” function
and the integral vanishes, but sinu is "odd”)

2T sinu. |kF 47r sin kF
I(k) — r2d | r2d
k) =37 / "R TV "TkF
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We complete the calculation of I(k) with the integra-

tion over r:
47 sin kI
I(k)=— [ r*
(k) % /7“ dr Py
4 4 4 in kF
I(k) = Vﬂ / ridr — VW r2dr + 777 TQdTSH;F

V' was taken large enough to include all n perturber
that affect the line profile, so r is integrated over V:

4 4 in kF
Ik)=1-— VW ridr + VW TzdrSH;F
A sin kF
Ik)=1— -2 [1 _ } 2
(k) v Iy
Recall that the electric field F'is given by:
Ze
F — ?
so introduce the variable Y
B kZe  , kZe 1(kZe)'/?
Y:kF:?—)TZTHdT:§ Y3/2
411 > sinY 1 dY
I(K)=1— —(kZ 3/2/ {1— }
(k) g kae) . aRNEE

This last definite integral is known (look it up in
Abramowitz and Stegun!):

> sinY1 dY 4
| — } — = (om)l/?
/0 [ y Jyee = 1520
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And we finally have for I(k):

471 4

IK) = 1 — —2(kZe)32(97)1/2
) = 1= ThkzepeLom
simplify and regroup factors:
14
Ik)y=1———(2 3/2 7 3/2k3/2
(k) V15< )4 (Ze)

The volume V' is the volume chosen to contain all n
perturber ... so the density of perturber is

AL
V V n
14
I(k)=1- 51—5(2@3/2(26)3/2]\7]9/4:3/2

The quantity Fg is now defined as the "normal field
strength”:

%(2@3/2@@)3/2% = - Fy=2m(4/15)2°ZeN?
Fy = 2.603ZeN;/?
Note that you could directly estimate Fy = Ze/R3
using N, = (47/3)R3 and obtain
Fy =2.595ZeN}/?

Close enough, but not exact.
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Anyway we can now complete our estimate of the
Fourier transform of Wy(F):
1 n
Ak) = I"(k) = [1 _ —Fg’/?kS/?}
n

Take n as large as you want! the limit is very useful:

1 n
lim [1 — —$] —e v
n—00 n

So that A(k) is isotropic and a simple exponential:

4G = R s

4.4 We are now ready to determine the field distribu-
tion Wy(F) by taking the inverse transform (in three-
dimensions):

1 —ik-F
Wy(F) = (27‘_)3/6 A(k)dk
We're again integrating in 3D so we wont repeat ev-
erything, but note that:

k-F=FLkF cosf
dk = 27k*dk sin 0d0

and the integration over 6 is quickly performed, leav-
ing the integration over k

Wo(F) = (2;2 / A(k)QSizij ) 2k
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And simplifying a little:
1 2

(27‘(’)2F

We do expect the distribution to be isotropic (no pre-

ferred directions in space), so we can now estimate

the probability W (F) inside the shell 47 F:

Wo(F) =

/ A(K) sin (kF)kdk

W(F) = dx F*Wy(F) — 47 F> (2;2% / A(K) sin (kF)kdk
W(F) - %F / A(K) sin (kF)kdk

And recall our result for the Fourier transform:
Alk) = e 0"

2
W(F)==F / e~ FF* iy (K F)kdk
s

With one last change of variable:

Xr = ]{TFO
2 32 . F xdx
W(F)=—-F v
(F) . /e Sm(:z:FO)FOFO
and define the dimensionless variable 8 = F'/ Fy:
B 2& 32

W(F) e sin (z03)x dx

o Fy
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4.5 And FINALLY, introduce the Holtsmark distri-

bution H(j3):

W(F)dF

H(G)dp =
F/F()I

and since 3

FyW (F)

)

g

(

H

How does one integrate this? Numerically! For G >>:

0.5

|
4

[= 0.00087
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A general solution for 8 >> can be obtained by ex-
panding the integrand in a series and obtain:

H(P) = 23 CO T g (T -

T n! 4
n=1

and retaining only the n = 1 term of the series:
H(B) ~ 1.4963 %2 « Aw /2
in agreement with the nearest neighbor:
H(B) ~ 15872 o Aw5/?

But we did not exclude weak fields, so we expect the

distribution to be correct everywhere in the line pro-
ﬁle 15 I NYNNYNY‘ I T T T 71T

Quasi—static

Holtsmark —

Nearest Neighbor —
0.1 E

E 001 =
.

0.001 &

0.0001 ‘
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4.6

/N

log, (&

How does Holtsmark theory compare to recent
calculations 7 Line opacities «,, are given by:

a(Av)d(Av) = H(B)dj3

_].O T |||| T ||||
= oxAyp~5/? |
Lyoo |
e T log N=17 —
] T=50,000K
—18 __ = Doppler core
_20 | I I | | [ ||||
1011 1012 1013
Av(s™1)

In red, the line wing behavior, in blue, the Doppler
profile, with adashed line, the Holtsmark theory,

and with a full line, the full impact /Holtsmark theory
of Vidal, Cooper, and Smith (1973).
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5.1 White dwarfs. Computed using Vennes & Kawka
codes (employs Lemke and Vidal, Cooper & Smith
line profiles based on Holtsmark theory in the line
wings, and impact broadening theory in the center).
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Figure 3: ' Temperature and gravity diagnostics for the low-mass white
dwarf LP400-22 (My = 9.1).
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NLTT44986
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Figure 4: ' Temperature and gravity diagnostics for the high-mass white
dwarf NLTT 44986 (My = 14.5).
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Figure 5: H-R diagram for white dwarfs built using temperature and

gravity diagnostics based on Balmer line profiles.
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5.2 0 Scuti stars. Computed using Kurucz’s ATLAS codes
(employs Holtsmark theory).
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Figure 6: Atmospheric diagnostics for a ¢ Scuti star.
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Figure 72 Atmospheric diagnostics for a ¢ Scuti star.

rotationally broadened line profiles.

Note the
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rigure 8: H-R diagram for a sample of variable giants and sub-giants
built using line profile diagnostics.



