Polarization of AGN accretion discs in lamp-post model with strong gravity in Compton scattering approximation

M. Dovčiak¹ V. Karas^{1,2} G. Matt³

¹Astronomical Institute Academy of Sciences of the Czech Republic

²Faculty of Mathematics and Physics Charles University Prague

³Dipartimento di Fisica Università degli Studi "Roma Tre"

Radiative (magneto)hydrodynamical seminar 2nd June 2005

Outline

Motivation

X-ray observations of AGN and galactic BHs

Polarization in lamp-post model of the accreting black hole

The lamp-post model Parallel transport of the polarization vector Definition and meaning of the Stokes parameters Local Stokes parameters in Compton scattering approximation

Observed Stokes parameters and polarization

Results

Observed polarization angle and degree

Summary

X-ray observations of AGN and galactic BHs

Observed photon flux often shows

- relativistically broadened Kα iron line
- narrow-line features in 5 6 keV range

Possible explanation

- emission from the accretion disc illuminated by X-rays emitted by the disc's corona
- emission from orbiting spots illuminated by flares

X-ray observations of AGN and galactic BHs

Measurement of the system properties

- black hole mass
- spin of the black hole
- inclination of the system
- emission region

Reflection of X-rays from the matter in the disc \longrightarrow polarization of the observed flux!

The lamp-post model

Definition of the change of the polarization angle

- p_A 3-momentum of a photon
- n_A normal to the disc
- n'_{A} projection of n_{A} to the plane perpendicular to p_{A} ,
- f_A vector which is parallelly transported along the geodesic (as 4-vector)
- Ψ_A angle between n'_A and f_A

Definition of the change of the polarization angle

- p_A 3-momentum of a photon
- n_A normal to the disc
- n'_{A} projection of n_{A} to the plane perpendicular to p_{A} ,
- f_A vector which is parallelly transported along the geodesic (as 4-vector)
- Ψ_A angle between n'_A and f_A

All the quantities are evaluated

- at the disc with respect to the local rest frame co-moving with the disc for A = 1
- at infinity with respect to the stationary observer at the same light geodesic for A = 2

Definition of the change of the polarization angle

- p_A 3-momentum of a photon
- n_A normal to the disc
- n'_{A} projection of n_{A} to the plane perpendicular to p_{A} ,
- f_A vector which is parallelly transported along the geodesic (as 4-vector)
- Ψ_A angle between n'_A and f_A

All the quantities are evaluated

- at the disc with respect to the local rest frame co-moving with the disc for A = 1
- at infinity with respect to the stationary observer at the same light geodesic for A = 2

The change of the polarization angle

Connors & Stark 1977; Connors, Piran & Stark 1980:

$$\begin{array}{ccc} \tan \Psi = \frac{Y}{X} \\ Y &= & -(\alpha - a \sin \theta_0)\kappa_1 - \beta \kappa_2 \\ Y &= & (\alpha - a \sin \theta_0)\kappa_2 - \beta \kappa_1 \end{array}$$

 κ_1 , κ_2 – components of the complex constant of motion κ_{pw} (see Walker & Penrose 1970)

$$\begin{aligned} \kappa_1 &= arp_e^{\theta}f^t - r[ap_e^t - (r^2 + a^2)p_e^{\phi}]f^{\theta} - r(r^2 + a^2)p_e^{\theta}f^{\phi} \\ \kappa_2 &= -rp_e^rf^t + r[p_e^t - ap_e^{\phi}]f^r + arp_e^rf^{\phi} \end{aligned}$$

 f^{μ} corresponds to the 3-vector f_1 which is chosen in such a way that it is a unit vector parallel with n'_1 (i.e. $\Psi_1 = 0$)

$$f^{\mu} = rac{n^{\mu} - \mu_{
m e} \left(g \, p_{
m e}^{\mu} - U^{\mu}
ight)}{\sqrt{1 - \mu_{
m e}^2}}\,.$$

The change of the polarization angle

$$E_{x} = E_{I} \sin (\omega t - \varphi_{I})$$
$$E_{y} = E_{r} \sin (\omega t - \varphi_{r})$$
$$\delta = \varphi_{I} - \varphi_{r}$$

$$E_{x} = E_{l} \sin (\omega t - \varphi_{l})$$
$$E_{y} = E_{r} \sin (\omega t - \varphi_{r})$$
$$\delta = \varphi_{l} - \varphi_{r}$$

 $I \equiv E_x^2 + E_y^2 = I_l + I_r$

$$Q \equiv E_x^2 - E_y^2 = I_l - I_r$$
$$= I \cos 2\gamma \cos 2\beta$$

$$U \equiv 2E_{\rm x}E_{\rm y}\cos\delta$$

$$= (I_{\rm I} - I_{\rm r}) \tan 2\chi$$

$$=$$
 $I\sin 2\chi \cos 2\beta$

$$V \equiv 2E_{\rm x}E_{\rm y}\sin\delta$$

$$= (l_{\rm I} - l_{\rm r}) \frac{\tan 2\beta}{\cos 2\chi}$$

= $I \sin 2\beta$

$$E_{x} = E_{l} \sin(\omega t - \varphi_{l})$$
$$E_{y} = E_{r} \sin(\omega t - \varphi_{r})$$
$$\delta = \varphi_{l} - \varphi_{r}$$

 $I ~\equiv~ \langle E_x^2 \rangle_t + \langle E_y^2 \rangle_t = I_l + I_r$

$$\mathsf{Q} ~\equiv~ \langle \textit{\textbf{E}}_x^2 \rangle_t - \langle \textit{\textbf{E}}_y^2 \rangle_t = \textit{\textbf{I}}_l - \textit{\textbf{I}}_r$$

$$= PI\cos 2\chi\cos 2\beta$$

$$U \equiv \langle 2E_{\rm x}E_{\rm y}\cos\delta
angle_{
m t}$$

$$= (I_{\rm I} - I_{\rm r}) \tan 2\chi$$

$$= P I \sin 2\chi \cos 2\beta$$

$$V \equiv \langle 2E_{\rm x}E_{\rm y}\sin\delta
angle_{
m t}$$

$$= (I_{\rm I} - I_{\rm r}) \frac{\tan 2\beta}{\cos 2\chi}$$

 $= PI \sin 2\beta$

$$E_{x} = E_{l} \sin(\omega t - \varphi_{l})$$
$$E_{y} = E_{r} \sin(\omega t - \varphi_{r})$$
$$\delta = \varphi_{l} - \varphi_{r}$$

$$I \ \equiv \ \langle E_x^2 \rangle_t + \langle E_y^2 \rangle_t = I_l + I_r$$

$$\mathsf{Q} ~\equiv~ \langle \textit{E}_x^2 \rangle_t - \langle \textit{E}_y^2 \rangle_t = \textit{I}_l - \textit{I}_r$$

$$= PI\cos 2\chi\cos 2\beta$$

$$U \equiv \langle 2E_{\rm x}E_{\rm y}\cos\delta
angle_{
m t}$$

$$= (I_{\rm I} - I_{\rm r}) \tan 2\chi$$

$$= P/\sin 2\chi \cos 2\beta$$

$$V \equiv \langle 2E_{\rm x}E_{\rm y}\sin\delta\rangle_{\rm t}$$
$$\tan 2\beta$$

$$= (I_{\rm I} - I_{\rm r}) \frac{\tan 2\beta}{\cos 2\chi}$$

 $= PI \sin 2\beta$

$$P = \frac{\sqrt{Q^2 + U^2 + V^2}}{I}, \quad \tan 2\chi = \frac{U}{Q}, \quad \sin 2\beta = \frac{V}{\sqrt{Q^2 + U^2 + V^2}}$$

Meaning of the Stokes parameters

► linear polarization in the direction of *x* or *y* axes P = 1, $\beta = 0$, $\chi = 0$ or $\chi = \pi/2$ $\Rightarrow \qquad Q = \pm I$, U = 0, V = 0

Meaning of the Stokes parameters

linear polarization in the direction of x or y axes

$$P=1, \quad \beta=0, \quad \chi=0 \quad \text{or} \quad \chi=\pi/2$$

$$\Rightarrow \qquad \mathsf{Q}=\pm I, \quad U=0, \quad V=0$$

 linear polarization in the direction forming an angle of ±45° with the x axis

$$P = 1, \quad \beta = 0, \quad \chi = \pm \pi/4$$
$$\Rightarrow \qquad Q = 0, \quad U = \pm I, \quad V = 0$$

Meaning of the Stokes parameters

linear polarization in the direction of x or y axes

$$P=1, \quad eta=0, \quad \chi=0 \quad ext{or} \quad \chi=\pi/2$$

$$\Rightarrow \qquad \mathsf{Q}=\pm I, \quad U=0, \quad V=0$$

 linear polarization in the direction forming an angle of ±45° with the x axis

$$P = 1, \quad \beta = 0, \quad \chi = \pm \pi/4$$
$$\Rightarrow \qquad Q = 0, \quad U = \pm I, \quad V = 0$$

circular polarization (counter-clockwise or clockwise)

$$P = 1, \quad \beta = \pm \pi/4, \quad \chi - \text{arbitrary}$$

$$\Rightarrow \qquad Q = 0, \quad U = 0, \quad V = \pm I$$

Local Stokes parameters in Compton scattering approximation

$$I(E) = \frac{I_{\rm l}^{\rm c} + I_{\rm r}^{\rm c}}{\langle I_{\rm l}^{\rm c} + I_{\rm r}^{\rm c} \rangle} N(E)E \qquad \qquad \mathsf{Q}(E) = \frac{I_{\rm l}^{\rm c} - I_{\rm r}^{\rm c}}{\langle I_{\rm l}^{\rm c} + I_{\rm r}^{\rm c} \rangle} N(E)E$$

$$U(E) = \frac{U^{c}}{\langle I_{\rm I} + I_{\rm r} \rangle} N(E) E$$
 $V = 0$

- I^c_l, I^c_r and U^c are Stokes coefficients for Rayleigh scattering in single scattering approximation (Chandrasekhar 1960)
- N(E) is photon flux computed by Monte Carlo simulations of the multiple Compton scattering (Matt, Perola & Piro 1991)

Local Stokes parameters in Compton scattering approximation

$$\begin{split} I_{l}^{c} &= \mu_{e}^{2}(1+\mu_{i}^{2})+2(1-\mu_{e}^{2})(1-\mu_{i}^{2}) \\ &-4\mu_{e}\mu_{i}\sqrt{(1-\mu_{e}^{2})(1-\mu_{i}^{2})}\cos{(\Phi_{e}-\Phi_{i})} \\ &-\mu_{e}^{2}(1-\mu_{i}^{2})\cos{[2(\Phi_{e}-\Phi_{i})]} \end{split}$$

$$\textit{I}_{r}^{c} ~=~ 1 + \mu_{i}^{2} + (1 - \mu_{i}^{2}) \cos\left[2(\Phi_{e} - \Phi_{i})\right]$$

$$\begin{array}{lll} \textit{U}^{c} & = & -4\mu_{i}\sqrt{(1-\mu_{e}^{2})(1-\mu_{i}^{2})}\sin{(\Phi_{e}-\Phi_{i})} \\ & & -2\mu_{e}(1-\mu_{i}^{2})\sin{[2(\Phi_{e}-\Phi_{i})]} \end{array}$$

Local Stokes parameters in Compton scattering approximation

$$\begin{split} I_{l}^{c} &= \ \mu_{e}^{2}(1+\mu_{i}^{2})+2(1-\mu_{e}^{2})(1-\mu_{i}^{2}) \\ &-4\mu_{e}\mu_{i}\sqrt{(1-\mu_{e}^{2})(1-\mu_{i}^{2})}\cos{(\Phi_{e}-\Phi_{i})} \\ &-\mu_{e}^{2}(1-\mu_{i}^{2})\cos{[2(\Phi_{e}-\Phi_{i})]} \end{split}$$

$$\textit{I}_{r}^{c} ~=~ 1 + \mu_{i}^{2} + (1 - \mu_{i}^{2}) \cos\left[2(\Phi_{e} - \Phi_{i})\right]$$

$$\begin{array}{lll} \textit{U}^{c} & = & -4\mu_{i}\sqrt{(1-\mu_{e}^{2})(1-\mu_{i}^{2})}\sin{(\Phi_{e}-\Phi_{i})} \\ & & -2\mu_{e}(1-\mu_{i}^{2})\sin{[2(\Phi_{e}-\Phi_{i})]} \end{array}$$

$$N(E) = g_{\rm L}^{\Gamma-1} \frac{\sin \theta_{\rm L} d\theta_{\rm L}}{r \, dr} \sqrt{1 - \frac{2h}{h^2 + a^2}} f(E; \mu_{\rm i}, \mu_{\rm e})$$

Integration of the Stokes parameters

$$\Delta I_{0}(E,\Delta E) = \int dSF \int dE I(E)$$

$$\Delta Q_{0}(E,\Delta E) = \int dSF \int dE [Q(E)\cos 2\Psi - U(E)\sin 2\Psi]$$

$$\Delta U_{0}(E,\Delta E) = \int dSF \int dE [Q(E)\sin 2\Psi + U(E)\cos 2\Psi]$$

$$\Delta V_{0}(E,\Delta E) = \int dSF \int dE V(E)$$

 $dS \equiv r dr d\phi$

$$F \equiv F(r, \varphi) \equiv g^3 I \mu_e$$
 – transfer function

Transfer function

Adding primary radiation

Photon flux from the primary source:

$$N_{\rm d}(E)\equiv {{\rm d}n_{\rm d}(E)\over {
m d}t{
m d}\Omega}=g_{\rm h}^{2-\Gamma}/E^{-\Gamma}$$

$$g_{\mathsf{h}} = \sqrt{1 - \frac{2h}{a^2 + h^2}}, \quad I \sim ext{only a few percent}$$

Total intensity measured:

$$I_t = I + I_d$$
, $I_d = EN_d$

Primary radiation is unpolarized \Rightarrow other Stokes parameters are unchanged \Rightarrow angle of polarization is unchanged

Polarization from the reflected radiation

Polarization from the reflected radiation

Polarization from the direct + reflected radiation

Polarization from the direct + reflected radiation

Summary

- degree of polarization is increasing with energy (in the studied energy range)
- iron edge is visible in energy dependence of degree and angle of polarization
- high dependence of angle and degree of polarization on height of the primary source and on the inclination of the observer
- Outlook
 - investigate the dependence of the polarization on the spin of the black hole

Publications

Dovčiak M., Karas V. & Matt G. (2004). Polarization signatures of strong gravity in active galactic nuclei accretion discs. *MNRAS*, 355, 1005.

 Dovčiak M. (2004). Radiation of Accretion Discs in Strong Gravity. *PhD thesis*, Faculty of Mathematics and Physics, Charles University, Prague, astro-ph/0411605

Publications

- Chandrasekhar S. (1960). Radiative transfer. Dover publications, New York.
- Connors P. A., Piran T. & Stark R. F. (1980). Polarization features of X-ray radiation emitted near black holes. *ApJ*, 235, 224.
- Connors P. A. & Stark R. F. (1977). Observable gravitational effects on polarised radiation coming from near a black hole. *Nature*, 269, 128.
- Matt G., Perola G. C. & Piro L. (1991). The iron line and high energy bump as X-ray signatures of cold matter in Seyfert 1 galaxies. A&A, 247, 25.
- Walker M. & Penrose R. (1970). On quadratic first integrals of the geodesic equations for type 22 space-times. *Commun. Math. Phys.*, 18, 265.