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Abstract. We introduce a nonstandard arithmetic NQA− based on the theory devel-

oped by R. Chuaqui and P. Suppes in [2] (we will denote it by NQA+), with a weakened

external open minimization schema. A finitary consistency proof for NQA− formalizable in

PRA is presented. We also show interesting facts about the strength of the theories NQA−

and NQA+; NQA− is mutually interpretable with I∆0 + EXP, and on the other hand, NQA+

interprets the theories IΣ1 and WKL0.

§1. Introduction. In the early 1960’s, Abraham Robinson [9] showed that
there is a rigorous foundation for the use of infinitesimals in mathematical analy-
sis. This development of differential and integral calculus was called nonstandard
analysis. Robinson’s original approach is based on construction of nonstandard
extensions by ultraproducts.

His successors introduced different frameworks for development of the non-
standard analysis, see for instance Nelson’s internal set theory [7], Ballard and
Hrbáček [1], Vopěnka’s alternative set theory [15], and Chuaqui and Suppes
[12, 2]. Chuaqui and Suppes [12, 2] introduced a weak nonstandard theory (we
denote it by NQA+) suitable for developing a fundamental part of analysis. They
also presented that the proposed system of axioms has finitary consistency proof.

There are many interpretations of the finitism of Hilbert. We show that WKL0

and IΣ1 are interpretable in the system of Chuaqui and Suppes, hence it is not
finitistic in sense of Tait [13].

Unfortunately, the consistency proof of Chuaqui and Suppes contains some
opacities and a logical gap. The goal of the proof is to interpret terms of the
system as expressions of the form

a0x
r0 + a1x

r1 + · · ·+ anxrn

b0xs0 + b1xs1 + · · ·+ bnxsm
,

where ai, bj , ri, sj are positive rational numbers and x interprets a nonstandard
integer ν0. However, this interpretation is not well adapted to the exponential
terms (e.g. 2ν0), if the equality axioms for these terms are required to be satisfied.

The authors avoid the problems by omitting the equality axioms for recursively
defined functions. On page 131 the authors state:

We know from Herbrand’s theorem that the theory is inconsistent if
and only if there is a conjunction of closed substitution instances of
the axioms which is inconsistent. We also have to include instances of
the equality axioms for the field operations. The corresponding equality
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theorems for the operations defined by recursion are proved by induc-
tion, so that we do not need to include their instances.

Although the induction is not an axiom there, it is a theorem provable from
the minimum axiom and equality axioms (not only for field operation but for all
equality axioms). Therefore, if instances of equality axiom for operations defined
by recursion are not included, the induction cannot be proved.

The aim of this paper is to introduce a new theory NQA− based on the system
presented in [2] and prove the finitary consistency of our theory. Actually, our
theory has consistency proof formalizable in PRA. Therefore it is more suitable
to satisfy a part of Hilbert’s program of proof theory in strict meaning of Tait.

This paper is organized into four sections. In the second section, we present
the language and axioms of the theories NQA+and NQA−. Both these theories are
open and nonstandard extensions of the theory of ordered fields with a built-in
arithmetic of natural numbers. These theories are sufficiently strong to develop
a basic infinitesimal calculus and sufficiently weak to prove their consistency
formally in some arithmetic.

In the third section it is shown that NQA− has a finitary proof of consistency.
The proof can be formalized in the primitive recursive arithmetic PRA or in
IΣ1. The Hilbert-Ackermann Theorem is used in the proof. An algorithm for
the construction of a finite model from a finite closed axiom instances can be
obtained from the proof.

In the fourth section we study relations between NQA− and NQA+. Both theo-
ries are compared from the arithmetical point of view. We show that NQA− and
I∆0 + EXP mutually interpret each other and the theories WKL0 and IΣ1 are
both interpretable in NQA+.

§2. The theories NQA− and NQA+.
2.1. The language of the theories NQA− and NQA+. We will work in a

first-order language with equality where the variables range over numbers.
Further we suppose that the language contains the following basic symbols:

1. symbols for the constants 0, 1;
2. a symbol ν0 for the constant of a nonstandard natural number;
3. a binary predicate symbol x < y for the linear ordering;
4. a unary predicate symbol N(x)—“to be a natural number”;
5. a unary predicate symbol Inf(x)—“to be infinitesimal”;
6. binary function symbols x+y, x−y, x ·y and x/y for basic field operations;
7. a unary function symbol δ(x) for the sign function;
8. a binary function symbol xy for the power (exponential) function∗;
9. unary function symbol x! for the factorial†;

10. unary function symbol li(x) for the ceiling function‡.

∗As we will see later, the theory contains an axiom only for powers with natural exponent.
†Also the factorial axiom is included only for the factorial of a natural number.
‡In fact, it is not exactly the ceiling function, but only a function giving a natural number

greater or equal than its argument. The ceiling function could be defined using a minimum op-

erator as dye def
= minx≥y(y). The function li(y) guarantee that the formula x ≥ y is satisfiable.
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Definition 2.1. A formula ϕ is called internal if there is no occurrence of the
predicate Inf in it. A formula containing the predicate Inf is called an external
formula.

For simplification, we will use the notation ~y = (y1, y2, . . . , ym). In our lan-
guage we also have recursive operators on the existing terms and formulas:
11. the operator§ minϕ—denoted also by µx[ϕ(x, ~y)](~y)—defined only for an

open formula ϕ(x, ~y) in which no other min occurs,
12. operators maxτ and

∑
τ defined for any term τ(x, ~y) without any min

occurring in the term τ(x, ~y).
We denote thWe denote the language without any min-term by symbol L∅.

The full language (with minϕ function symbols) we denote by L.
By the operator maxτ we mean the minimal index less or equal to the argument

where the term τ reaches the maximum. For better understanding, we show a
few examples.

Example. 1. For τ = n2−1
n! we have maxτ (n) =

{
0 for n < 2
2 for n ≥ 2

;

2. For τ = n we have maxτ (n) = n;

3. For τ = n! we have maxτ (n) =

{
0 for n < 2
n for n ≥ 2

.

Definition 2.2. We say that a term σ occurs recursively in a term τ (or in a
formula ϕ) if

1. σ is a subterm of τ or ϕ, or
2. there is a subterm of form

∑
%, max%, or minψ, such that σ occurs recur-

sively in a term % (or in a formula ψ).

e language without any min-term by symbol L∅. The full language (with minϕ

function symbols) we denote by L.
The operator maxτ has a meaning of the minimal index less or equal to the

argument where the term τ reaches the maximum. For better understanding,
we show a few examples.

Example. 1. For τ = n2−1
n! we have maxτ (n) =

{
0 for n < 2
2 for n ≥ 2

;

2. For τ = n we have maxτ (n) = n;

3. For τ = n! we have maxτ (n) =

{
0 for n < 2
n for n ≥ 2

.

Definition 2.3. We say that a term σ occurs recursively in a term τ (or in a
formula ϕ) if

1. σ is a subterm of τ or ϕ, or
2. there is a subterm of form

∑
%, max%, or minψ, such that σ occurs recur-

sively in a term % (or in a formula ψ).

§Function symbols minϕ are Skolem functions of the open induction. Note that minϕ can
simulate the existential quantifier and to prevent this in another minimum we require that no
other minψ is occurring in the formula ϕ.
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2.2. The axioms of the theories NQA− and NQA+. The theories NQA−

and NQA+ are open first-order theories with equality. These theories contain the
following axioms.

1. The ordered field axioms OF—in the form of open axioms using the func-
tions x− y and x/y.

2. Robinson’s arithmetic Q relativized to the predicate N (especially N(n̄) for
any numeral n̄, we understand by the symbol n̄ the term 1 + 1 + . . . + 1︸ ︷︷ ︸

n-times

).

3. The corresponding axioms for the non-basic arithmetical functions (sign,
power, factorial and li function)

Axiom 1 (FC1).
(
x ≥ 0 → δ(x) = 1

)
&

(
x < 0 → δ(x) = −1

)
,

Axiom 2 (FC2). (x0 = 1) &
(
N(n) → xn+1 = xn · x)

,

Axiom 3 (FC2). (0! = 1) &
(
N(n) → (n + 1)! = n! · (n + 1)

)
,

Axiom 4 (FC3). N
(
li(x)

)
&

(
li(x) ≥ x

)
.

Note that with a help of the sign function, we can define the absolute value
function as

|x| def= x · δ(x).
4. The system of infinitesimal axioms for the predicate Inf

Axiom 5 (IF1). ν0 6= 0 & N(ν0) & Inf(1/ν0),

Axiom 6 (IF2).
(
Inf(x) & |y| ≤ |x|) → Inf(y),

Axiom 7 (IF3).
(
Inf(x) & ¬Inf(1/y)

) → Inf(x · y),

Axiom 8 (IF4).
(
x 6= 0 & Inf(x)

) → ¬Inf(1/x),

Axiom 9 (IF5).
(¬Inf(1/x) & ¬Inf(1/y)

) → ¬Inf
(
1/(x + y)

)
.

Originally, there were two more axioms in [2], but they are provable from the
others. From the Inf predicate and axioms of infinitesimal calculus, described
above, we can define correctly the predicate “to be a standard natural number”
as

FN(x)
def≡ (

N(x) & ¬Inf
(
1/(x + 1)

))
.

5. Recursion axioms for the operators maxτ and
∑

τ

Axiom 10 (MAX). Let τ(x, ~y) be an (m + 1)-ary term in the language L∅.
Then the term maxτ (n, ~y) satisfies

maxτ (0, ~y) = 0,
(
N(n) & τ(n + 1, ~y) ≤ τ

(
maxτ (n, ~y), ~y

)) → maxτ (n + 1, ~y) = maxτ (n, ~y),(
N(n) & τ(n + 1, ~y) > τ

(
maxτ (n, ~y), ~y

)) → maxτ (n + 1, ~y) = n + 1.

Axiom 11 (SUM). Let τ(x, ~y) be an (m + 1)-ary term in the language L∅.

Then the term
n∑

i=0

τ(i, ~y) satisfies

0∑
i=0

τ(i, ~y) = τ(0, ~y) &
(
N(n) →

n+1∑
i=0

τ(i, ~y) =
n∑

i=0

τ(i, ~y) + τ(n + 1, ~y)
)
.



FRAGMENT OF NONSTANDARD ANALYSIS 5

6. The open internal minimum axiom O-MIN for the operator minϕ

Axiom 12 (O-MIN). Let ϕ(x, ~y) be an open internal formula in the language
L∅. Then the term minϕ(~y) satisfies(

N(x) & ϕ(x, ~y)
) → (

N
(
minϕ(~y)

)
& minϕ(~y) ≤ x & ϕ

(
minϕ(~y), ~y

))
.

7. The open weak external minimum axiom O-MINn for the operator minϕ

Axiom 13 (O-MINn). Let ϕ(x, ~y) be an open external formula in the language
L∅ and n̄ be a numeral. Then for the term minϕ(~y), we have

ϕ(n̄, ~y) → (
N

(
minϕ(~y)

)
& minϕ(~y) ≤ n̄ & ϕ

(
minϕ(~y), ~y

))
.

8. The open external minimum axiom O-MINst for the operator minϕ

Axiom 14 (O-MINst). Let ϕ(x, ~y) be an open external formula in the language
L∅. Then for the term minϕ(~y), we have(

FN(x) & ϕ(x, ~y)
) → (

N
(
minϕ(~y)

)
& minϕ(~y) ≤ x & ϕ

(
minϕ(~y), ~y

))
.

By NQA∅we denote the theory in the language L∅ and with the axioms above
except any minimum schema.

Then we can introduce the theories NQA+ and NQA− in the language L as
• NQA+ = NQA∅+ O-MIN + O-MINst,
• NQA−= NQA∅+ O-MIN + O-MINn.

2.3. Equivalent axioms for NQA−. The axioms introduced above are not
the only one characterization of the theories NQA+ and NQA−. In this section we
introduce simpler, but equivalent versions of the NQA− theory.

Definition 2.4. We introduce bounded quantifiers as follows

1. (∃x≤τ(y))ϕ(x, y)
def≡ (∃x)

(
x ≤ τ(y) & N(x) & ϕ(x, y)

)

2. (∀x≤τ(y))ϕ(x, y)
def≡ (∀x)

(
(x ≤ τ(y) & N(x)) → ϕ(x, y)

)
.

A formula ϕ is said to be a ∆0-formula if all quantifiers in ϕ are bounded.

Our main tool is the following lemma, which makes it possible to construct
a characteristic function χϕ for every internal ∆0-formula ϕ without using min-
functions.

Lemma 2.5. Let ϕ(~x) be an internal ∆0-formula. Then there is a term tϕ(~x)
in the language of NQA∅ such that NQA− proves(

ϕ(~x) ↔ tϕ(~x) = 1
)

&
(¬ϕ(~x) ↔ tϕ(~x) = 0

)
.

Proof. We proceed by induction on the complexity of the formula ϕ. First,
for atomic formulae, we introduce a new function θ(x) given by

θ(x) def= 1
2

(
δ(x) + δ(−x)

)
=

{
1 x = 0
0 x 6= 0.

Then it is easy to see that

τ(x) = σ(x) ↔(
τ(x)− σ(x)

)
= 0 ↔ θ

(
τ(x)− σ(x)

)
= 1, and

τ(x) 6= σ(x) ↔(
τ(x)− σ(x)

) 6= 0 ↔ θ
(
τ(x)− σ(x)

)
= 0.
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Therefore, we define

(1) χ[σ(~x)=τ(~x)](~x) def= θ
(
τ(~x)− σ(~x)

)
.

On the other hand, we easily get that

τ(x) < σ(x) ↔(
τ(x)− σ(x)

)
< 0 ↔ δ

(
τ(x)− σ(x)

)
= −1 ↔

↔ 1− 1
2

(
1 + δ

(
τ(x)− σ(x)

))
= 1, and

τ(x) ≥ σ(x) ↔(
τ(x)− σ(x)

) ≥ 0 ↔ δ
(
τ(x)− σ(x)

)
= 1 ↔

↔ 1− 1
2

(
1 + δ

(
τ(x)− σ(x)

))
= 0.

Hence, we can set

(2) χ[τ(~x)<σ(~x)](~x) def= 1
2

(
1− δ

(
τ(~x)− σ(~x)

))
.

We define the bounded minimum operator with the assistance of a maxτ -term
in the language of NQA∅ as follows:

bmin[τ(x,~y)=1](z, ~y) def= max[θ(τ(x,~y)−1)+θ(x−(z+1))](z, ~y).

We will also use a common notation µx≤z[τ(x, ~y) = 1](z, ~y) for above function.
One can show that the above operation has the properties of bounded min-

imization. Moreover, this bounded minimization operator returns its upper
bound plus one, if no suitable x exists. We will use this property later.

Hence, we can introduce the ceiling function as

dye def= µx≤ li(y)[χ[x≥y](x, y) = 1](y)

and it is straightforward that the predicate N(y) is equivalent to y = dye. Using
(1) we obtain the characteristic function of predicate N(y).

For propositional connectives we have

(3) χ[¬ϕ(~x)](~x) = 1− χ[ϕ(~x)](~x),

and

(4) χ[ϕ(~x) & ψ(~x)](~x) = χ[ϕ(~x)](~x) · χ[ψ(~x)](~x).

We have defined the characteristic function for open formulae. For simplifica-
tion we denote by bminϕ(z, ~y) the expression

µx≤z[χϕ(x, ~y) = 1](z, ~y).

The bounded existential quantifier can be simulated by bounded minimum
operator as

(∃x≤σ(~y)
)
ϕ(x, ~y) ↔

(
ϕ
(
bminϕ(σ(~y), ~y), ~y

)
& bminϕ(σ(~y), ~y) ≤ σ(~y)

)
.

We thus put

(5) χ[(∃x≤σ(~y))ϕ(x,~y)](~y) = χ[ϕ(x,~y) & x≤σ(~y))]

(
bminϕ(σ(~y), ~y), ~y

)
.

a
For further work we introduce schemes equivalent to the open minimum scheme:

1. The internal ∆0-induction scheme ∆0-IND
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Axiom 15 (∆0-IND). Let ϕ(x, ~p) be an internal ∆0-formula. Then we have

ϕ(0, ~p) & (∀x)
(
N(x) & ϕ(x, ~p) → ϕ(x + 1, ~p)

) → (
N(y) → ϕ(y, ~p)

)
.

2. The open internal bounded minimum scheme O-BMIN for operator∗ bminϕ.

Axiom 16 (O-BMIN). Let ϕ(x, ~p) be an open internal formula. Then the term
bminϕ(z, ~p) satisfies

(
N(y) & N(z) & y ≤ z & ϕ(y, ~p)

) →
→

(
N

(
bminϕ(z, ~p)

)
& ϕ

(
bminϕ(z, ~p), ~p

)
& bminϕ(z, ~p) ≤ y

)
.

Lemma 2.6. NQA∅+ O-MIN is conservative over NQA∅+∆0-IND.

Proof. One can show that the induction axiom for (∀u≤x)¬ϕ(u), where ϕ is
an open internal formula,

(∀u≤0)¬ϕ(u, ~p) & (∀x)
(
N(x) & (∀u≤x)¬ϕ(u, ~p) → (∀v≤x + 1)¬ϕ(v, ~p)

) →
→ (∀y)

(
N(y) → (∀w≤y)¬ϕ(w, ~p)

)

can be equivalently rewritten as

¬ϕ(0, ~p) & (∀x)(∃u≤x)(∀v≤x + 1)
(
N(x) & ¬ϕ(u, ~p) → ¬ϕ(v, ~p)

) →
→ (∀y)

(
N(y) → ¬ϕ(y, ~p)

)
.

Hence, it is equivalent to

(∃y)
(
N(y) & ϕ(y, ~p)

) → ϕ(0, ~p)∨
∨ (∃x)(∀u≤x)(∃v≤x + 1)

(
N(x) & ¬ϕ(u, ~p) & ϕ(v, ~p)

)
.

By skolemization of the formula

(∀~p)(∃x)(∀u≤x)(∃v≤x + 1)
(
N(x) & ¬ϕ(u, ~p) & ϕ(v, ~p)

)
,

we obtain a new function symbols min∗ϕ(~p) and the statements

(∃y)
(
N(y) & ϕ(y, ~p)

) →
→ ϕ(0, ~p) ∨ (

N(min∗ϕ(~p)) & (∀u≤min∗ϕ)¬ϕ(u, ~p) & ϕ(min∗ϕ + 1, ~p)
)
.

Such a theory is conservative over NQA∅+ ∆0-IND.
It is not too hard to check that by choosing minϕ

def= min∗ϕ−1 we can prove the
O-MIN axiom for any open formula without any min-term occurring recursively.

a
Lemma 2.7. NQA∅+ O-BMIN proves ∆0-IND.

∗Analogously to the simulation of an existential quantifier by the minϕ operator, bminϕ

can simulate the bounded existential quantifier but by Lemma 2.5 any internal ∆0-formula is
equivalent to an internal open formula. Hence, we don’t require an additional condition such
as no recursively occurrence of min-term in minϕ.
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Proof. Internal ∆0-formulae are equivalent to open formulae by Lemma 2.5.
We prove the internal induction scheme only for open formulae.

Given an open formula ϕ(x, ~p) we suppose that there exists y, N(y), such
that ¬ϕ(y, ~p), ϕ(0, ~p), and (∀x)

(
N(x) & ϕ(x, ~p) → ϕ(x + 1, ~p)

)
. Using bounded

minimum, we obtain
y0 = bmin¬ϕ(x,~p)(y, ~p) ≤ y.

By O-BMIN axiom we have N(y0) and ¬ϕ(y0, ~p). Obviously y0 6= 0 because
ϕ(0, ~p) and therefore N(y0 − 1). Since ¬ϕ(y0 − 1, ~p) implies y0 ≤ y0 − 1, we
have ϕ(y0 − 1, ~p). By assumption (∀x)

(
N(x) & ϕ(x, ~p) → ϕ(x + 1, ~p)

)
we obtain

ϕ(y0, ~p) which is a contradiction. a
Lemma 2.8. NQA− is a conservative extension of NQA∅+ O-BMIN.

Proof. By Lemma 2.6 and 2.7 we know that the theory NQA∅+ O-MIN is
conservative over NQA∅+ O-BMIN. Note that NQA∅+ O-BMIN and NQA∅+ ∆0-
IND have the same language.

One can show that NQA∅ also proves the induction for any external formula
ϕ in the form

ϕ(0, ~p) & (∀x)
(
N(x) & ϕ(x, ~p) → ϕ(x + 1, ~p)

) → ϕ(n̄, ~p),

where n̄ is an arbitrary numeral.
We prove it by induction (in metamathematics) on numeral n.
Obviously ϕ(0, ~p) → ϕ(0, ~p). Let n̄ be a numeral such that

ϕ(0, ~p) & (∀x)
(
N(x) & ϕ(x, ~p) → ϕ(x + 1, ~p)

) → ϕ(n̄, ~p).

Then by N(n̄) and an instance ϕ(n̄, ~p) → ϕ(n̄ + 1, ~p), we get ϕ(n̄ + 1, ~p).
Analogously to Lemma 2.6, the external open minimum axiom O-MINn is

conservative over external ∆0-induction, which is provable in NQA∅. a

§3. Consistency of the NQA− theory.
3.1. An application of the Hilbert-Ackermann Theorem. Recall that

the Hilbert-Ackermann Theorem states that the theory is inconsistent if and
only if there is a finite set of instances of the axioms that is inconsistent in
propositional calculus.

Our aim is to prove the consistency of NQA− formally in PRA. According to
Lemma 2.7 it is sufficient to prove

PRA ` Con(NQA∅+ O-BMIN).

Recall that the primitive recursive arithmetic (PRA) is a first-order theory with
equality whose language contains symbols for all primitive recursive functions.
Its axioms contain the recursive definitions of all function symbols, and it has
one more inference rule—the open induction rule (O-IR)

ϕ(0), ϕ(x) → ϕ(x + 1)
ϕ(y)

.

For consistency proof we will use the Hilbert-Ackermann Theorem whose for-
malization and proof is possible in primitive recursive arithmetic (see [5]).
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Suppose that NQA∅+ O-BMIN is inconsistent. Using the Hilbert-Ackermann
theorem, we get a finite propositionally inconsistent theory S. Having substi-
tuted any constant of language NQA∅ (e.g. 1) for free variables in instances of
the theory S, we can suppose that all axioms of S are closed.

3.2. A finite model M(N, ε) with parameters N and ε. It is straight-
forward to check that there is an interpretation of the theory of ordered fields
OF in PRA (one can use triples 〈0/1, p, q〉 to encode rational numbers ±p

q ). The
theory of ordered fields is interpretable even in Robinson arithmetic Q (see [4]
for this result).

In order to simplify the notation, let us suppose that we have fixed such an
interpretation of OF in PRA, and identify the fractions +n

1 with the natural num-
bers n. Then we can consider the field operations to be extensions of arithmetical
operations.

Working inside PRA, we will build (i.e., encode in PRA) a finite modelM(N, ε)
of the language of S dependent on parameters N and ε. First of all, we construct
an assignment ∗ of a function τ∗ to every term τ contained in S, and a predicate
ϕ∗ to every open formula ϕ from S, by simultaneous recursion on their com-
plexity. The basic field operations and predicates will be interpreted naturally.
Note that bminϕ is definable with an assistance of max-term. Then the non-field
function symbols are handled as follows:

ν∗0
def= N,

(
δ(x)

)∗ def=

{
1 if x ≥ 0,

−1 otherwise,

(
n!

)∗ def=
n−1∏
i=1

(i + 1),

(
xn

)∗ def=
n−1∏
i=0

x,

(
li(x)

)∗ def=

{
µy≤p [y · q ≥ p](p, q) if x = +p

q ,

0 otherwise,
(
maxτ (n, ~y)

)∗ def= µx≤n[(∀z≤n)(τ∗(z, ~y) ≤ τ∗(x, ~y)](n, ~y),
(

n∑
i=0

τ(i, ~y)
)∗

def=
n∑

i=0

τ∗(i, ~y).

Finally, the predicates are interpreted as
(
N(x)

)∗ def≡ ∃n (
x = +n

1

)
,

(
Inf(x)

)∗ def≡ |x| < ε.

Then we define the universe of our model as

M(N, ε) def= {0, 1,N} ∪ {τ∗; τ ∈ C}.
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Predicates from S will be realized in M(N, ε) by the restriction of (· · · )∗ to
M(N, ε). Similarly, a function symbol f will be realized by the function

fM(N,ε)(~x) def=

{
f∗(~x) if f∗(~x) ∈ M(N, ε),
0 otherwise.

Note that ψ∗ iff M(N, ε) ² ψ, for any open sentence ψ contained in S.

Theorem 3.1 (PRA). Suppose that 1 > ε > 0 and 1 < N < 1/ε, where N is a
natural number (it means it is in form +n

1 ). Let ψ be any instance of the axiom
of S except for the infinitesimal axioms IF3 and IF5. Then M(N, ε) ² ψ.

Proof. It is clear from the definition of ψ∗ that the instances of the axioms
of equality, axioms of ordered fields OF, axioms of Robinson’s arithmetic Q, and
axiom of sign, power, factorial and li are satisfied in M(N, ε).

Let ψ be an instance of the maximum axiom corresponding to the function
symbol maxτ (y), where τ(x) is a unary term.∗ By definition, we have

max∗τ (0) = µx≤0[(∀y ≤ 0)(τ∗(y) ≤ τ∗(x))] = 0,

and

max∗τ (n + 1) =

{
n + 1 if τ∗

(
max∗τ (n)

)
< τ∗(n + 1)

max∗τ (n) if τ∗
(
max∗τ (n)

) ≥ τ∗(n + 1).
Similarly, let ψ be an instance of the sum axiom occurring in the theory S

and let τ(x) be the term of the corresponding function symbol
n∑

i=0

τ(i). By the

definition of
(∑

τ
)∗ we obtain

(
0∑

i=0

τ(i)
)∗

=
0∑

i=0

τ∗(i) = τ∗(0),

and also (
n+1∑
i=0

τ(i)
)∗

=
n+1∑
i=0

τ∗(i) =
n∑

i=0

τ∗(i) + τ∗(n + 1).

Let ψ be an instance of O-BMIN for an open internal formula ϕ(x). By defi-
nition

bmin∗ϕ(z) =
(
maxθ(χϕ(x)−1)+θ(x−(z+1))(z)

)∗ = µx≤z[φ(x, y, z)](z)

where φ(z, y, z) is formula (∀y≤z)
(
θ∗(χϕ(y)− 1) + θ∗(y− (z + 1)) ≤ θ∗(χϕ(x)−

1) + θ∗(x− (z + 1))
)

and it is equivalent to ϕ∗(x) ∨ (∀y≤z)¬ϕ∗(y).
Suppose that the assumption N∗(σ∗) & N∗(τ∗) & σ∗ ≤ τ∗ & ϕ∗(σ∗) holds.

Then clearly

N∗
(
bmin∗ϕ(τ∗)

)
& ϕ∗

(
bmin∗ϕ(τ∗)

)
& bmin∗ϕ(τ∗) ≤ σ∗.

We have to show that the instance of the infinitesimal axioms except IF3 and
IF5 holds in the model M(N, ε) independently on values ε and N.

According to the assumption of this theorem we have N > 1 and thus ν∗0 =
N 6= 0. From N < 1/ε we clearly obtain (Inf(1/ν0))∗. Furthermore, we suppose
that N is a natural number. It gives us the axiom IF1.

∗We do not have to consider anything else other than unary terms because all axioms are
closed formulae.
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Using the basic properties of the relation ≤ we show that the instances of
axioms IF2 and IF4 hold independently on the choice of ε and N.

Suppose |τ∗1 | < ε and |τ∗2 | ≤ |τ∗1 |, then |τ∗2 | < ε. Therefore the instances of the
axiom IF2 hold.

Let |τ∗| < ε then we obtain |(1/τ∗)| > (1/ε) > 1 > ε and it proves the
instances of the axiom IF4. a

3.3. The parameters N and ε. In this section we show how to choose the
parameters N and ε to satisfy the axioms IF3 and IF5 in model M(N, ε).

Lemma 3.2. There are natural numbers 0 < F < I < N such that

1. for any constant term τ in S we have |1/τ∗|, |τ∗| 6∈ [F, I],
2. F2 < I.

Proof. We define the primitive recursive function

h(0) = 0,

h(i + 1) = h(i)2 + 1.(1)

Let us denote by K the number of all constant terms in S. Choose N =
h(2K + 1). Then the interval (0, N] can be divided into 2K + 1 subintervals as
follows

(0, N ] =
2K⋃
n=0

(h(n), h(n + 1)].

Then there is 0 < j < 2K such that (h(j), h(j + 1)] ∩ S = ∅. Finally we choose
F = h(j) and I = h(j + 1). a

Theorem 3.3. PRA proves that NQA− is consistent.

Proof. We will work in PRA, and assume that NQA− is inconsistent. Then
there is a propositionally inconsistent theory S as described in section 3.1. Define
N as in Lemma 3.2 and ε = 1/I. If we show that M(N, ε) ² S, we will obtain a
contradiction, becauseM(N, ε) generates a propositional valuation which satisfies
all formulae from S.

In view of the Theorem 3.1 it is enough to prove that instances of the axioms
IF3 and IF5 from S are satisfied in the model M(N, ε).

Axiom IF3: Let τ1, τ2, τ1 · τ2 be constant terms in S. Assume |τ∗1 | < 1/I and
|τ∗2 | ≤ F, then we obtain

|τ∗1 · τ∗2 | < F/I ≤ 1/F.

Hence, we have 1/|τ∗1 · τ∗2 | > F and since 1/|τ∗1 · τ∗2 | is not in interval [F, I] we get
1/|τ∗1 · τ∗2 | > I. Finally it implies |τ∗1 · τ∗2 | < 1/I.

Axiom IF5: Let τ1, τ2, τ1 + τ2 be constant terms in S. Since |τ∗1 |, |τ∗2 | < F we
get

|τ∗1 + τ∗2 | < 2F < I.

But |τ∗1 + τ∗2 | is not in interval [F, I], and thus |τ∗1 + τ∗2 | < F. a

§4. Interpretations.
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4.1. An interpretation of I∆0 + EXP in NQA−. For simplicity we assume
that I∆0 + EXP is formulated in the language 〈0, 1, +, ·, 2x,=, <〉; its axioms
consist of defining equations for these symbols, and the induction schema for
all ∆0-formulae in its language. (This is a definable (hence conservative) exten-
sion of the usual formulation of I∆0 + EXP in the basic arithmetical language
〈0, S, +, ·,=〉.) Note that the language of I∆0 + EXP is contained in the lan-
guage of NQA−, and all the axioms, except for the bounded induction, are also
axioms (or easy theorems) of the theory NQA−, when relativized to the predicate
N(x). We thus define the universe of interpretation to be N(x), and we leave all
functions and predicates absolute.

By Lemma 2.7. we are able to prove the induction for bounded internal (and
also arithmetical) formulae from O-BMIN, which we have in NQA−.

Corollary 4.1. The theory NQA− interprets I∆0 + EXP.

4.2. An interpretation of IΣ1 in NQA+. Similarly to the previous interpre-
tation, the language of IΣ1 is also contained in the language of NQA+. However in
this case, the interpretation universe will be only FN(x). Note that the predicate
FN(x) is defined as

FN(x)
def≡ N(x) & ¬Inf

(
1

x+1

)
,

and NQA+proves that it is a cut closed under addition and multiplication. Hence,
all axioms of IΣ1 relativized to FN(x), except for Σ1-induction, are provable in
NQA−.

We want to simulate induction (in this case Σ1-induction) for arithmetical
formulae. The key point is that we can replace every arithmetical Σ1-formula,
with quantifications relativized to FN(x), by an open formula, by the following
lemma.

Lemma 4.2. Let ϕ(y, ~x) be a bounded arithmetical formula. Then in NQA−we
have

(∃y)
(
FN(y) & ϕ(y, ~x)

) ↔ FN
(
µy≤ν0

(
tϕ(y,~x)(y, ~x) = 1

))
.

Proof. Assume that FN
(
µy ≤ ν0(tϕ(y,~x)(y, ~x) = 1)

)
holds. Denote by y0 =

µy ≤ ν0(tϕ(y,~x)(y, ~x) = 1), then FN(y0) (in particular, y0 < ν0), and by defini-
tion (5) from the proof of Lemma 2.5 we have tϕ(y0,x)(y0, x) = 1. Hence, by
Lemma 2.5, we get ϕ(y0, ~x). Thus, y0 is a witness for the existential formula
(∃y)

(
FN(y) & ϕ(y, ~x)

)
.

On the other hand, if
(
FN(y) & ϕ(y, ~x)

)
holds for some y, then tϕ(y,~x)(y, ~x) = 1,

and thus µy≤ν0

(
tϕ(y,~x)(y, ~x) = 1

)
= y0 ≤ y, which implies FN(y0). a

Proposition 4.3. The theory IΣ1 is interpretable in NQA+.

Proof. By Lemma 4.2, Σ1-induction translates to an instance of external
open induction in the interpretation described above, hence it follows from
O-MINst. a

4.3. An interpretation of WKL0 in NQA+. We extend the interpretation of
IΣ1 in NQA+ to an interpretation of WKL0 in NQA+. The interpretation universe



FRAGMENT OF NONSTANDARD ANALYSIS 13

for the first-order variables is again FN(x), and for the second-order variables it
is N(X). We will interpret the predicate x ∈ X as

(x ∈ X)∗
def≡ x-bit(X) = 1,

where

x-bit(X) def=
⌊

X
2x

⌋− 2
⌊

X
2x+1

⌋
=

{
1 if

⌊
X
2x

⌋
is odd

0 if
⌊

X
2x

⌋
is even,

and
⌊

X
2x

⌋ def= µy≤ li
(

X
2x

) (
X
2x < y + 1

)
.

We have to verify the interpretation of the Σ0
1-separation schema

(∀x)
(
ϕ(x) → ¬ψ(x)

) → (∃X)(∀x)
(
(ϕ(x) → x ∈ X) & (ψ(x) → x 6∈ X)

)
,

for Σ0
1-formulae ϕ(x) and ψ(x) in the language of WKL0.

Assume that ϕ(x, ~p, ~P ) and ψ(x, ~p, ~P ) are Σ0
1-formulae (generally with both

first-order and second-order parameters) of the form

ϕ(x, ~p, ~P ) = (∃y)ϕ0(y, x, ~p, ~P ),

ψ(x, ~p, ~P ) = (∃y)ψ0(y, x, ~p, ~P ),

where ϕ0 and ψ0 are ∆0
0-formulae. Suppose that

(
(∀x)(ϕ(x) → ¬ψ(x))

)∗. Set

y0(x) def= µy≤ν0

(
ϕ∗0(y, x) ∨ ψ∗0(y, x)

)
,

X
def=

ν0−1∑
x=0

2x · tϕ∗0(y,x)

(
y0(x), x

)
.

Obviously X < 2ν0 . We will verify that X satisfies the condition of separation.
Suppose FN(x) and ϕ∗(x), then by Lemma 4.2 we have FN

(
y0(x)

)
, and by

Lemma 2.5 we have tϕ∗0(y,x)

(
y0(x), x

)
= 1. Thus (x ∈ X)∗.

On the other hand, let us assume that FN(x) and ψ∗(x). Hence FN
(
y0(x)

)
, and

since ψ∗(x) implies ¬ϕ∗(x)
(
from assumption

(
(∀x)(ϕ(x) → ¬ψ(x))

)∗), using
Lemma 2.5 we obtain tϕ∗0(y,x)

(
y0(x), x

)
= 0. Therefore (x 6∈ X)∗.

4.4. An interpretation of NQA− in I∆0 + EXP. We start with an inter-
pretation of NQA− in an auxiliary theory T . The language of T contains the
language of I∆0 + EXP, and additionally

1. a unary predicate FN(x), and
2. a new constant ν0.

The axioms of the theory consists of

1. the axioms of I∆0 + EXP,
2. axioms expressing that FN(x) is a proper cut closed under multiplication

(i.e., FN(0), FN(x) → FN(x+1), FN(x) & FN(y) → FN(x+ y) & FN(x · y),
x ≤ y & FN(y) → FN(x), and ¬FN(ν0)).

Lemma 4.4. NQA− is interpretable in T .
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Proof. As in the Section 3.2, we extend the theory T by rational numbers.
We denote them as usual by ±p

q . In such an extended theory we can interpret all
functions and predicates of NQA−. Recall that T extends I∆0 +EXP, and that all
Kalmár elementary recursive functions have well-behaved bounded definitions in
the latter theory, hence we can use them freely.

The universe of our interpretation ∗ will be the universe of rational numbers
Q(x). The field operations and predicates will be the same as in the case of
rationals. We have to show how to interpret non-field functions, and predicates.

(xn)∗ =
n−1∏
i=0

x∗,

(n!)∗ =
n−1∏
i=0

(i + 1),
(
δ
(±p

q

))∗ = ±1,
(
li
(±p

q

))∗ = p,

(
N(x)

)∗ def≡ ∃n (x = +n
1 ),

( n∑
i=0

τ(i)
)∗

=
n∑

i=0

τ∗(i),
(
maxτ (n)

)∗ = µy≤n
(
(∀x ≤ n)

(
τ∗(x) ≤ τ∗(y)

))
,

(
Inf

(±p
q

))∗ def≡ (p 6= 0) & (∀x)
(
FN(x) → x <

∣∣∣± q
p

∣∣∣
)

,

(
minϕ(~x) = y

)∗ def≡
((
N(y) & ϕ(y, ~x) & (∀z < y)(N(z) → ¬ϕ(z, ~x))

)∨

∨(
y = 0 & ¬(∃y′)(N(y′) & ϕ(y′, ~x) & (∀z < y′)(N(z) → ¬ϕ(z, ~x))

)))∗
.

It is easy to show that all axioms of NQA−, except for minimization schemata, are
provable in T . Note that for an internal open formula ϕ,

(
ϕ(y, ~x)

)∗ is equivalent
to a bounded formula and therefore internal minimization schema follows from
∆0-induction.

Suppose that ϕ(y, ~x) is an external open formula, and n̄ is a numeral such that
ϕ∗(n̄, ~x) holds. Then we can search through

ϕ∗(0̄, ~x), ϕ∗(1̄, ~x), . . . , ϕ∗(n̄, ~x)

to find the least i ≤ n satisfying ϕ∗(̄i, ~x). a
We shall make use of the following well-known (but not well-documented)

result. We advise the reader to consult [14] for background on general properties
of interpretations.

Lemma 4.5 (folklore). Let S be a recursively axiomatized extension of I∆0 +
EXP. Then S interprets S+¬ConCF(S), where ConCF(S) denotes the formalized
cut-free consistency of S.

Proof (sketch). Put U = S + ¬ConCF(S). By formalized Gödel’s Second
Incompleteness Theorem (which holds for cut-free provability, using the fact that
I∆0 + EXP proves elimination of cuts with standard cut-rank), we have

S + ConCF(S) ` ConCF(U).
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Since
Q + ConCF(U) interprets U

by the Interpretation Existence Lemma (proved for PA by Feferman [3]; the
strengthening to Q is, again, folklore, using Solovay’s method of shortening of
definable cuts), we get

S + ConCF(S) interprets U.

Trivially
S + ¬ConCF(S) interprets U,

and combining these two interpretations yields the result. a
Lemma 4.6. The theory T is interpretable in I∆0 + EXP.

Proof. The theory I∆0 + EXP is well-known to be finitely axiomatizable
and sequential (see e.g., [5]), hence by a result of Pudlák [8], there exists an
I∆0 + EXP-definable cut J(x), provably closed under multiplication, such that

I∆0 + EXP ` (ConCF(I∆0 + EXP))J .

Let us define

FN(x)
def≡J(x),

ν0
def=the least code of a cut-free proof of inconsistency in I∆0 + EXP.

Clearly, this is an interpretation of T in I∆0 +EXP+¬ConCF(I∆0 +EXP), which
is interpretable in I∆0 + EXP by Lemma 4.5. a

Corollary 4.7. There is an interpretation of NQA− in I∆0 + EXP.
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