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Propositional proof complexity

Studies efficiency (absolute or relative) of proof systems.

A propositional proof system (pps) is a poly-time function P

whose range are the tautologies [Cook, Reckhow ’79]

Example: Frege systems, sequent calculi, resolution,
Lovász–Schrijver, . . .

A pps P p-simulates a pps Q (Q ≤p P ) if we can translate
Q-proofs to P -proofs of the same formula in polynomial time.

Basic motivation: computational complexity (NP
?
= coNP)

⇒ most often: classical logic (CPC).
Nothing stops us from considering non-classical logics.

(NP
?
= PSPACE)
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Modal and si logics

A normal modal logic (nml):

Boolean connectives, unary connective 2

contains CPC, 2(ϕ→ ψ) → (2ϕ→ 2ψ), closed under
substitution, modus ponens, necessitation (ϕ � 2ϕ)

Example: K, K4, T, S4, GL, Grz, S4.2, K4.3, KTB, S5, . . .
(there should be 2ℵ0 dots rather than three)

An intermediate = superintuitionistic (si) logic:

intuitionistic connectives →, ∧, ∨, ⊥

contains the intuitionistic logic (IPC), closed under
substitution, modus ponens

Example: IPC, CPC, KC, LC, KP, . . .
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Frege systems

Frege systems (F) (aka Hilbert-style calculi):

finite set P of Frege rules ϕ1, . . . , ϕn ⊢ ϕ

proof: a sequence of formulas, each an assumption of
the proof or derived from earlier ones by an instance of a
P -rule

sound: ⊢P ϕ ⇒ �L ϕ

strongly complete: Γ �L ϕ ⇒ Γ ⊢P ϕ

Standard Frege systems: strongly sound (Γ ⊢P ϕ ⇒ Γ �L ϕ)
We denote the standard Frege system for a logic L by L-F .

Many other common proof systems are p-equivalent to L-F :
sequent calculi (with cut), natural deduction
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Extended and substitution Frege

Given a Frege system (its set of Frege rules), we can also
define other proof systems.

Extended Frege (EF) systems:

may introduce shorthands (extension variables) for
formulas: qϕ ↔ ϕ

or: work with circuits instead of formulas

or: count only lines of the proof, not individual symbols

Substitution Frege (SF) systems:

may use substitution directly as a rule of inference
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General simulations

Consider a principle of the form:

(S) If ϕ is valid in L, then ϕ′ is valid in L′.

(Typically a model-theoretic argument.)

Let P be a proof system for L, and P ′ a proof system for L′.
A feasible version of (S):

(FS) Given a P -proof of ϕ, we can construct in
polynomial time a P ′-proof of ϕ′.

Example: If L = L′, ϕ = ϕ′, it’s the usual p-simulation of pps.
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Disjunction property

DP: If ⊢L ϕ ∨ ψ, then ⊢L ϕ or ⊢L ψ.
Example: IPC, KP, Tk, . . .
Restricted variant (ϕ,ψ negative): all si L + KC.

Modal DP: if ⊢L 2ϕ ∨ 2ψ, then ⊢L ϕ or ⊢L ψ.
Example: K, K4, S4, GL, . . .
Restricted variants hold for almost all nml.

Feasible DP:
L-F (and L-EF ), where L is

IPC [Buss, Mints ’99]

S4, S4.1, Grz, GL [Ferrari & al. ’05]

“extensible” modal logics [J. ’06]

. . .
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Feasible DP for K (example)

Theorem: If π is a K-F -proof of
∨

i≤k 2ϕi, then the closure
of π under MP contains ϕi for some i ≤ k.
Proof:
Let Π be the closure. Define a propositional valuation v by

v(2ϕ) = 1 iff ϕ ∈ Π.

We show v(ϕ) = 1 for all ϕ ∈ π by induction:

The steps for rules of CPC, and Nec are trivial.

2(ϕ→ ψ) → (2ϕ→ 2ψ): OK, as Π is closed under MP.

Hence v
(
∨

i≤k 2ϕi

)

= 1, which implies ϕi ∈ Π for some i by
the definition of v. QED

NB: In IPC, use Kleene-like slash for v [Mints, Kojevnikov ’04]
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Admissible rules

A multiple-conclusion rule ϕ1, . . . , ϕn / ψ1, . . . , ψm is
admissible in L, if for every substitution σ:

∀i ⊢L σϕi ⇒ ∃j ⊢L σψj

Example: DP = p ∨ q / p, q

Kreisel–Putnam rule ¬p→ q ∨ r / (¬p→ q) ∨ (¬p→ r)

Theorem: If L is

IPC [Mints, Kojevnikov ’04]

an extensible modal logic (e.g. K4, S4, GL) [J. ’06]

then every L-admissible rule is feasibly admissible in L-F
(and L-EF ).

Corollary: All Frege systems for L are p-equivalent.
Logic Colloquium 2007, Wrocław – p. 9



Partial conservativity

Example: IPC-F p-simulates CPC-F wrt negative formulas.
Proof: Prefix ¬¬ to every formula in the proof. QED

Example: KC-F p-simulates CPC-F wrt essentially negative
formulas.

Theorem [J. ’07]
IPC-F p-simulates KC-F wrt ⊥-free formulas.

Proof: Let v be the classical valuation which makes every
variable true. Use the translation

(ϕ→ ψ)∗ =

{

⊥ v(ϕ→ ψ) = 0,

ϕ∗ → ψ∗ v(ϕ→ ψ) = 1.
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Partial conservativity (cont’d)

Theorem [essentially Atserias & al. ’02]
IPC-F p-simulates CPC-F wrt formulas α1 → α2, where
αi are monotone.

Let LA denote the extension of L with universal modality Ap:

A(ϕ→ ψ) → (Aϕ→ Aψ)

Aϕ→ ϕ Aϕ ∨ A¬Aϕ

Aϕ→ 2ϕ ϕ ⊢ Aϕ

Semantics: x 
 Aϕ iff ∀y (y 
 ϕ)

Theorem [J. ’07] If L is a si or transitive modal logic, then
LA-EF is p-equivalent to L-SF wrt L-formulas.
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Model checking

If L has poly model property, and is FO on finite frames:
Describe L-validity of ϕ by a classical formula ϕL

⇒ poly-time faithful interpretation of L in CPC

Theorem [J. ’07]
If L is

tabular, or

of finite width and depth, or

K4BWk ± S4 ± Grz ± GL, or

LC,

then L-EF is p-equivalent to CPC-EF wrt (·)L.
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Lower bounds

“Construct simulations to show the nonexistence of simulations”

[Pudlák ’99] Feasible DP gives a kind of feasible
interpolation for classical logic. Hence circuit lower bounds
imply lower bounds on the length of proofs:

Theorem If there exists a pair of disjoint NP sets inseparable
in P/poly, there are superpolynomial LB on the size of
IPC-F -proofs.

[Hrubeš ’06] A more clever variant of FDP gives feasible
monotone interpolation ⇒ can use known unconditional LB
on monotone circuits:

Theorem There are exponential LB on the size of EF -proofs
in K, S4, GL, IPC.
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EF and SF

Classically, EF and SF are p-equivalent. In general:
L-EF ≤p L-SF , actually L-EF ≡p L-SF ∗ (treelike SF )

The results above (“model checking”, . . . ) imply:

Theorem [J. ’07] L-EF ≡p L-SF , if L is

an extension of KB,

tabular,

of finite width and depth,

LC, K4BWk ± S4 ± Grz ± GL.

OTOH, a generalization of Hrubeš’s LB gives:

Theorem [J. ’07] If L is a si or modal logic with infinite
branching, then L-SF has exponential speed-up over L-EF .
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Some questions

Problem Does IPC-EF simulate S4-EF -proofs of formulas
translated by the Gödel–Tarski–McKinsey translation?

(More generally: ̺L-EF vs. L-EF )

Problem Separate L-EF from L-F for some logic L.
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Thank you for attention!
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