|
Department of Cell Ultrastructure and Molecular Biology Head: Doc. RNDr. Pavel Hozak, DrSc. Scientists: MUDr. Zdenek Hodny, CSc. Mgr. Vlada V. Philimonenko, PhD. Ph.D. Students: Mgr. Hana Dingova MUDr. Michal Kahle Mgr. Katarina Kysela Mgr. Jana Müllerova Mgr. Zora Novakova Mgr. Anatolij Philimonenko Mgr. Lenka Rossmeislova Ing. Oliver Taltynov Mgr. Jana Vlasakova Technical Assistants: Daniela Adamcova Jitka Eisensteinova Iva Jelinkova Ivana Novakova Alena Vinterova Address: Videnska 1083, 142 20 Prague 4 Phone: (+420) 296 442 219 Fax: (+420) 296 442 289 E-mail: hozak@biomed.cas.cz Link to departmental pages: http://nucleus.biomed.cas.cz/ Cell nuclei are highly organized structures. In diploid mammalian cells, some 6x109 base pairs of
DNA are folded so as to occupy a nucleus measuring roughly 10 µm across. To achieve this, DNA, as a nucleoprotein complex (i.e., chromatin), must fold into
a series of higher-order arrays. The nucleus also contains the machinery required for transcription of genes and processing of RNA products, the precise
replication of the genome once per cell cycle and the processes of recombination and repair. This general complexity of the nuclear morphology is obvious;
however, less clear are the mechanisms forming the threedimensional structure of the nucleus, in spite of the fact that recent evidence points more and more to the
higher-order gene structure as an important, if not a key, determnant of activity. We concentrate therefore on a multi-disciplinary approach that allows us to study
nuclear activities in relation to the higher-order nuclear structures, e.g. to the nucleoskeleton. Electron microscopic identification of replicating structures in S-phase cell nuclei and a description of the replication dynamics in these structures suggested an alternative model for replication with an enzymatic complex fixed to the nucleoskeleton while the DNA moves through. As a result of the ultrastructural localization of nucleolar transcription in the so-called "dense fibrillar component" (DFC) and at the border between DFC and another nucleolar component, the "fibrillar centres" (FC), a novel model for transcription of ribosomal genes was formulated. We imagine that the template - and not the polymerase - moves, pulled through fixed polymerization complexes as nascent transcripts are extruded. Fig. 1: Old (A-C) and new (D-F) models for DNA replication. The alternative model involves passage of the template through a fixed complex and extrusion of nascent DNA. We also found that cell nuclei contain a nucleoskeleton that is a permanent structure regardless of their transcriptional activity. Lamins form an internal nuclear skeleton and not only the nuclear lamina, as previously thought. Centromeres, telomeres, and ribosomal DNA vary in their anchoring to intranuclear structures and therefore contribute in various ways to the maintenance of nuclear architecture. Nuclear compartmentalization of nuclear DNA helicase IIHelicases are proteins involved in maintaining genomic stability and in cellular safeguard mechanisms. We found recently that nuclear DNA helicase II is a component of PML (promyelocytic leukemia) nuclear bodies, and its distribution in the nucleus is dependent upon the physiological status of the cell. In this project we investigate the mechanisms and physiological role of NDH II distribution in the nucleus, identify the genes transcribed at PML nuclear bodies after interferon-stimulation, and question the function of NDH II and PML nuclear bodies in gene expression and cellular senescence. Fig. 2: A model for transcription of ribosomal genes. Fig. 3: The distribution of nuclear DNA helicase II dramatically changes upon transcription inhibition. Characterization of nuclear myosin I - recently discovered molecular motor Cell nuclei contain the newly discovered specific myosin I, which can form together with nuclear actin a molecular motor. Studies investigating the role of actin and myosin in the transcription of ribosomal and protein-coding genes are currently in progress. Results obtained together with the laboratory of Prof. deLanerolle in Chicago show that both actin and myosin I are required for transcription, possibly providing the driving force necessary for the movement of the DNA template relative to the transcription complex. Fig. 4: Both actin (green dots) and myosin (red dots) are present in nuclei, sometimes colocalizing. Epigenetic gene-position effects in gene expression - role of nuclear structure The relationship between gene imprinting and the spatial organization of gene transcription in the nucleus is currently investigated. The relative position of active and imprinted (inhibited) genes in relation to the chromosomal axis and the intechromosomal space is followed by in situ hybridization studies and laser confocal microscopy. Relevant publications before 1998 1. Raska, I., Ochs, R.L., Salamin-Michel, L. (1990) Immunocytochemistry of the cell nucleus. Electr. Microsc. Rev. 3: 301-353 1. Hozak, P., Novak, J.T., Smetana, K. (1989) Three-dimensional reconstructions of nucleolar-organizing regions in PHA-stimulated human lymphocytes. Biol. Cell 66: 225-233 2. Hozak, P., Roussel, P., Hernandez-Verdun, D. (1992) Procedures for specific detection of silver stained nucleolar proteins on Western blots. J. Histoch. Cytoch. 40: 1089-1096 3. Hozak, P., Géraud, G., Hernandez-Verdun, D. (1992) Revealing nucleolar architecture by low ionic strength treatment. Exp. Cell Res. 203: 128-133 4. Hozak, P., Hassan, A.B., Jackson, D.A., Cook P.R. (1993) Visualisation of replication factories attached to a nucleoskeleton. Cell 73: 361-374 5. Cook, P.R., Dolle, A., Hassan, A.B., Hozak, P., Jackson D.A. (1993) The role of the nucleoskeleton in RNA metabolism. In: Nucleic Acids and Molecular Biology, Vol. 7, ed. by F. Eckstein and D.M.J. Lilley, Springer- Verlag, Berlin - Heidelberg, 226-237 6. Wachtler, F., Mosgoeller, W., Schoefer, C., Sylvester, J., Hozak, P., Derenzini, M., Stahl, A. (1993) Ribosomal genes and nucleolar morphology. In: Chromosomes Today, Vol. 11, Sumner A.T. and Chandley A.C. Eds., Chapman & Hall, London, 63-77 7. Hozak, P., Cook, P.R., Schöfer, Ch., Mosgöller, W., Wachtler F. (1994) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J. Cell Sci. 107: 639-648 8. Hozak, P., Cook P.R. (1994) Replication factories. Trends Cell Biol. 4: 48-51 9. Hozak P., Jackson D.A. and Cook P.R. (1994) Replication factories and nuclear bodies: the ultrastructural characterization of replication sites during the cell cycle. J. Cell Sci. 107: 2191-2202 10. Hozak P., Sasseville A. M.-J., Raymond Y. and Cook P.R. (1995) Lamin proteins form an internal nucle- oskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 108: 635-644 11. Hozak, P. (1995) Catching RNA polymerase I in flagranti: rRNA is transcribed in the dense fibrillar compo- nent of the nucleolus. Exp. Cell Res. 216: 285-289 12. Weipoltshammer, K., Schöfer, Ch., Wachtler, F., Hozak, P. (1996) The transcription unit of ribosomal genes is attached to the nuclear skeleton. Exp. Cell Res. 227: 374-379 13. Hozak, P. (1996) The nucleoskeleton and attached activities. Exp. Cell Res. 229: 267-271 14. Hozak, P., Jackson, D.A., Cook, P.R. (1996) Role of nuclear structure in DNA replication. In: Eukaryotic DNA Replication - Frontiers in Molecular Biology. J.J. Blow, Ed., Oxford University Press, Oxford, Chapter 5, 124-142 15. Nowak, G., Pestic-Dragovich, L., Hozak, P., Philimonenko, A., Simerly, C., Schatten, G., de Lanerolle, P. (1997) Evidence for the presence of myosin I in the nucleus. J.Biol. Chem. 272: 17176-17181 Publications 1998-2002 1. Moos, J., Peknicova, J., Geussova, G., Philimonenko, V.V., Hozak P. (1998) Association of protein kinase A type I with the sperm cytoskeleton. Mol. Rep. Dev. 50: 79-85 2. Smetana, K., Jiraskova, L., Sedlackova, M., Dvorak, R., Spatova, M., Hozak, P. (1998) Preferential silver reaction of nucleolar regions adjacent to fibrillar centers in ring shaped nucleoli of leukemic lymphocytes. Acta Histochem. 100: 257-270 3. Weipoltshammer, K., Schöfer, Ch., Almeder, M., Philimonenko, V.V., Wachtler, F., Hozak, P. (1999) Intranuclear anchoring of repetitive DNA sequences: centromeres, telomeres, and ribosomal DNA. J. Cell Biol. 147: 1409-1418 4. Pestic-Dragovich, L., Stojiljkovic, L.,. Philimonenko, A.A, Nowak, G., Yunbo, Ke, Settlage, R.E., Shabanowitz, J., Hunt, D. F. , Hozak, P., de Lanerolle, P. (2000) A myosin I isoform in the nucleus. Science 290: 337-341 5. Philimonenko, A.A., Janacek, J., Hozak, P. (2000) Statistical analysis of colocalization patterns in immuno- gold labelling experiments. J. Struct. Biol. 132: 201-210 6. Philimonenko, V.V., Flechon, J.-E., Hozak, P. (2001) The nucleoskeleton: a permanent structure of cell nuclei regardless of their transcriptional activity. Exp. Cell. Res. 264: 201-210 7. Peknicova, J., Kubatova, A., Sulimenko, V., Draberova, E., Viklicky, V., Hozak, P., Draber, P. (2001) Differential subcellular distribution of tubulin epitopes in boar spermatozoa. Recognition of class III “-tubu- lin epitope in sperm tail. Biol. Reprod. 65: 672-679 8. Philimonenko, A., Janacek, J., Hozak, P. (2001) Statistical evaluation of clustering and co-localization pat- terns. Biotech International 13: 20-24 9. Richterova, Z., Liebl, D., Horak, M., Palkova, Z., Stokrova, J., Hozak, P., Korb, J., Forstova, J. (2001) Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol. 75: 10880-91 10. Mosgoeller, W., Schoefer, Ch., Steiner, M., Sylvester, J.E., Hozak, P. (2001) Arrangement of active riboso- mal genes in nucleolar domains revealed by detection of “christmas trees” in situ. Histochem. Cell Biol. 116: 495-505 11. Sutovsky, P., Motlik, J., Neuber, E., Pavlok, A., Schatten, G., Palecek, J., Hyttel, P., Adebayo, O.T., Adwan, K., Alberio, R., Bagis, H., Bataineh, Z., Bjerregaard, B., Bodo, S., Bryja, V., Carrington, M., Couf, M., de la Fuente, R., Diblik, J., Esner, M., Forejt, J., Fulka, J., Jr., Geussova, G., Gjorret, J.O., Libik, M., Hampl, A., Hassane, M.S., Houshmand, M., Hozak, P., Jezova, M., Kania, G., Kanka, J., Kandil, O.M., Kishimoto, T., Klima, J., Kohoutek, J., Kopska, T., Kubelka, M., Lapathitis, G., Laurincik, J., Lefevre, B., Mihalik, J., Novakova, M., Oko, R., Omelka, R., Owiny, D., Pachernik, J., Pacholikova, J., Peknicova, J., Pesty, A., Ponya, Z., Preclikova, H., Sloskova, A., Svoboda, P., Strejcek, F., Toth, S., Tepla, O., Valdivia, M., Vodicka, P., Zudova, D. (2001) Accumulation of the proteolytic marker Peptide ubiquitin in the trophoblast of Mammalian blastocysts. Cloning Stem Cells 3: 157-161 12. Zaid, A., Hodny, Z., Li, R., Nelson, D. (2001) Sp1 acts as a repressor of the human adenine nucleotide translocase-2 (ANT2) promoter. Eur. J. Biochem. 268: 1-8 13. Iben, S., Tschochner, H., Bier, M., Hozak, P., Egly, J.-M., Grummt, I. (2002) TFIIH plays a role in RNA poly- merase I transcription. Cell 109: 297-306 14. Fuchsova, B., Novak, P., Kafkova, J., Hozak, P. (2002) Nuclear DNA helicase II is recruited to IFN-” activat- ed transcription sites at PML nuclear bodies. J. Cell Biol. 58: 463-473 15. Fuchsova, B., Hozak, P. (2002) The localization of nuclear DNA helicase II in diferent nuclear compartment is linked to transcription. Exp. Cell Res. 279: 260-70 16. Philimonenko, V.V., Janacek, J., Hozak, P. (2002) LR White is preferable to Unicryl for immunogold detec- tion of fixation-sensitive nuclear antigens. Eur. J. Histochem. 46: 359-364 17. Jirasek, T., Hozak, P., Mandys, V. (2003) Different patterns of chromogranin A and Leu-7 (CD57) expres- sion in gastrointestinal carcinoids: immunohistochemical and confocal laser scanning microscopy study. Neoplasma (in press) |