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� � Introduction

In our previous papers ��� and ���� we have established a connection between fairly
general lower and upper functions and the Leray�Schauder topological degree of an
operator associated to the generalized periodic boundary value problem

u�� � f�t� u� u�	� u�a	 � u�b	� u��a	 � w�u��b		���
�	

where �� � a � b � �� f � �a� b� � R� �� R is a Carath�odory function and
w � R �� R is continuous and nondecreasing
 Using this connection
 we have
obtained a method providing an information about the solvability of ��
�	 in terms
of lower and upper functions
 �See ��
 Theorems �
���
��
	

In this paper we study the special case of ��
�	

u�� � f�t� u	� u��	 � u��	� u���	 � u���	���
�	

We assume that f ful�ls the Carath�odory conditions on ��� ���R � which means
that �i	 for each x � R the function f��� x	 is measurable on ��� ��� �ii	 for almost
every t � ��� �� the function f�t� �	 is continuous on R � �iii	 for each compact set
K� R the function mK�t	 � sup

x�K jf�t� x	j is Lebesgue integrable on ��� ���

The problem ��
�	 was considered by M
 N
 Nkashama and J
 Santanilla in ���

where a
o
 the following three results concerning the existence of nonnegative and
nonpositive solutions to the problem ��
�	 were established�

���� Theorem ���
 Theorem �
��	� Suppose

lim inf
x��

f�t� x	 � � for a�e� t � ��� ����
�	

with strict inequality on a subset of ��� �� of positive Lebesgue measure� Furthermore�

assume that there exist �� � ����	 and a function b � L ��� �� such that

b�t	 � f�t� x	 � ��x for a�e� t � ��� �� and all x � ����
�	

Then the problem ��
�	 has a nonnegative solution�

���� Theorem ���
 p
 ����	� If inequalities ��
�	 and ��
�	 are replaced respectively

by

lim inf
x���

f�t� x	 � � for a�e� t � ��� ����
�	

with strict inequality on a subset of ��� �� of positive Lebesgue measure and

b�t	 � f�t� x	 � ���
�x for a�e� t � ��� �� and all x � ���
�	

with �� � ��� ��� then the problem ��
�	 has a nonpositive solution�
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���� Theorem ���
 Theorem �
��	 � Suppose that the problem ��
�	 has not the trivial
solution and that all assumptions of both Theorem �
� and Theorem �
� are ful�lled�

Then the problem ��
�	 has at least two di�erent solutions� one nonnegative and one

nonpositive�

In Section � of this paper
 making use of the method of ���
 we prove in Theorems
�
�
 �
� and Corollaries �
� and �
�� the existence of nonnegative and nonpositive
solutions for ��
�	 under assumptions weaker than ��
�	���
�	
 In particular
 in The�
orem �
� we use ��
�	
 ��
�	 instead of ��
�	
 ��
�	 and similarly in Corollary �
� we
use ��
��	
 ��
��	 instead of ��
�	
 ��
�	
 Moreover
 Theorem �
� and Corollaries �
�
and �
� generalize the assertions of ��
 Theorem �
� and Theorem �
��
 A comparison
of the conditions used in our existence results with those from Theorems �
���
� is
given in Theorems �
�� and �
�� �see also Examples �
� and �
��	


The results presented in Section � can be applied also to periodic boundary value
problems for nonlinear Du�ng equations of the form ��
�	 or ��
�	 whose right�hand
sides have a singularity at x � �� Starting from the work ��� by Lazer and Solimini
such problems have been studied by many authors �see e
g
 ���
 ���
 ���
 ���
 ��� and
����	
 Section � is devoted to this type of problems
 First
 we consider the case of
an attractive singularity and in Corollaries �
� and �
� we extend results from ���
and ���
 Furthermore
 we also get one related multiplicity result �Corollary �
�	

Our main result concerning a problem with a repulsive singularity is obtained in
Corollary �
�
 Its goal consists
 in contrast to the papers mentioned above
 in that
our results apply also to a weak singularity
 The results of Section � are tested on
periodic problems for the model equations

u�� �
a

u�
� bu � e�t	 and u�� � a

u�
� bu � e�t	

with a � �� � � �� b � R and e � L ��� �� �see Examples �
�
 �
�
 �
� and �
��	
 In
particular
 it turns out that in the case of repulsive restoring forces our Corollary �
�
covers also the resonance case b � �� and so it gives the answer to an open question
from ��
 Example �
��


� � Preliminaries

Throughout the paper we keep the following notation�

As usual
 C ��� �� and C ����	 are respectively the sets of functions continuous on
��� �� and ����	� L ��� �� stands for the set of functions Lebesgue integrable on ��� ���
L� ��� �� is the set of functions essentially bounded on ��� ��� A C ��� �� denotes the
set of functions absolutely continuous on ��� �� and BV ��� �� is the set of functions of
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bounded variation on ��� ��� Furthermore
 for x � C ��� �� and y � L ��� ��� we denote

kxkC � sup
t������

jx�t	j� y �

Z �

�

y�s	ds and kykL �

Z �

�

jy�t	jdt�

Finally
 for a given y � L ��� ��� y� denotes its nonnegative part �y��t	 � maxfy�t	� �g
for a
e
 t � ��� ��	 and y� stands for its nonpositive part �y��t	 � maxfy�t	� �g for
a
e
 t � ��� ��	


By a solution of the problem ��
�	 we understand a function u � ��� �� �� R such
that u� � A C ��� ��� u���t	 � f�t� u�t		 a
e
 on ��� ��� u��	 � u��	 and u���	 � u���	�

We will use the de�nitions of lower and upper functions from ��� modi�ed to the
problem ��
�	


���� De�nition� Functions ���� ��	 � A C ��� ���BV ��� �� are called lower functions

of the problem ��
�	 if the singular part �sing� of �� is nondecreasing on ��� ���

����t	 � ���t	� ����t	 � f�t� ���t		 a
e
 on t � ��� ��

and

����	 � ����	� �����	 � �����	�
Similarly
 functions ���� ��	 � A C ��� �� � BV ��� �� are called upper functions of

the problem ��
�	 if the singular part �sing� of �� is nonincreasing on ��� ���

����t	 � ���t	� ����t	 � f�t� ���t		 a
e
 on t � ��� ��

and

����	 � ����	� �����	 � �����	�
Let us formulate the existence theorem which is our main tool in this paper and

which is contained in ��
 Theorems �
� and �
��


���� Theorem� Let ���� ��	 and ���� ��	 be respectively lower and upper functions

of the problem ��
�	�

�I	 Suppose ���t	 � ���t	 on ��� ��� Then there is a solution u of the problem ��
�	
such that ���t	 � u�t	 � ���t	 on ��� ���

�II	 Suppose ���t	 � ���t	 on ��� �� and

f�t� x	 � h�t	 for a�e� t � ��� �� and all x � R

or

f�t� x	 � h�t	 for a�e� t � ��� �� and all x � R

with h � L ��� ��� Then there is a solution u of the problem ��
�	 such that

���tu	 � u�tu	 � ���tu	 for some tu � ��� ���
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We will need the following two lemmas giving apriori estimates for solutions of
��
�	
 The proof of the former would be quite analogous to that of ��
 Lemma �
��


���� Lemma� Let a function h � L ��� �� and sets U �t	 � R � t � ��� ��� be such that

f�t� x	 � h�t	 for a�e� t � ��� �� and all x � U �t	

or

f�t� x	 � h�t	 for a�e� t � ��� �� and all x � U �t	�

Then ku�kC � khkL holds for any solution u of the problem ��
�	 such that u�t	 �
U �t	 for all t � ��� ���

���� Lemma� Let a function � � L ��� �� and a number A � ����	 be such that

� � � and

f�t� x	 � ��t	 for a�e� t � ��� �� and all x � �A��	���
�	

Then the relation

u�t	� A � k�kL
�

on ��� ����
�	

holds for any solution u of the problem ��
�	 satisfying

u�tu	 � A for some tu � ��� �����
�	

���� Remark� Notice that for any � � L ��� �� such that � � � we have �� � ��

and thus k�kL � ��� � ����

Proof of Lemma �
�
 We borrow some ideas from ��
 Lemma �
��
 Let u be
a solution of the problem ��
�	 and let ��
�	 be valid
 First
 we shall show that its
derivative satis�es the estimate

ku�kC � k�kL
�

���
�	

Let t � ��� �� be such that u�t	 � A and u��t	 � �� Then
 in virtue of the periodicity
of u and u�� there is t� � ��� �� such that u��t�	 � � and u�s	 � A for s � I�� where

I� �

�
�t� �� 	 ��� t�� if t� � t�

�t� t�� if t� � t�
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In both cases
 making use of ��
�	 we get

u��t	 � �
Z
I�

f�s� u�s		ds �
Z
I�

���s	ds � k�kL
�

��
�	

�cf
 Remark �
�	
 Similarly
 if u��t	 � �� there is t� � ��� �� such that u��t�	 � � and
u�s	 � A for s � I�� where

I� �

�
�t�� t� if t� � t�

��� t�� 	 �t�� �� if t� � t�

Consequently
 using again ��
�	 and Remark �
�
 for an arbitrary t � ��� �� we get

u��t	 �
Z
I�

f�s� u�s		ds � �
Z
I�

���s	ds � �k�kL
�

�

wherefrom
 with respect to ��
�	
 the validity of ��
�	 follows

Now
 assume that u satis�es
 in addition
 ��
�	 and that u�s	 � A holds for

some t � ��� ��� We can choose s�� s�� s
� � ��� �� in such a way that

s� � s�� u�s�	 � u�s�	 � A and u�s�	 � max
s������

u�s	 � A�

Consequently
 ��
�	 yields

� �u�s�	� A	 �
�
u�s�	� u�s�	

�
�
�
u�s�	� u�s�	

�
�
�
u��	� u��	

�
�
Z
I

ju��s	jds � k�kL
�

�

where I � �s�� s�� if s
� � �s�� s�	 and I � ��� �� n �s�� s�� if s� � s� or s� � s�� This

completes the proof of ��
�	


� � Nonnegative and nonpositive solutions

���� Theorem� Suppose that there exist r� � R � A� � �r���	 and 	� � L ��� �� such
that

f�t� r�	 � � for a�e� t � ��� ����
�	

and

	� � � and f�t� x	 � 	��t	 for a�e� t � ��� �� and all x � �A�� B�����
�	

where
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B� � A� � k	� � 	�kL
�

�

Then the problem ��
�	 has a solution u satisfying

r� � u�t	 � B� on ��� �����
�	

Proof� �i	 First
 assume

	� � ����
�	

For a
e
 t � ��� �� let us put

ef�t� x	 � �
f�t� x	 if x � B��

f�t� B�	 if x � B��
��
�	

and consider the auxiliary problem

u�� � ef�t� u	� u��	 � u��	� u���	 � u���	���
�	

In view of ��
�	 the constants �r�� �	 are lower functions of ��
�	
 If we put

���t	 � A� � � k	�kL � t

Z �

�

Z �

�

	��s	ds d
 �

Z t

�

Z �

�

	��s	ds d
 for t � ��� ���

then

�����t	 � 	��t	 a
e
 on ��� ��� ����	 � ����	 and �����	� �����	 � 	��

Since A� � ���t	 on ��� ��� we get by ��
�	 and ��
�	 that �����t	 � ef�t� ���t		 a
e

on ��� ��� which means that ���� �

�
�	 are upper functions to ��
�	 and the asser�

tion �I	 of Theorem �
� yields the existence of a solution u of ��
�	 for which the
estimate

r� � u�t	 � ���t	 on ��� ��

is true
 According to ��
�	 there exists t� � ��� �� such that u�t�	 � A�� Indeed

otherwise we would get a contradiction

� �

Z �

�

u���t	dt � 	� � ��

Since

ef�t� x	 � ef�t� x	� 	� � 	��t	� 	� for a
e
 t � ��� �� and all x � A��
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we see that ef ful�ls ��
�	 with � � 	� � 	� and A � A� and so we can apply
Lemma �
� to u and the problem ��
�	 and get

u�t	� A� � k	� � 	�kL
�

� B� � A� on ��� ���

Therefore u satis�es ��
�	 and it is a solution of ��
�	
 as well


�ii	 Now
 let 	� � �� Consider the sequence of auxiliary problems

u�� � efn�t� u	� u��	 � u��	� u���	 � u���	���
�	

where

efn�t� x	 �
�������������

f�t� x	 if x � A��

f�t� x	 �
�

n

� x� A�

x� A� � �

�
if x � �A�� B���

f�t� B�	�
�

n

� B� � A�

B� � A� � �

�
if x � B��

For n � N we have

efn�t� x	 � 	��t	 �
�

�n�
for a
e
 t � ��� �� and all x � �A� �

�

n
��	�

Now
 the �rst part of the proof guarantees for each n � N the existence of a solution
un of ��
�	 which satis�es

r� � un�t	 � B� �
�

n
on ��� �����
�	

According to ��
�	
 the Arzel��Ascoli Theorem and the Lebesgue Dominated Con�
vergence Theorem
 the sequence fung�n�� contains a subsequence C � �converging to
a solution u of the problem ��
�	
 Since u ful�ls ��
�	
 it is a solution of ��
�	


���� Remark� In Theorem �
� it is su�cient to suppose that f satis�es the Cara�
th�odory conditions on ��� �� � �r���	 instead of on ��� �� � R � because we can
replace f by its truncation

bf�t� x	 � �
f�t� r�	 for x � r��

f�t� x	 for x � r�

in the proof


���� Remark� Notice that in the case that 	��t	 � � a
e
 on ��� �� we can put
B� � A� and ��
�	 reduces to the condition ensuring the existence of constant upper
functions �A�� �	�
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���� Example� With respect to Remark �
�
 Theorem �
� yields the existence of
a nonnegative solution u to the problem

u�� �
u

u� �
sin�

�

�
�t	 � e�t	� u��	 � u��	� u���	 � u���	��
�	

for any e � L ��� �� such that

e�t	 � � a
e
 on ��� �� and e � � �

��
�

Notice that the right hand side of the di�erential equation in ��
�	 does not satisfy
the condition ��
�	 of Theorem �
�
 On the other hand
 the problem

u�� � a t uk � e�t	� u��	 � u��	� u���	 � u���	��
��	

with e�t	 � � a
e
 on ��� �� and a� k � ����	 provides an example when the assump�
tions of Theorem �
� are ful�lled
 while for k � � the condition ��
�	 of Theorem
�
� fails to be satis�ed


In addition to the existence results
 Theorem �
� enables us to get an estimate
for the guaranteed solution
 Indeed
 in the case of ��
�	 we have

�e�
� � e�

� u�t	 �
��� ��e

� � ��e
�

�� ��e

��

�
on ��� ���

where

e� � sup ess
t������

e�t	�

In particular
 for e�t	 
 � �
��

we get

����� �
�

�� � �
� u�t	 � � �

�

� �
� ���� on ��� ���

Similarly
 a solution u of ��
��	 can be estimated as follows�

k

r
�e�
a

� u�t	 � k

r
��e
a

� e

�
on ��� ���

If we put a � �� k � � and e�t	 � � �
�
p
t
� we get

���� �
�p
�
� u�t	 �

p
� �

�

�
� ���� on ��� �����
��	
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���� Theorem� Suppose that there exist r� � R � A� � �r���	 and 	� � L ��� �� such
that

	� � � and f�t� x	 � 	��t	 for a�e� t � ��� �� and all x � �A�� B����
��	

and

f�t� x	 � ����x� r�	 for a�e� t � ��� �� and all x � �r�� B�����
��	

where

B� � A� � �

�
m�

���
��	

and

m��t	 � maxf sup
x��r��A��

f�t� x	� 	��t	g for a�e� t � ��� �����
��	

Then the problem ��
�	 has a solution u satisfying

r� � u�t	 � B� on ��� �����
��	

Proof� First suppose

	� � ����
��	

For a
e
 t � ��� �� put

ef�t� x	 �
�����

f�t� r�	� ���x� r�	 if x � r��

f�t� x	 if r� � x � B��

f�t� B�	 if x � B��

��
��	

and consider the auxiliary problem

u�� � ef�t� u	� u��	 � u��	� u���	 � u���	���
��	

We can see that

ef�t� x	 � ����B� � r�	 for a
e
 t � ��� �� and all x � R �

Furthermore
 the assumption ��
��	 implies that ef�t� r�	 � �� and ��
��	 yields

ef�t� x	 � 	��t	 for a
e
 t � ��� �� and all x � �A���	���
��	

Thus
 if we put

���t	 � A� � �k	�kL � t

Z �

�

Z �

�

	��s	ds d
 �

Z t

�

Z �

�

	��s	ds d
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for t � ��� ��� we obtain similarly as in the proof of Theorem �
� that the couples
�r�� �	 and ���� �

�
�	 are respectively upper and lower functions to ��
��	 and r� � ���t	

holds on ��� ��� By the assertion �II	 of Theorem �
� with h�t	 
 ��� �B��r�	� there
exists a solution u of ��
��	
 We shall show that u satis�es ��
��	


In virtue of ��
��	 and ��
��	 we have

ef�t� x	 � ���x� r�	 � � for a
e
 t � ��� �� and all x � R ���
��	

We can check that if we put

g�t� s	 �

�������
sin���s� t		

��
for � � t � s � ��

sin���t� s		

��
for � � s � t � ��

then g is the Green function of the problem

y�� � ��y � �� y��	 � y��	� y���	 � y���	

and g�t� s	 � � on ��� ��� ��� ��� Furthermore
 the function z�t	 � u�t	� r� ful�ls
the relations

z���t	 � ��z�t	 � ef�t� u�t		 � ���u�t	� r�	

a
e
 on ��� ��� z��	 � z��	� z���	 � z���	

and so
 according to ��
��	
 we have

z�t	 �

Z �

�

g�t� s	
	 ef�s� u�s		 � ���u�s	� r�	



ds � � on ��� ���

i
e


u�t	 � r� on ��� �����
��	

Now
 assume u�t	 � A� on ��� ��� Then
 by ��
��	
 u���t	 � 	��t	 for a
e
 t � ��� ��
and thus
 according to ��
��	
 we get

� �

Z �

�

u���t	dt � 	� � ��

a contradiction
 It means that there is t� � ��� �� such that

u�t�	 � A����
��	
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According to ��
��	 and ��
��	 we have

ef�t� x	 � m��t	 � m�
� �t	 for a
e
 t � ��� �� and all x � �r���	�

Since ��
��	 holds
 we can apply Lemma �
� with h � m�
� and U �t	 
 �r���	 to

the problem ��
��	 and obtain

ku�kC � km�
� kL � m�

� ���
��	

Owing to ��
��	 we can argue similarly as in the proof of Lemma �
�
 Assume that
u�t	 � A� holds for some t � ��� �� and choose s�� s�� s

� � ��� �� in such a way that

s� � s�� u�s�	 � u�s�	 � A� and u�s�	 � max
s������

u�s	 � A��

Using ��
��	 and ��
��	 we get

u�s�	� A� � �

�
m�

� � B� � A��

i
e
 u ful�ls ��
��	
 which also means that u solves ��
�	


If 	� � �� we can follow the second part of the proof of Theorem �
� with

efn�t� x	 �
�������������

f�t� r�	 if x � r��

f�t� x	 if x � �r�� A�	�

f�t� x	� x�A�

n�x�A���	
if x � �A�� B���

f�t� B�	� B��A�

n�B��A���	
if x � B��

���� Remark� Theorem �
� applies also to the case 	��t	 � � a
e
 on ��� ��� How�
ever
 then the interval �A�� B�� need not reduce to the degenerate one �cf
 ��
��	
and ��
��		
 Nevertheless
 by a slight modi�cation of the proof of Theorem �
� we
obtain the following two existence results which extend ��
 Theorem �
��


��	� Corollary� Suppose that there exist r� � R � A� � �r���	 and m� � L ��� ��
such that

f�t� A�	 � � for a�e� t � ��� �����
��	

f�t� x	 � m��t	 for a�e� t � ��� �� and all x � �r�� B����
��	

and ��
��	 are satis�ed� where B� is such that ��
��	 is true� Then the problem ��
�	
has a solution u ful�lling ��
��	�
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Proof� We can use the arguments as in the �rst part of the proof of Theorem �
�
with the only di�erence that now ���t	 
 A� on ��� ��� Moreover
 since the assertion
�II	 of Theorem �
� guarantees the existence of a solution u of ��
��	 with

r� � u�t�	 � A� for some t� � ��� �����
��	

we need neither assume ��
��	 nor derive ��
��	


��
� Corollary� Suppose that there exist r� � R � A� � �r���	 and k � ��� �	 such
that ��
��	 and

f�t� x	 � �k �x� r�	 for a�e� t � ��� �� and all x � �r�� B����
��	

are valid� where

B� � A�
�

�� k
� r�

k

�� k
���
��	

Then the problem ��
�	 has a solution u ful�lling ��
��	�

Proof� In the same way as in the proofs of Theorem �
� and Corollary �
� we get
a solution u of ��
��	 satisfying ��
��	 and ��
��	
 According to ��
��	 and ��
��	
we have

u���t	 � ef�t� u�t		 � �k �u�t	� r�	 for a
e
 t � ��� ���

Furthermore
 Lemma �
� with h�t	 � �k �u�t	� r�	� U �t	 
 �r���	 gives

ku�kC � k �u� r�	�

Since in virtue of ��
��	 and ��
��	 we have also

u �
Z �

�

�
u�t�	 �

�� Z s

t�

ju��
	jd
 ���ds � A� �
�

�
ku�kC �

the relation

ku�kC � � k

�� k
�A� � r�	��
��	

immediately follows
 Thus
 similarly as we deduced in the �rst part of the proof of
Theorem �
� from ��
��	 and ��
��	 the validity of ��
��	
 we can now show that
also ��
��	 and ��
��	 imply ��
��	


Replacing x by �x in Theorem �
� we get the dual assertion�
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���� Corollary� Suppose that there exist r� � R � A� � �r���	 and 	� � L ��� ��
such that

	� � � and f�t� x	 � 	��t	 for a�e� t � ��� �� and all x � ��B���A����
��	

and

f�t� x	 � ����x � r�	 for a�e� t � ��� �� and all x � ��B���r�����
��	

where

B� � A� � �

�
m�

�

and

m��t	 � minf inf
x���A���r��

f�t� x	� 	��t	g for a�e� t � ��� ���

Then the problem ��
�	 possesses a solution u such that

�B� � u�t	 � �r� on ��� ���

Combining Theorem �
� and Corollary �
� we immediately obtain

����� Corollary� Suppose that all assumptions of both Theorem �
� and Corollary

�
� with r� � � and r� � � are ful�lled and that either ��
�	 has not the trivial

solution or r� � r� � �� Then the problem ��
�	 has at least two di�erent solutions�

one of them nonnegative and one nonpositive�

����� Remark� Dual assertions to Theorem �
� and Corollary �
�� can be obtained
by substituting �x instead of x� as well


In Theorem �
� it su�ces to suppose that f ful�ls the Carath�odory conditions
on ��� ��� �r���	 instead of on ��� ��� R � A similar restriction of the Carath�odory
conditions for f can be assumed in all the other existence theorems in this section
and their dual versions


����� Example� In Example �
� we have shown that the problem

u�� � tu� � �

�
p
t
� u��	 � u��	� u���	 � u���	��
��	

has a solution u which satis�es ��
��	
 Further
 we can check that all assumptions
of Corollary �
� are ful�lled
 We can put r� �

�p
�
and A� �

p
�� Then Corollary �
�

implies the existence of a solution v of ��
��	 with an estimate

����� � �
p
�� �

�
� v�t	 � � �p

�
� ����� on ��� ���

On the other hand
 we cannot get the existence of u and v from Theorem �
�
because the right hand side of ��
��	 ful�ls neither ��
�	 nor ��
�	




Nonnegative and Nonpositive Solutions of Periodic BVP�s ��

We will close this section by showing that Theorems �
���
� due to M
 N
 Nka�
shama and J
 Santanilla are contained in our Theorem �
� and Corollaries �
� and
�
��
 respectively


Let � denote the Lebesgue measure


����� Theorem� Suppose

lim inf
x��

f�t� x	 � � for a�e� t � ��� �����
��	

��ft � ��� �� � lim inf
x��

f�t� x	 � �g	 � ���
��	

and

b�t	 � f�t� x	 for a�e� t � ��� �� and all x � ����	��
��	

with some b � L ��� ���
Then there exist A� � ����	 and 	� � L ��� �� such that

	� � � and f�t� x	 � 	��t	 for a�e� t � ��� �� and all x � �A���	�

����� Theorem� Suppose

lim inf
x���

f�t� x	 � � for a�e� t � ��� ���

��ft � ��� �� � lim inf
x���

f�t� x	 � �g	 � �

and

b�t	 � f�t� x	 for a�e� t � ��� �� and all x � ���� ��

with some b � L ��� ���
Then there exist A� � ����	 and 	� � L ��� �� such that

	� � � and f�t� x	 � 	��t	 for a�e� t � ��� �� and all x � �����A���

Because of the duality of these theorems we restrict ourselves to the proof of
Theorem �
��


Proof of Theorem �
��
 Due to ��
��	
 there exists � � � such that

�� � ��Q�	 � ��

where

Q� � ft � ��� �� � lim inf
x��

f�t� x	 � �g�

For n � N and a
e
 t � ��� �� we can de�ne


�t� n	 � inf
x�n

f�t� x	��
��	

and
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Dn � ft � ��� �� � 
�t� n	 � �g�
We have

Dn � Dn�� for all n � N and Q� �
��
n��

Dn�

Furthermore
 there exists n� � N such that

��Dn	 �
��

�
for all n � n����
��	

Choose m� � N and � � � in such a way that

sup
J���������J	��

��� Z
J

b�s	ds
��� � �

m�
�

�� �

�
��
��	

and for m�n � N denote

Sn�m � ft � ��� �� � 
�t� n	 � � �

m
g�

Then

Sn�m � Sn���m for all n�m � N ���
��	

Due to ��
��	
 for every m � N we have

�
�
��� �� n

��
n��

Sn�m

�
� ����
��	

Further
 according to ��
��	 and ��
��	
 for a chosen m� there is n� � N such that
n� � n� and

��Sn��m�
	 � ����� ��	� � � �� ����
��	

Put A� � n� and

	��t	 �

�����
� if t � Dn��

� �
m�

if t � Sn��m�
nDn� �

b�t	 if t � ��� �� n Sn��m�
�

Now
 from ��
��	
 ��
��	 and ��
��	 we conclude that

	� �

Z
Dn�

�dt�
Z
Sn��m�nDn�

�

m�
dt�

Z
�����nSn��m�

b�t	 dt

� ���

�
� �

m�

�
�����
Z
�����nSn��m�

b�t	 dt

����� � ��
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Finally
 according to ��
��	 we have

f�t� x	 � 	��t	 for a
e
 t � ��� �� and all x � �A���	

and this completes the proof of the theorem


����� Remark� The assertion of Theorem �
�� remains valid also in the case that
� is not necessarily the Lebesgue measure
 but it can be an arbitrary nonnegative
measure on ��� ���

If the function f�t� x	 is only supposed to be ����measurable on ��� ���R � where
� is a nonnegative measure on ��� �� and � is the Lebesgue measure
 the functions


�t� n	 and lim inf
x��

f�t� x	

need not be measurable
 In this case we should replace the assumption ��
��	 by

�out�ft � ��� �� � lim inf
x��

f�t� x	 � �g	 � ����
��	

where �out stands for the outer measure corresponding to �� Theorem �
�� can be
then reformulated in the following assertion
 Its proof would be analogous to that
of Theorem �
��
 Only in the de�nition of 
�t� n	 the essential in�mum should be
used instead of in�mum


����� Proposition� Suppose ��
��	
 ��
��	� ��
��	 and the ����measurability of f

on ��� ���R � where � is a nonnegative measure and � is the Lebesgue measure� Then

the statement of Theorem �
�� remains valid� with the exception that the inequality

f�t� x	 � 	��t	 is valid for a�e� �t� x	 � ��� ��� ����	 only�

� � Applications to Lazer�Solimini singular prob�

lems

In this section we want to extend the results of Lazer and Solimini ��� concerning
the existence of solutions to singular periodic boundary value problems

u�� � g�u	 � e�t	� u��	 � u��	� u���	 � u���	��
�	

and

u�� � g�u	 � e�t	� u��	 � u��	� u���	 � u���	���
�	



�� I� Rach�unkov�� M� Tvrd� and I� Vrko�

Under the hypotheses g � C ����	�

g�x	 � � on ����	���
�	

g���	 �� lim
x���

g�x	 ����
�	

and

g��	 �� lim
x��

g�x	 � ����
�	

Lazer and Solimini proved in ��
 Theorem �
�� that the problem ��
�	 has a positive
solution for a given e � C ��� �� if and only if it satis�es the condition e � ��

Having in mind Remarks �
� and �
��
 we can apply all existence theorems from
Section � to the problems ��
�	 and ��
�	 provided r� and r� are strictly positive

First
 as direct consequences of Theorem �
�
 we get the following two corollaries
which contain the above result from ���


���� Corollary� Suppose that g � C ����	 and e � L ��� �� are such that

g��	 �����
�	

g�x	 � g��	 for all x � ���
�	

and

there exists r� � ����	 such that e�t	 � g�r�	 for a�e� t � ��� �����
�	

Then the condition e � g��	 is necessary and su�cient for the existence of

a positive solution to ��
�	�

Proof� First
 suppose e � g��	 and for a
e
 t � ��� �� and any x � R put

f�t� x	 � e�t	�
�

g�x	 if x � r��

g�r�	 if x � r��

Then
 in virtue of ��
�	
 f satis�es the assumption ��
�	 of Theorem �
�
 Further�
more
 according to ��
�	
 there is A� � r� such that ��
�	 with 	��t	 � e�t	 � e is
also satis�ed
 By Theorem �
� this proves the existence of the desired solution


On the other hand
 if u is a positive solution to ��
�	
 then integrating the
di�erential equation in ��
�	 and making use of ��
�	
 we get

e �

Z �

�

g�u�s		ds � g��	�

���� Remark� In particular
 if g��	 � ��� then the problem ��
�	 has a solution
for any e � L ��� �� for which ��
�	 is true
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���� Corollary� Suppose that g � C ����	 and e � L ��� �� satisfy ��
�	 and

e� lim sup
x��

g�x	 � ��

Then the problem ��
�	 has a positive solution�

Proof follows the �rst part of the proof of Corollary �
�


���� Example� Consider the problem

u�� �
a

u�
� bu � e�t	� u��	 � u��	� u���	 � u���	��
�	

with a � �� � � � and b � �� By Corollary �
�
 if b � �� then the problem ��
�	 has
a positive solution for any e � L ��� �� such that

e� � sup ess
t������

e�t	 ���

while in the case b � �� the additional assumption e � � is needed
 Notice that
if b � �� then the condition e � � is also necessary for the existence of a positive
solution to ��
�	


Furthermore
 as in Examples �
� and �
��
 using Theorem �
� we can derive
estimates for the guaranteed positive solution u of ��
�	
 In particular
 in the case
b � � we get � a

e�

� �
� � u�t	 �

�a
e

� �
�

�
ke� ekL

�
on ��� ���

The following immediate consequence of Theorem �
� enables us to consider the
problem ��
�	 also when b � ��

���� Corollary� Suppose that there exist positive numbers r� � r� � r� � r
 and

a function h � L ��� �� such that f ful�ls the Carath�odory conditions on ��� �� �
�r���	 and

f�t� r�	 � � and f�t� r
	 � � for a�e� t � ��� �����
��	

f�t� r�	 � � and f�t� r�	 � � for a�e� t � ��� ����
��	

and

f�t� x	 � h�t	 for a�e� t � ��� �� and all x � �r���	�

Then the problem ��
�	 has at least two positive solutions u and v satisfying

r� � u�t	 � r� on ��� �� and r� � v�tv	 � r
 for some tv � ��� �����
��	
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Proof� Let us denote

ef�t� x	 � �
f�t� r�	 for x � r��

f�t� x	 for x � r��

Then Theorem �
� implies the existence of solutions u and v of the problem

u�� � ef�t� u	� u��	 � u��	� u���	 � u���	��
��	

satisfying ��
��	
 Let mint������ v�t	 � v�t�	 � r�� In view of the periodic conditions
in ��
��	
 we can suppose t� � ��� �	 and v��t�	 � �� There exists t� � �t�� �	 such
that v��t�	 � � and v�t	 � r� for all t � �t�� t��� Then
 by ��
��	


� �

Z t�

t�

ef�t� v�t		dt � v��t�	� v��t�	 � ��

a contradiction
 Thus r� � u�t	 and r� � v�t	 on ��� �� and u� v are positive solutions
to ��
�	


���� Example� Assume that � � �� a � �� b � � and e � L� ��� �� and denote

K � min
x��

� a

x�
� bx

�
and e� � inf ess

t������
e�t	���
��	

Then

K �
� jbj
�a

� �
���

��� �	 a

and by Corollary �
�
 the problem ��
�	 has at least two di�erent positive solutions
provided the condition e� � K holds


If e� � K� we get at least one positive solution for ��
�	
 Let us note that if
e� � sup esst������ e�t	 � K� then the problem ��
�	 has no positive solution because
in such a case we have

e�t	� a

x�
� bx � � for a
e
 t � ��� �� and all x � ��

Theorem �
� and Corollary �
� of ���
 which concern the case of continuous e

and involve the stronger condition ��
�	 instead of our condition ��
�	
 indicate that
the above Corollaries �
� and �
� may be already known
 However
 the authors
believe that the next assertion
 which is a direct corollary of Theorem �
� and which
concerns the problem ��
�	 having a repulsive singularity at the origin
 is new
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��	� Corollary� Suppose that g � C ����	� e � L ��� ���

e� lim sup
x��

g�x	 � ���
��	

and there is � � � such that

e�t	 � g�x	 � ��x � � for a�e� t � ��� �� and all x �
�

��
���
��	

Then the problem ��
�	 has a positive solution u such that u�t	 � 	

��
on ��� ����

Proof� Denote f�t� x	 � g�x	 � e�t	� According to ��
��	
 f satis�es ��
��	 with
r� �

	

��
and B� � � arbitrarily large
 Furthermore
 in view of ��
��	
 we can �nd

A� � r� such that f satis�es ��
��	 with 	��t	 � e�t	� e�

��
� Remark� Provided g � C ����	 satis�es ��
�	
 ��
�	
 ��
�	
Z �

�

g�x	dx ����
��	

�i
e
 it has a strong singularity at x � �	 and e � L ��� ��� Lazer and Solimini proved
in ��
 Theorem �
��� that the condition e � � is necessary and su�cient for the
existence of a positive solution to ��
�	
 This result has been extended by several
authors
 cf
 e
g
 ���
 ���
 ���
 ���
 ��� and ����
 however all these papers concern the
case of a strong singularity at the origin
 Notice that Corollary �
� applies to ��
�	
even if the assumption ��
��	 is omitted


���� Example� Consider the problem

u�� � a

u�
� bu � e�t	� u��	 � u��	� u���	 � u���	��
��	

with � � �� a � � and b � �� If e � L ��� ��� b � � and � � � �i
e
 the function

g�x	 �
a

x�
� bx� x � ��

has a strong singularity at x � �	
 then by ��
 Theorem �
��� the problem ��
��	
has a positive solution if and only if the condition e � � is satis�ed
 while in the
case � � ��� �	 this condition need not ensure the existence of a positive solution to
��
��	 �cf
 ��
 Theorem �
��	
 Further
 if e � C ��� �� and � � �� then by the result
due to del Pino
 Man�sevich and Montero �cf
 ��
 Theorem �
��	
 the problem ��
��	
has a positive solution whenever the condition

b �� �k�	� for all k � N
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is satis�ed
 It is worth mentioning that the resonance case of b � �� is covered
neither by ��
 Theorem �
�� nor by ��
 Theorem �
�� even for the strong singularity
� � ��

In comparison to these results
 it should be pointed out that Corollary �
� applies
also to the cases � � ��� �	 and b � ��� In particular
 for the problem ��
��	 with
e � L ��� ��� we get the existence of a positive solution in the following cases�

b � �� e � � and e� � �
���

�a

� �
���

��� �	 a

or

b � ��� ��� and e� � �
��� � b

�a

� �
���

��� �	 a�

In particular
 if b � ��� then the problem ��
�	 has a positive solution for any
e � L ��� �� such that e� � �� This result gives the answer to the open question from
��
 Remark �
��


Finally
 let us consider the problem ��
��	 with b � �� By a slight modi�cation
of the proof of Theorem �
� we get an assertion which can be applied to this case


����� Corollary� Suppose that there exist r� � ����	� r� � �r���	 and h � L ��� ��
such that f ful�ls the Carath�odory conditions on ��� �� � �r���	� f�t� x	 � h�t	
for a�e� t � ��� �� and all x � r�� f�t� r�	 � � a�e� on ��� ��� f�t� x	 � ����x� r�	 for
a�e� t � ��� �� and all x � r��

Then the problem ��
�	 has a solution u such that r� � u�t	 on ��� �� and
u�tu	 � r� for some tu � ��� ���

Proof� Put

ef�t� x	 � �
f�t� r�	� ���x� r�	 for x � r��

f�t� x	 for x � r�

and consider the problem ��
��	
 As the couples �r�� �	 and �r�� �	 are respectively
upper and lower functions to ��
��	
 by the assertion �II	 of Theorem �
� there exists
a solution u to ��
��	 with r� � u�tu	 � r� for some tu � ��� ��� Following the proof
of Theorem �
� we get that u�t	 � r� on ��� ��� which completes the proof


����� Example� By the assertion �I	 of Theorem �
�
 the problem ��
��	 with
� � �� a � �� b � � and e � L� ��� �� such that

e� � sup ess
t������

e�t	 � �K � �
� jbj
�a

� �
���

��� �	 a
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has a positive solution u� If
 moreover
 e� � �K and

e� � inf ess
t������

e�t	 � �
� jbj� ��

�a

� �
���

��� �	 a�

then by Corollary �
�� the problem ��
��	 has also another positive solution v which
certainly does not coincide with u on ��� ��� �Notice that for

inf ess
t������

e�t	 � �K�

��
��	 cannot have any positive solution
	

References

��	 M� del Pino� R� Man�sevich and A� Montero
 T �periodic solutions for some second
order di�erential equations with singularities
 Proc� Royal Soc� Edinburgh ���A ������� �
��
��



��	 A� Fonda� R� Man�sevich and F� Zanolin
 Subharmonic solutions for some second�order
di�erential equations with singularities
 SIAM J� Math� Anal� �� ����
�� ������
��


�
	 P� Habets and L� Sanchez
 Periodic solutions of some Li�nard equations with singularities

Proc� Amer� Math� Soc� ��� ������� ��
������


��	 A� C� Lazer and S� Solimini
 On periodic solutions of nonlinear di�erential equations with
singularities
 Proc� Amer� Math� Soc� �� ������� �������


��	 J� Mawhin
 Topological degree and boundary value problems for nonlinear di�erential equa�
tions
 M
 Furi �ed
� et al
� Topological methods for ordinary di�erential equations
 Lectures
given at the �st session of the Centro Internazionale Matematico Estivo �C
I
M
E
� held in
Montecatini Terme� Italy� June �� � July �� ����
 Berlin� Springer�Verlag� Lect
 Notes Math

��
�� ������ ����
�


��	 M� N� Nkashama and J� Santanilla
 Existence of multiple solutions for some nonlinear
boundary value problems
 J� Di�er� Equations �� ������� �������


��	 P� Omari and W� Ye
 Necessary and su�cient conditions for the existence of periodic solu�
tions of second order ordinary di�erential equations with singular nonlinearities
 Di�erential
and Integral Equations � ������� ���
�����


��	 I� Rach�unkov� and M� Tvrd�
 Nonlinear systems of di�erential inequalities and solvability
of certain nonlinear second order boundary value problems
 J� Inequal� Appl�� to appear


��	 L� Sanchez
 Positive solutions for a class of semilinear two�point boundary value problems

Bull� Austral� Math� Soc� �� ������� �
�����


���	 I� Vrko�
 Comparison of two de�nitions of lower and upper functions of nonlinear second
order di�erential equations
 J� Inequal� Appl�� to appear


���	 M� Zhang
 A relationship between the periodic and the Dirichlet BVP�s of singular di�erential
equations
 Proc� Royal Soc� Edinburgh ���A ������� ���������




�� I� Rach�unkov�� M� Tvrd� and I� Vrko�

Irena Rach�unkov�� Department of Mathematics� Palack� University� ��� �� OLOMOUC� Tomkova
��� Czech Republic �e�mail� rachunko�risc�upol�cz�

Milan Tvrd�� Mathematical Institute� Academy of Sciences of the Czech Republic� ��� �� PRA�
HA �� �itn� ��� Czech Republic �e�mail� tvrdy�math�cas�cz�

Ivo Vrko�� Mathematical Institute� Academy of Sciences of the Czech Republic� ��� �� PRAHA ��

�itn� ��� Czech Republic �e�mail� vrkoc�matsrv�math�cas�cz�


