The fifth lecture in honour of Eduard Cech

organized by the Institute of Mathematics of the Academy of Sciences of the Czech Republic

Gilles Godefroy
Goemetry of Banach spaces and descriptive set theory
April 1, 2008

In the first years of the twentieth century, Borel reached the concept of countably additive measure, Lebesgue created his integration theory and Baire characterized pointwise limits of continuous functions. They led them, and later on Lusin, Suslin and many others, to investigate the intrinsic complexity of subsets of metric spaces. Today,this part of analysis is called descriptive set theory. It has been recently applied to Banach space theory, and the complexity of natural classes of Banach spaces has been evaluated and used.
We shall explain how this can be done, and display applications in two directions: smooth renormings of Banach spaces, existence of universal spaces.


DSCF0002p.JPG
DSCF0003p.JPG
DSCF0005p.JPG
DSCF0007p.JPG
DSCF0008p.JPG
DSCF0010p.JPG
DSCF0014p.JPG
DSCF0015p.JPG
DSCF0017p.JPG
DSCF0018p.JPG
DSCF0019p.JPG
DSCF0023p.JPG
DSCF0025p.JPG
DSCF0027p.JPG
DSCF0028p.JPG
DSCF0031p.JPG
DSCF0038p.JPG
DSCF0039p.JPG
DSCF0041p.JPG
DSCF0042p.JPG
DSCF0043p.JPG
DSCF0049p.JPG
DSCF0051p.JPG
DSCF0053p.JPG
DSCF0054p.JPG
DSCF0057p.JPG
DSCF0059p.JPG
DSCF0062p.JPG
DSCF0063p.JPG
P1130218p.JPG
P1130220p.JPG
P1130225p.JPG
P1130228p.JPG
P1130229p.JPG
P1130231p.JPG
P1130232p.JPG
P1130238p.JPG
P1130239p.JPG
P1130240p.JPG
P1130241p.JPG
P1130242p.JPG
P1130243p.JPG
P1130244p.JPG
P1130245p.JPG
P1130246p.JPG
P1130247p.JPG
P1130248p.JPG
P1130249p.JPG
P1130250p.JPG
P1130252p.JPG