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Abstract

In our society digital images are a powerful and widely used communication medium. They have an important impact on our life. In recent

years, due to the advent of high-performance commodity hardware and improved human–computer interfaces, it has become relatively easy to

create fake images. Modern, easy to use image processing software enables forgeries that are undetectable by the naked eye. In this work we

propose a method to automatically detect and localize duplicated regions in digital images. The presence of duplicated regions in an image may

signify a common type of forgery called copy–move forgery. The method is based on blur moment invariants, which allows successful detection of

copy–move forgery, even when blur degradation, additional noise, or arbitrary contrast changes are present in the duplicated regions. These

modifications are commonly used techniques to conceal traces of copy–move forgery. Our method works equally well for lossy format such as

JPEG. We demonstrate our method on several images affected by copy–move forgery.

# 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

In our society digital images are a powerful and widely used

medium of communication, containing a huge amount of

information. They are a compact and easy way in which to

represent the world that surrounds us. The question is, how

much can we trust a photograph which is not obtained from a

secure source.

Nowadays, images have an important impact on our society

and play a crucial role in most people’s lives. Without a doubt,

image authenticity is significant in many social areas. For

instance, the trustworthiness of photographs has an essential

role in courtrooms, where they are used as evidence. Every day

newspapers and magazines depend on digital images. In the

medical field physicians make critical decisions based on

digital images. As a consequence, we should pay a special

attention to the field of image authenticity.

As pointed out in [1], photograph tampering has a long

history. In today’s digital age, due to the advent of low-cost,

high-performance computers, more friendly human–computer

interface, and the availability of many powerful and easy to

control image processing and editing software packages, digital

images have become easy to manipulate and edit even for non-

professional users. It is possible to change the information

represented by an image and create forgeries, which are

indistinguishable by naked eye from authentic photographs.

This introduces a need for a reliable tamper detection system

for digital images. Such a system can determine whether an

image has been tampered with. A reliable forgery detection

system will be useful in many areas, including: forensic

investigation, criminal investigation, insurance processing,

surveillance systems, intelligence services, medical imaging,

and journalism. Such a system can evaluate the authenticity of

digital image.

Existing digital forgery detection methods are divided into

active [2–6], and passive (blind) [7–10] approaches. Active

approaches could be further divided mainly into digital

watermarks and signatures. The passive (blind) approach is

regarded as the new direction. In contrast to active approaches,
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passive approaches do not need any explicit priori information

about the image. Therefore, it does not require watermarks or

signatures.

It is obvious that there are many ways to manipulate and

alter digital images. An attempt of categorization has been

proposed by Farid [1]. As mentioned, passive methods are

regarded as a new approach and have not yet been thoroughly

researched by many. Different methods for identifying each

type of forgery must be developed. Then, by fusing the results

from each analysis, a decisive conclusion may be drawn.

In this work we focus on detecting a common type of digital

image forgery, called copy–move forgery. In copy–move

forgery, a part of the image is copied and pasted into another

part of the same image, with the intention to hide an object or a

region of the image. Fig. 1 shows an example. We can

determine whether an image contains this type of forgery by

detection of duplicated regions. Duplicated regions may not

always match exactly. For example, this could be caused by a

lossy compression algorithm, such as JPEG, or by possible use

of the retouch tool.

The importance of digital images in forensic science creates

a significant need for reliable detection of copy–move forgery.

Due to the possibilities of today’s standard image processing

software, the creation of a high quality copy–move forgery has

became particularly easy. Therefore, we can expect that this

type of tampering will become more common. For example,

with infringement of copyright, blackmail, insurance fraud and

other schemes based on digital forgery. However, note that

when creating high quality and consistent forgeries, several

types of tampering techniques are employed simultaneously.

For example, image splicing in combination with copy–move

forgery and localized image retouching techniques. Thus, when

we consider copy–move forgery, we often assume this

tampering technique has been used simultaneously with others.

Therefore, by having a reliable technique to detect the copy–

move forgery, we will be able to detect forgeries that contain

among others this type of tampering.

Fig. 1 shows an example of the use of copy–move forgery in

a forensic investigation. Here the photograph of a crime scene is

tampered with using the copy–move technique with; intention

is to hide some important objects in the photograph. We believe

that a reliable tamper detection system will useful in forensic

applications, where making decisions are based or affected by

imaging.

As pointed out in [7], ideal regions for using copy–move

forgery are textured areas with irregular patterns, such as grass.

Because the copied areas will likely blend with the background

it will be very difficult for the human eye to detect any

suspicious artifacts. Another fact which complicates the

detection of this type of tampering is that the copied regions

come from the same image. They therefore have similar

properties, such as the noise component or color palette. It

makes the use of statistical measures to find irregularities in

different parts of the image impossible.

1.1. State of the art

As mentioned, despite of the strong need for a reliable

detection of digital forgeries in the absence of watermarks and

signatures, this area has an unexplored character. The field of

copy–move forgery detection is even smaller: only two

publications concerned with this topic have been found.

The first one has been proposed by Fridrich et al. [7]. This

method tiles the image by overlapping blocks. The detection of

duplicated regions is based on matching the quantizied

lexicographically sorted discrete cosine transform (DCT)

coefficients of overlapping image blocks. The lexicographi-

cally sorting of DCT coefficients is carried out mainly to reduce

the computational complexity of the matching step. The second

method has been proposed by Popescu and Farid [8] and is

similar to [7]. This method differs from [7] mainly in the

representation of overlapping image blocks. Here, the principal

component transform (PCT) has been employed in place of

DCT. The representation of blocks by this method has better

discriminating features.

2. Detection of duplicated regions

To detect the copy–move forgery we focus our aim on

detection of duplicated regions in the image. Since duplicated

Fig. 1. An example of a copy–move forgery. The photograph of crime scene (from [11]) is altered by the copy–move forgery. The original (left) and forged version

(right).
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regions may signify this type of forgery. Existing copy–move

forgery detection methods have limited abilities. In most cases

of forgery investigated, they were able to detect duplicated

regions in the tampered image despite of the presence of an

acceptable amount of noise. This is mainly caused due to a

quantitation step or a similarity threshold. Additionally, it

allows for analysis images compressed with a lossy algorithm,

such as JPEG. However, a skilled falsifier will be able to

produce work undetectable by these methods.

Existing copy–move forgery detection methods take into

account that in a copy–move forgery, duplicated regions may

not match exactly. After the creation of the duplicated

regions, the falsifier will often introduce variation to the

duplicated region to make its presence less obvious. This can

be carried out using retouch or other localized image

processing tools. Existing methods are mainly concerned

with additive noise, which can be added to the duplicated

regions and causes that duplicated regions to match only

approximately. This can be also achieved easily by blurring.

Since the falsifier needs to keep the faked regions consistent

with the rest of the image, we can assume that these

degradations will not be strong.

An experienced falsifier can use a simple 2D convolution of

the duplicated region with a blur filter mask to make detection

of forgery even more difficult. Thus, to improve the detection

abilities of the current available approaches, we can describe

analyzed regions by some features invariant to the presence of

unknown blur. From a mathematical point of view, we are

looking for a functional B, which is invariant with respect to

blur degradation. In other words, B satisfies the condition

B( f) = B(D( f)), where operator D denotes the blur degradation.

Furthermore, due to the fact that the falsifier can also use

additive noise to make detection more difficult, these invariants

should also work well with the presence of additive noise.

The aforementioned requirements are satisfied by blur

moment invariants. They have been previously addressed by

Flusser and Suk [12,13] and have found successful applications

in many areas of image processing—such as: in face

recognition on out-of-focused photographs, template-to-scene

matching of satellite images, in focus/defocus quantitative

measurement, etc. Blur moment invariants are suitable to

represent image regions due to the fact that they are not affected

by the blur degradation present in the region. Another

advantage of moment invariants is that they are computed

by a summation over the whole image, so they are not

significantly affected by additive zero-mean noise.

We will define the problem of copy–move forgery detection

in the following way. Given an image I(x, y) containing an

arbitrary number of duplicated regions of unknown location

and shape, our task is to determine the presence of such regions

in the image and to localize them. The aim of this investigation

is create a method that can detect duplicated regions, even when

some contain degradations caused by convolution with a shift-

invariant symmetric energy-preserving point spread function

(PSF) and additive random noise. As mentioned, the method

should be able to also find duplicated regions which only match

approximately. Formally: let f(x, y) be a function describing the

original region and g(x, y) the acquired region created by the

falsifier via convolution of f(x, y) with the PSF, then

gðx; yÞ ¼ ð f � hÞðx; yÞ þ nðx; yÞ;

where h(x, y) is a shift invariant PSF, n(x, y) an additive random

noise and * denotes a 2D convolution. We would like to find all

g(x, y) created from f(x, y) and h(x, y) via the above equation.

Due to the fact that moment invariants are utilized as features,

we will assume the following restrictions. Both f(x, y) 2 L1 and

g(x, y) 2 L1 are real functions and have a bounded support and

nonzero integral:Z 1
�1

Z 1
�1

f ðx; yÞ dx dy> 0;

Z 1
�1

Z 1
�1

gðx; yÞ dx dy> 0:

Moreover, the PSF is assumed to be axial symmetric and

energy-preserving, i.e.:

hðx; yÞ ¼ hð�x; yÞ ¼ hðy; xÞ;
Z 1
�1

Z 1
�1

hðx; yÞ dx dy ¼ 1:

These assumptions do not cause a significant limitation.

Most imaging systems that we are interested in perform some

type of symmetry. By supposing other types of symmetries, like

central, four-fold or circular symmetry, we can also construct

blur invariants based on moments. However, generally, the

higher degree of symmetry of the PSF is assumed, the more

invariants can be obtained [12].

The proposed copy–move forgery detection method is based

on a few main steps:

� tiling the image with overlapping blocks,

� blur moment invariants representation of the overlapping

blocks,

� principal component transformation,

� k–d tree representation,

� blocks similarity analyses,

� duplicated regions map creation.

Each step is explained separately in the following sections.

2.1. Overlapping blocks

This method begins with the image being tiled by blocks of

R � R pixels. Blocks are assumed to be smaller than the size of

the duplicated regions, which have to be detected. Blocks are

horizontally slid by one pixel rightwards starting with the upper

left corner and ending with the bottom right corner. The total

number of overlapping blocks for an image of M � N pixels is

(M � R + 1) � (N � R + 1). For instance, an image with the

size of 640 � 480 with blocks of size 20 � 20 yields 286 281

overlapping blocks.

2.2. Blur invariants representation

Each block is represented by blur invariants, which are

functions of central moments. The two-dimensional ( p + q)th

order moment mpq of image function f(x, y) is defined by the

B. Mahdian, S. Saic / Forensic Science International 171 (2007) 180–189182
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integral:

m pq ¼
Z 1
�1

Z 1
�1

x pyq f ðx; yÞ dx dy:

The two-dimensional ( p + q)th order central moment mpq of

f(x, y) is defined as

m pq ¼
Z 1
�1

Z 1
�1
ðx� xtÞ pðy� ytÞq f ðx; yÞ dx dy;

where the coordinates (xt, yt) given by the relations:

xt ¼
m10

m00

; yt ¼
m01

m00

denote the centroid or the center of gravity of f(x, y). By

supposing that

gðx; yÞ ¼ ð f � hÞðx; yÞ;

we can simply derive that central moments of g(x, y) are defined

as

mðgÞpq ¼
Xp

k¼0

Xq

j¼0

p
k

� �
q
j

� �
m
ð f Þ
k j m

ðhÞ
p�k;q� j :

We are looking for features invariant to blur. Feature B is

called blur invariant if

Bð f Þ ¼ Bð f�hÞ ¼ BðgÞ:

As mentioned, we consider only symmetric h(x, y). By

applying the algorithm as derived and described in [12,14], we

can construct blur invariants based on central moments of any

order by using the following recursive relation:

Bð p; qÞ ¼ m pq � amq p �
1

m00

XK

n¼0

Xm2

i¼m1

p
t � 2i

� �

� q
2i

� �
Bð p� t þ 2i; q� 2iÞmt¼2i;2i ;

where

K ¼
�

pþ q� 4

2

�
;

t ¼ 2ðK � nþ 1Þ; t ¼ 2ðK � nþ 1Þ;

m1 ¼ max

�
0;

�
t � pþ 1

2

��
; m2 ¼ min

�
t

2
;

�
q

2

��
;

a ¼ 1, p^ q are even; a ¼ 0, p_ q are odd:

The proposed algorithm uses 24 blur invariants up to the

seventh order to create the feature vector:

B ¼ fB1;B2;B3; . . . ;B23;B24g

of each block. Some examples of utilized invariants in their

explicit forms are listed below:

B1 ¼ m11; B2 ¼ m12; B3 ¼ m21; B4 ¼ m03; B5 ¼ m30;

B6 ¼ m13 �
3m02m11

m00

; B7 ¼ m31 �
3m20m11

m00

;

B8 ¼ m32 �
3m12m20 þ m30m02

m00

;

B9 ¼ m23 �
3m21m02 þ m03m20

m00

:

Because we will use an Euclidean metric space, the

invariants should be normalized to have the same weight. To

achieve this, the normalization described in [13,14] is used

B0i ¼
Bi

ðR=2Þrm00

;

where R is the block size and r the order of Bi. Please note that

in this manner normalized invariants are also invariant to

contrast changes, which improves the duplication detection

abilities of the algorithm.

As is obvious, each block is represented by a feature vector

of length 24 in the case of gray-scale images. For RGB images,

moment invariants of each block in each channel are computed

separately, resulting in feature vector Brgb = {Bred, Bgreen,

Bblue} of length 72.

2.2.1. Stability of moment invariants under additive

random noise

As mentioned moment invariants are computed by a

summation over the whole image, so they are not significantly

affected by additive zero-mean noise. For a more detailed

discussion about the robustness of moment invariants to the

additive random noise and an example of the stability of

moments corrupted by Gaussian zero-mean noise with different

standard deviations, see [14].

2.2.2. Stability of moment invariants with respect to

boundary effect

So far we have assumed that we can work with blocks that

result from full linear convolution with the original block and a

shift-invariant filter. However, in practice we work with

truncated versions of the filtered blocks, which are additionally

corrupted by the neighboring pixels. If our blocks have R � R

pixels and the size of PSF support is H � H pixels, the correct

size of the resulting block must be (R + H � 1) � (R � H � 1).

In our case, the value of H is unknown. If H� R the errors of

invariant calculation caused by the boundary effect is

negligible. If H is relatively large as in the case of heavy

blur, the boundary effect will cause significant miscalculations

of the invariant values. For an experiment on this topic, see [14].

2.3. Principal component transformation

In the case of an RGB image, the dimension of the feature

vector is 72 (24 invariants per channel). Using the principal

component transformation we reduce this dimension. Typically

B. Mahdian, S. Saic / Forensic Science International 171 (2007) 180–189 183
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the new orthogonal space has dimension 9 (fraction of the

ignored variance along the principal axes is set to 0.01). In PCT,

the orthogonal basis set is given by the eigenvectors set of the

covariance matrix of the original vectors. Thus, it can be easily

computed on very large data sets. Note that PCT preserves the

Euclidean distance among blocks.

Also please note that if the distribution of the overlapping

vectors, Bi, is a multi-dimensional Gaussian, then the PCT

using the first N eigenvectors of the PCT basis gives the best N-

dimensional approximation in the least squares sense. The

newly created space by PCT is a convenient space in which to

identify duplicated blocks. Due to the fact that there exist many

publications about PCT (for example [15]) this topic will be not

discussed in further detail here.

2.4. k–d tree representation

In blocks similarity analysis (see next section) we will need

to efficiently identify all blocks which are in a desired similarity

relation with each analyzed block. A simple exhaustive search

computes the distance from the block to all others. This

approach is very inefficient and its computational cost is O(N).

To improve the efficiency of finding neighboring blocks, some

hierarchical structures have been proposed. The k–d tree is a

commonly used structure for searching for nearest neighbors.

The k–d tree preprocesses data into a data structure allowing

us to make efficient range queries. It is a binary tree that stores

points of a k-dimensional space in the leaves. In each internal

point, the tree divides the k-dimensional space into two parts

with a (k � 1)-dimensional hyperplane. If a k–d tree consists of

N records, it requires O(N log2 N) operations to be constructed

and O(log2 N) to be searched. Because of these reasons, the

proposed method transforms blocks representation to a k-d tree

for a more effective closest neighbors search. Since there exist

many publications about k–d tree [16,17], this topic will be not

discussed here in further detail.

2.5. Blocks similarity analyses

The main idea of this step is that a duplicated region consists

of many neighboring duplicated blocks. If we find two similar

blocks in the analyzed space and if their neighborhoods are also

similar to each other, there is a high probability that they are

duplicated and they must be labeled.

The similarity measure s employed here is defined by the

following formula:

sðBi;B jÞ ¼
1

1þ rðBi;B jÞ
;

where r is a distance measure in the Euclidean space:

rðBi;B jÞ ¼
�Xdim

k¼1

ðBi½k� � B j½k�Þ2
�1=2

:

For each analyzed block represented by the feature vector B,

we look for all blocks with an equal or larger similarity relation.

It must be an equal or larger similarity to the threshold T. Fig. 2

shows an example of a two-dimensional feature space. In this

example black dots represent overlapping blocks. The method

finds all similar blocks for each one (similar to the nearest

neighbors search) and analyses their neighborhood. This is

done efficiently using the k–d tree structure, which was created

in the previous step.

If s(Bi, Bj) � T, where T is the minimum required similarity,

we also analyze the neighborhood of Bi and Bj. Note that the

threshold T plays a very important role. It expresses the degree

of reliability with which blocks i and j correspond with each

other. It is obvious that the choice of T directly affects the

precision of results of the method. Due to the possibility of the

presence of additive noise, a boundary effect, or JPEG

compression, this threshold should not be set to 1.

After two blocks with the required similarity have been

found, a verification step begins. In the verification step, similar

blocks with different neighbors will be eliminated.

For analyzing the blocks neighborhood, we choose 16

neighboring blocks with a maximum distance of 4 pixels from

the analyzed block (distance from their upper left corners). If

95% of these neighboring blocks satisfy the similarity

condition, the analyzed block is labeled as duplicated. More

formally, block 1 with coordinates (i, j) and block 2 with

coordinates (k, l) are labeled as duplicated if

sðblockðiþ xr; jþ yrÞ; blockðk þ xr; lþ yrÞÞ� T ;

where x 2 h�4,�3, . . ., 4i and y 2 h�4,�3, . . ., 3, 4i and r = 1,

. . ., 16. This part of the algorithm also determines the minimum

size of the copied area, which can be detected by the algorithm.

To have more precise results, the verification step

additionally uses information about the image distances of

Fig. 2. A two-dimensional feature space. Black dots represent overlapping blocks, which have to be analyzed (left image). The method finds all similar bocks to each

block and analyses their neighborhood (right image). In other words, we find all blocks inside a circle, which has the analyzed block as centroid. The radius r is

determined by the similarity threshold.
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analyzed blocks. If s(block(i, j), block(k, l)) � T, butffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði� kÞ2 þ ð j� lÞ2

q
	 D, these blocks will not be further

analyzed and will not be assigned as duplicated. Threshold D is

a user-defined parameter determining the minimum image

distance between duplicated regions.

The output of this section is matrix Q with the same size as

the input image. Elements of this matrix are either zero or one.

An element of this matrix is set to one if the block at this

position is duplicated.

2.6. Duplicated regions map creation

The output of the method is a duplicated regions map showing

the image regions, which are likely duplicated. It is created by the

multiplication of each element of I(x, y) by its respective element

in Q(x, y). Matrix Q(x, y) is created in the previous section.

3. Results

In this section we show a few examples of copy–move forgery

and their corresponding duplication maps constructed by the

proposed detection method. For this purpose an experimental

version of the proposed method was implemented in Matlab. The

output of the method is a duplication map, in which likely

duplicated regions are shown. Parameters of the method were set

to R = 20 (block size), T = 0.97 (similarity threshold), D = 24

(blocks image distance threshold). In the PCT step, the fraction of

the ignored variance along the principal axes, e, was set to 0.01.

Please note that the computational time of the method is highly

dependent on these parameters (specially on Tand e). In all cases,

the tampering was realized by copying and pasting a region in the

image with intent to conceal a person or object. Additionally, in

order to make the detection of forgery more difficult and

interesting most examples contain further manipulations of the

pasted region, such as blurring.

The first example is presented in Fig. 3. Fig. 3(c) shows the

output of the method applied to the tampered image shown in

Fig. 3(b). In this example, no further manipulations were carried

out with the tampered regions. The tampered image was saved in

JPEG format with quality factor 90. The output shows that the

proposed method correctly detected the duplicated regions.

Fig. 4(c) shows the duplication map created by the proposed

method applied to Fig. 4(b). Fig. 4(e) shows the output of the

method applied to Fig. 4(d). Also here, in both examples, a part of

the image was copied and pasted somewhere else in the same

image with the intent to cover a part of the image. The tampered

image in Fig. 4(b) was saved in JPEG format with quality factor

70. The tampered region in Fig. 4(d) was additionally blurred

with a simple average mask of size 3 � 3. The tampered image in

this case was also saved in JPEG format with quality factor 70.

Fig. 5(c) shows the duplication map generated by applying

the proposed method to Fig. 5(b). Here, in addition, the forged

region was blurred with a Gaussian blur filter with radius

0.2 pixels. Furthermore, after the blurring operation, the

tampered area was corrupted by additive zero-mean Gaussian

noise with standard deviation 5. The tampered image in this

case was saved in JPEG format quality 90.

Fig. 6(c) shows the duplication map created by applying our

method to Fig. 6(b). In this example, the tampered region was

Fig. 3. Shown are the original version of the test image (a), its forged version (b) and the constructed duplication map (c).
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blurred with a Gaussian blur filter with radius 0.3 pixels. The

tampered image in this case was saved in JPEG format quality 80.

Fig. 7(c) shows the duplication map generated by our method

applied to Fig. 7(b). Here, the forged region was blurred with a

Gaussian blur filter with radius 0.7 pixels. The tampered image in

this case was saved in JPEG format quality 50. In this example we

can additionally see some falsely identified regions. Such false

results could be expected from all duplicated image region

detection algorithms based on block analysis and matching

(especially in uniform areas of the image).

4. Discussion

Our method’s results show that the use of blur moment

invariants can improve the detection abilities of the copy–move

forgery detection methods. By using blur moment invariants we

are able to additionally detect duplicated regions with presence

of acceptable blur and additive Gaussian noise. By normalizing

moment invariants they also become invariant against contrast

changes. The proposed method also works with lossy JPEG

format images.

In comparison to other existing methods [7,8] based on DCT

and PCT, we notice that the description of duplicated regions by

moment invariants has better discriminating features in cases

where the regions were modified by blurring. Another benefit of

using invariants in comparison to DCT and PCT is the ability to

detect duplicated regions in presence of contrast changes;

normalized blur moment invariants are invariant to them. Also

please note that moment invariants are computed by a

summation over the whole block, therefore they are not

supposed to be affected by additive zero-mean noise

significantly. We must mention that in general, we can always

Fig. 4. Shown are the original version of the test image (a), its forged versions (b) and (d) and constructed duplication maps (c) and (e).
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Fig. 5. Shown are the original version of the test image (a), its forged version (b) and the constructed duplication map (c).

Fig. 6. Shown are the original version of the test image (a), its forged version (b) and the constructed duplication map (c).
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find images where DCT or PCT will perform better then blur

invariants and vice versa. Notice that all existing methods are

directly or indirectly dependent on a similarity or a frequency

threshold, which often determines the success of the method

more than the block representation method used.

The blur moment invariants approach, like all other existing

methods, has a problem with uniform areas in images. Since we

are looking for identical or similar areas in the image, it is to be

expected that the method will logically label not duplicated

parts as duplicated in uniform areas, such as the sky. Thus, a

human interpretation of the output of any duplication image

regions detection method is obviously necessary.

A disadvantage of the proposed method is its computational

time. The average run time of the implemented experimental

version with parameters R = 20 (block size) and T = 0.97

(similarity threshold) for 640 � 480 RGB images on a 2.1 GHz

processor and 512 MB RAM is 40 min. The computational time

is not the same for images with the same size. It is dependent on

each image’s characteristics (the dimension of space created

after the PCT) and especially on the similarity threshold

parameter of the algorithm. It is also important to note that the

implemented experimental version was not optimized and there

exist possibilities to improve the computational time.

A way to considerably improve the computational time is to

eliminate large uniform areas in a preprocessing step and apply

the proposed method to the rest of the analyzed image. Then the

output of the method could consist of a duplication map and a

uniform areas map. Please note that the computational time of

an image containing large uniform or very similar areas is

higher. This is caused by the fact that most of the computational

time is required by the step in which block similarities and

neighborhoods are analyzed. As previously mentioned, a

640 � 480 image with overlapping blocks of size 20 � 20

yields 286281 blocks to be analyzed. For each block found

similar to the analyzed block, its neighborhood is also analyzed.

Logically, having a high number of similar blocks causes

protraction of computation. The hierarchical nature of the k–d

structure allows us to make efficient range queries in

multidimensional data. In spite of this efficiency, this step

still requires roughly 60% of the computational time of the

algorithm.

The second part, which significantly increases the run time

of the algorithm, is the computing complexity of moment

invariants [14]. This is dependent on the computing complexity

of the central moments mpq and the number of overlapping

blocks. Although several methods for fast moments computing

have been published recently, most of them are not applicable in

our case. They are mostly suitable for binary images only. The

direct evaluation of central moments for an N � N image in the

discrete version is

m pq ¼
XN

i¼1

XN

j¼1

ði� xtÞ pði� ytÞq f i j ;

which needs O(N2) operations. We need to do these operations

for each block. However, since the input image is tiled by

overlapping blocks, there exists redundant information which

could be utilized to improve the moment invariants computa-

Fig. 7. Shown are the original version of the test image (a), its forged version (b) and the constructed duplication map (c).
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tion complexity. This may significantly improve the run time of

the proposed method, and was not explored in this work.

5. Conclusion

We have proposed an automatic and robust duplication

image regions detection method based on blur moment

invariants. It works in complete absence of digital watermarks

or signatures and does not need any prior information about the

tested image. The proposed method tiles the image with

overlapping blocks and uses blur invariants to represent them.

The dimension of the blocks representation is reduced by using

the principal component transformation. Furthermore, a k–d

tree is used to efficiently perform range queries in multi-

dimensional data for block similarity analysis. The output of the

algorithm is a duplicated image regions map.

The experimental results show the high ability of the

proposed method to detect copy–move forgery in an image

even with the presence of blur, noise or contrast changes in the

copied areas. The method even works well with lossy JPEG

format data. Thus, we believe that our method can be very

useful in many areas of forensic science.
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