Stationary stagnation point flows in the vicinity of ^a 2D magnetic null point

Dieter Nickeler

Astronomical Institute, Ondřejov

in collaboration with Marian Karlický, Astronomical Institute, Ondřejov Miroslav Bárta, Astronomical Institute, Ondřejov

• Motivation and Introduction: Solutions of the resistive MHD equations in the vicinity of (X-type) null points, corresponding geometries and topologies of flow and field lines, 'allowed'resistivities

- Motivation and Introduction: Solutions of the resistive MHD equations in the vicinity of (X-type) null points, corresponding geometries and topologies of flow and field lines, 'allowed'resistivities
- Assumptions and basic MHD equations: First conclusions

- Motivation and Introduction: Solutions of the resistive MHD equations in the vicinity of (X-type) null points, corresponding geometries and topologies of flow and field lines, 'allowed'resistivities
- Assumptions and basic MHD equations: First conclusions
- Preliminary solutions, discussion and conclusions

- Motivation and Introduction: Solutions of the resistive MHD equations in the vicinity of (X-type) null points, corresponding geometries and topologies of flow and field lines, 'allowed'resistivities
- Assumptions and basic MHD equations: First conclusions
- Preliminary solutions, discussion and conclusions
- Problems and Outlook

Motivation and introduction:

• Geometrical and topological structure of field lines, stream lines and isolines of the resistivity: local analysis in the vicinity of null points of magnetic field and plasma flow

Motivation and introduction:

- Geometrical and topological structure of field lines, stream lines and isolines of the resistivity: local analysis in the vicinity of null points of magnetic field and plasma flow
- Taylor expansion

$$
\vec{B}(\vec{x}) = \vec{B}(\vec{x}_0) + (\vec{x} - \vec{x}_0) \cdot \vec{\nabla}\vec{B} + \dots
$$

Motivation and introduction:

- Geometrical and topological structure of field lines, stream lines and isolines of the resistivity: local analysis in the vicinity of null points of magnetic field and plasma flow
- Taylor expansion

$$
\vec{B}(\vec{x}) = \vec{B}(\vec{x}_0) + (\vec{x} - \vec{x}_0) \cdot \vec{\nabla}\vec{B} + \dots
$$

• Here $\vec{x}_0 =$ \rightarrow $\vec{0},\,\vec{B}$ $\vec{B}(\vec{x}_0 = \vec{0}) = \vec{0}$ therefore

$$
\vec{B}(\vec{x}) = \vec{x} \cdot \vec{\nabla} \vec{B}(\vec{0}) + \dots
$$

Excursion: Assumptions and basic MHD equations Assumptions

•• Solving the problem in pure 2D, $\partial/\partial z = 0$

$$
\vec{v} = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}
$$

in analogy to the magnetic field \vec{B} *B*

$$
\vec{B} = B \vec{x} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
$$

What are the typical or possible types of dynamical systems allowing the plasma to cross the magnetic separatrices in 2D stationary resistive MHD?

What are the typical or possible types of dynamical systems allowing the plasma to cross the magnetic separatrices in 2D stationary resistive MHD?

• For divergence free fields geometries/topologies of field lines are restricted, see e.g. Parnell et al. (1996)

What are the typical or possible types of dynamical systems allowing the plasma to cross the magnetic separatrices in 2D stationary resistive MHD?

- For divergence free fields geometries/topologies of field lines are restricted, see e.g. Parnell et al. (1996)
- for general 2D vector fields there are more possibilities \Rightarrow resistivities can be ^a quadric, what are possible shapes?

What are the typical or possible types of dynamical systems allowing the plasma to cross the magnetic separatrices in 2D stationary resistive MHD?

- For divergence free fields geometries/topologies of field lines are restricted, see e.g. Parnell et al. (1996)
- for general 2D vector fields there are more possibilities \Rightarrow resistivities can be ^a quadric, what are possible shapes?
- How can vector fields be classified? (Eigenvalue structure)

Motivation and introduction: ...and problems

• ...but maybe there are no 'linear' fields, but only higher order fields

Motivation and introduction: ...and problems

- ...but maybe there are no 'linear' fields, but only higher order fields
- ...using all orders of *^x* and *y* of the MHD equations or only that of order zero and one ?

Aims:

• (i) Find restrictions that tell us which kind of flows fit to which type of magnetic field lines, e.g. X-lines to X-lines

Aims:

- (i) Find restrictions that tell us which kind of flows fit to which type of magnetic field lines, e.g. X-lines to X-lines
- (ii) Find restrictions that deliver reasonable resistivities.

Aims:

- (i) Find restrictions that tell us which kind of flows fit to which type of magnetic field lines, e.g. X-lines to X-lines
- \bullet (ii) Find restrictions that deliver reasonable resistivities.
- \bullet (iii) **Determination of the complete skeleton of RMHD solutions in 2D.**

Assumptions and basic MHD equations Assumptions

•• Solving the problem in pure 2D, $\partial/\partial z = 0$

$$
\vec{v} = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}
$$

in analogy to the magnetic field \vec{B} *B*

$$
\vec{B} = B \vec{x} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
$$

Assumptions and basic MHD equations

Basic MHD equations

$$
\vec{\nabla} \cdot (\vec{p} \vec{v}) = 0, \n\rho (\vec{v} \cdot \vec{\nabla}) \vec{v} = \vec{j} \times \vec{B} - \vec{\nabla} p - \rho g \vec{e}_y, g > 0 \nE_0 + v_x B_y - v_y B_x = \eta j_z, \n\vec{v} \cdot \vec{\nabla} p + \gamma p \vec{\nabla} \cdot \vec{v} = (\gamma - 1) \eta j_z^2,
$$

where

$$
\vec{B} = \vec{\nabla} \times (A \vec{e}_z) = \vec{\nabla} A \times \vec{e}_z
$$

• the density must be constant

- the density must be constant
- the pressure is a quadratic form $p = p_0 + p_1x + p_2y + p_3xy + p_4x^2 + p_5y^2$

- the density must be constant
- the pressure is a quadratic form $p = p_0 + p_1x + p_2y + p_3xy + p_4x^2 + p_5y^2$
- the resistivity cannot be constant, otherwise the flow is completely field aligned!

- the density must be constant
- the pressure is a quadratic form $p = p_0 + p_1x + p_2y + p_3xy + p_4x^2 + p_5y^2$
- the resistivity cannot be constant, otherwise the flow is completely field aligned!
- the electric field must be zero!

- the density must be constant
- the pressure is a quadratic form $p = p_0 + p_1x + p_2y + p_3xy + p_4x^2 + p_5y^2$
- the resistivity cannot be constant, otherwise the flow is completely field aligned!
- the electric field must be zero!

Consequently :

Ohm's law must be regarded as ^a definition equation for η

Assumptions and basic MHD equations

The 'standard' magnetic skeleton Standard: $A = ax^2 + by^2$

$$
a = -\frac{\mu_0}{4} (j_t + j_z) \quad b = \frac{\mu_0}{4} (j_t - j_z)
$$

$$
\Leftrightarrow \quad j_z = -\frac{2}{\mu_0} (a + b) \quad j_t = \frac{2}{\mu_0} (b - a) .
$$

$$
\lambda_B \propto \pm \sqrt{j_t^2 - j_z^2}
$$

Example: The complete linear approach Resulting algebraic equation system

$$
\rho (V_{11}^2 + V_{12}V_{21}) + 2p_4 - 2aj_z = 0,
$$

\n
$$
\rho (V_{11}^2 + V_{12}V_{21}) + 2p_5 - 2bj_z = 0,
$$

\n
$$
p_3 = 0,
$$

\n
$$
-\rho (V_{12}V_{21} + V_{11}^2)y_0 + p_2 + \rho g = 0,
$$

\n
$$
-\rho V_{11}^2 x_0 - \rho V_{12}V_{21}x_0 + p_1 = 0,
$$

$$
(-V_{11}p_1 - V_{21}p_2)x_0 + (V_{11}p_2 - V_{12}p_1)y_0 = qE_0,
$$

\n
$$
V_{21}p_2 + V_{11}(p_1 - 2x_0p_4) - 2V_{12}y_0p_4 = 2aq(V_{11}x_0 + V_{12}y_0),
$$

\n
$$
V_{12}p_1 - 2V_{21}x_0p_5 + V_{11}(2y_0p_5 - p_2) = 2bq(V_{21}x_0 - V_{11}y_0),
$$

\n
$$
2V_{12}p_4 + 2V_{21}p_5 = q(-2aV_{12} - 2bV_{21}),
$$

\n
$$
2p_4V_{11} = -2aqV_{11},
$$

\n
$$
-2p_5V_{11} = 2bqV_{11}
$$

The complete linear approach

Solving the nonlinear algebraic equation system

Now we use the assumption that $V_{11} = 0$ and $x_0 = 0$.

$$
p_2 = -\frac{\rho g}{2} - \frac{\rho^2 g V_{12}^2}{4b\gamma j_z} \mp \frac{\rho g}{4b\gamma j_z} \sqrt{D},
$$

\n
$$
p_4 = \frac{1}{2} \left((2a - b\gamma) j_z + \frac{\rho V_{12}^2}{2} \pm \frac{1}{2} \sqrt{D} \right)
$$

\n
$$
p_5 = \frac{1}{2} \left((2 - \gamma) b j_z + \frac{\rho V_{12}^2}{2} \pm \frac{1}{2} \sqrt{D} \right),
$$

\n
$$
y_0 = \frac{\rho g}{2b\gamma j_z},
$$

\n
$$
V_{21} = \frac{2\gamma b j_z - \rho V_{12}^2 \mp \sqrt{D}}{2\rho V_{12}},
$$

The complete linear approach Solving the nonlinear algebraic equation system The discriminant D:

$$
D = (\rho V_{12}^2)^2 + P(j_z, j_t, \gamma) \rho V_{12}^2 + Q(j_z, j_t, \gamma) \ge 0
$$

Define

$$
\varepsilon_{1} := \rho V_{12, crit1}^{2} = \frac{\mu_{0}}{2} (3j_{t} + j_{z}) \gamma j_{z} + 2\mu_{0} \gamma |j_{z}| \sqrt{\frac{j_{t} (j_{t} + j_{z})}{2}}
$$

$$
\varepsilon_{2} := \rho V_{12, crit2}^{2} = \frac{\mu_{0}}{2} (3j_{t} + j_{z}) \gamma j_{z} - 2\mu_{0} \gamma |j_{z}| \sqrt{\frac{j_{t} (j_{t} + j_{z})}{2}}
$$

ler – Stationary 2D resistive MHD flows

The complete linear approach

Solving the nonlinear algebraic equation system

....but the problem is the resistivity :

$$
\eta = \frac{1}{j_z} (2aV_{12}y_0x - (2aV_{12} + 2bV_{21})xy)
$$

which is positive in 2 quadrants, and negative in the other 2 quadrants

Possible interpretation(s) of ^a negative resistivity ??

To avoid negative resistivities: Linearization of the original set of resistive MHD equations

$$
\rho (V_{11}^2 + V_{12}V_{21}) + 2p_4 - 2aj_z = 0,
$$

\n
$$
\rho (V_{11}^2 + V_{12}V_{21}) + 2p_5 - 2bj_z = 0,
$$

\n
$$
p_3 = 0,
$$

\n
$$
-\rho (V_{12}V_{21} + V_{11}^2)y_0 + p_2 + \rho g = 0,
$$

\n
$$
-\rho V_{11}^2 x_0 - \rho V_{12}V_{21}x_0 + p_1 = 0,
$$

$$
(-V_{11}p_1 - V_{21}p_2)x_0 + (V_{11}p_2 - V_{12}p_1)y_0 = qE_0,
$$

\n
$$
V_{21}p_2 + V_{11}(p_1 - 2x_0p_4) - 2V_{12}y_0p_4 = 2aq(V_{11}x_0 + V_{12}y_0),
$$

\n
$$
V_{12}p_1 - 2V_{21}x_0p_5 + V_{11}(2y_0p_5 - p_2) = 2bq(V_{21}x_0 - V_{11}y_0),
$$

\n
$$
2V_{12}p_4 + 2V_{21}p_5 = q(-2aV_{12} - 2bV_{21}),
$$

\n
$$
2p_4V_{11} = -2aqV_{11},
$$

\n
$$
-2p_5V_{11} = 2bqV_{11}
$$

Dieter Nickeler – Stationary 2D resistive MHD flows

Spatially linearized resistive MHD equations **Spatially linearized resistive MHD equations**

$$
\rho (V_{11}^2 + V_{12}V_{21}) + 2p_4 - 2aj_z = 0,
$$

\n
$$
\rho (V_{11}^2 + V_{12}V_{21}) + 2p_5 - 2bj_z = 0,
$$

\n
$$
p_3 = 0,
$$

\n
$$
-\rho (V_{12}V_{21} + V_{11}^2)y_0 + p_2 + \rho g = 0,
$$

\n
$$
-\rho V_{11}^2 x_0 - \rho V_{12}V_{21}x_0 + p_1 = 0,
$$

$$
(-V_{11}p_1 - V_{21}p_2)x_0 + (V_{11}p_2 - V_{12}p_1)y_0 = qE_0 = 0
$$

\n
$$
V_{21}p_2 + V_{11}(p_1 - 2x_0p_4) - 2V_{12}y_0p_4 = 2aq(V_{11}x_0 + V_{12}y_0),
$$

\n
$$
V_{12}p_1 - 2V_{21}x_0p_5 + V_{11}(2y_0p_5 - p_2) = 2bq(V_{21}x_0 - V_{11}y_0),
$$

\n
$$
-2V_{12}p_4 + 2V_{21}p_5 = -q(-2aV_{12} - 2bV_{21}),
$$

\n
$$
-2p_4V_{11} = -2aqV_{11},
$$

\n
$$
-2p_5V_{11} = 2bqV_{11}.
$$

Solutions of the linearized system

Neglecting gravity and setting $y_0 = 0$ delivers

$$
p_4 = -\frac{9}{2} (V_{11}^2 + V_{12}V_{21}) + aj_z
$$

\n
$$
p_5 = -\frac{9}{2} (V_{11}^2 + V_{12}V_{21}) + bj_z
$$

Normalize V_{12}, V_{21} on V_{11}, j_z on j_t

$$
V_{21} = \frac{1+j_z}{1-j_z} V_{12} + 2s \frac{\sqrt{1-j_z^2}}{1-j_z}
$$

with the restriction of $s \in [-1,1].$ This guarantees that $\lambda_{\rm v}^2 = 1 + V_{12} V_{21} \geq 0$.

Solutions of the linearized system

And for the resistivity it follows:

$$
\eta = -2ax^2 - 2xy(aV_{12} + bV_{21}) + 2by^2
$$

But the problem also in this case is:

No electric field !

But, at least (for special values of *^s*) the plasma can cross the separatrix.

 \overline{D} flow

Conclusions and outlook

- No real reconnection solutions for purely resistive stationary stagnation point flows.
- Either it is necessary to use additional dissipation terms, e.g., radiation (Steinolfson),
- or to use higher orders of *^x* and *y*.
- Search for explanations for effective negative resistivity ("anti-dissipation")

The complete linear approach Solving the nonlinear algebraic equation system Now we use the assumption that $V_{11} = 0$. Then we rewrite the MHD equations:

$$
\rho V_{12}V_{21} + 2p_4 - 2aj_z = 0,
$$

\n
$$
\rho V_{12}V_{21} + 2p_5 - 2bj_z = 0,
$$

\n
$$
-\rho V_{12}V_{21}y_0 + p_2 + \rho g = 0,
$$

\n
$$
-\rho V_{12}V_{21}x_0 + p_1 = 0,
$$

 $-V_1$ ₂*y*₀*p*₁ − *V*₂₁*x*₀*p*₂ = *qE*₀, $V_{21}p_2 - 2V_{12}y_0p_4 = 2qV_{12}ay_0$ $V_{12}p_1 - 2V_{21}x_0p_5 = 2qV_{21}bx_0$ $V_{12} \left(p_4 + q a\right) + V_{21} \left(p_5 + q b\right) \;\;\; = \;\;\, 0 \, . \quad$ Dieter Nickeler – Stationary 2D resistive MHD flows