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Miroslav Bárta, Astronomical Institute, Ondřejov
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Motivation and introduction:
• Geometrical and topological structure of field lines, stream

lines and isolines of the resistivity: local analysis in the
vicinity of null points of magnetic field and plasma flow

• Taylor expansion

~B(~x) = ~B(~x0)+(~x−~x0) ·~∇~B+ .....

• Here~x0 =~0, ~B(~x0 =~0) =~0 therefore

~B(~x) =~x ·~∇~B(~0)+ ....
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Excursion: Assumptions and basic MHD
equations

Assumptions

• Solving the problem in pure 2D, ∂/∂z = 0

~v =

(

V11 V12
V21 V22

)(

x− x0
y− y0

)

in analogy to the magnetic field ~B

~B =
↔
B ~x =

(

B11 B12
B21 B22

)(

x
y

)
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Motivation and introduction:
possibilities...

What are the typical or possible types of dynamical systems
allowing the plasma to cross the magnetic separatrices in

2D stationary resistive MHD?

• For divergence free fields geometries/topologies of field
lines are restricted, see e.g. Parnell et al. (1996)

• for general 2D vector fields there are more possibilities ⇒
resistivities can be a quadric, what are possible shapes?

• How can vector fields be classified? (Eigenvalue structure)
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Motivation and introduction:
...and problems

• ...but maybe there are no ‘linear’ fields, but only higher
order fields

• ...using all orders of x and y of the MHD equations or only
that of order zero and one ?
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Aims:

• (i) Find restrictions that tell us which kind of flows fit to
which type of magnetic field lines, e.g. X-lines to X-lines

• (ii) Find restrictions that deliver reasonable resistivities.

• (iii) Determination of the complete skeleton of RMHD
solutions in 2D.
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Assumptions and basic MHD equations

Basic MHD equations

~∇ · (ρ~v) = 0 ,

ρ(~v ·~∇)~v = ~j×~B−~∇p−ρg~ey , g > 0
E0 +vxBy −vyBx = η jz ,
~v ·~∇p+ γp~∇ ·~v = (γ−1)η j2

z ,

where

~B = ~∇× (A~ez) =~∇A×~ez
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First Conclusions:
• the density must be constant

• the pressure is a quadratic form
p = p0 + p1x+ p2y+ p3xy+ p4x2 + p5y2

• the resistivity cannot be constant, otherwise the
flow is completely field aligned!

• the electric field must be zero!

Consequently :
Ohm’s law must be regarded as a definition equation
for η
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Assumptions and basic MHD equations

The ‘standard’ magnetic skeleton

Standard: A = ax2 +by2

a = −µ0
4 ( jt + jz) b = µ0

4 ( jt − jz)

⇔ jz = − 2
µ0

(a+b) jt = 2
µ0

(b−a) .

λB ∝ ±
√

j2
t − j2

z
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Example: The complete linear approach
Resulting algebraic equation system

ρ
(

V 2
11 +V12V21

)

+2p4 −2a jz = 0 ,

ρ
(

V 2
11 +V12V21

)

+2p5 −2b jz = 0 ,

p3 = 0 ,

−ρ(V12V21 +V 2
11)y0 + p2 +ρg = 0 ,

−ρV 2
11x0 −ρV12V21x0 + p1 = 0 ,

(−V11 p1 −V21 p2)x0 +(V11 p2 −V12 p1)y0 = qE0 ,

V21 p2 +V11 (p1 −2x0 p4)−2V12y0 p4 = 2aq(V11x0 +V12y0) ,

V12 p1 −2V21x0 p5 +V11 (2y0 p5 − p2) = 2bq(V21x0 −V11y0) ,

2V12 p4 +2V21 p5 = q(−2aV12 −2bV21) ,

2p4V11 = −2aqV11 ,

−2p5V11 = 2bqV11
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The complete linear approach

Solving the nonlinear algebraic equation system

Now we use the assumption that V11 = 0 and x0 = 0.

p2 = −ρg
2 − ρ2gV 2

12
4bγ jz

∓ ρg
4bγ jz

√
D ,

p4 = 1
2

(

(2a−bγ) jz +
ρV 2

12
2 ± 1

2

√
D

)

p5 = 1
2

(

(2− γ)b jz +
ρV 2

12
2 ± 1

2

√
D

)

,

y0 = ρg
2bγ jz

,

V21 =
2γb jz−ρV 2

12∓
√

D
2ρV12

,

Dieter Nickeler – Stationary 2D resistive MHD flows



The complete linear approach

Solving the nonlinear algebraic equation system

The discriminant D:

D = (ρV 2
12)

2 +P( jz, jt ,γ)ρV 2
12 +Q( jz, jt ,γ) ≥ 0

Define

ε1 := ρV 2
12,crit1 =

µ0

2
(3 jt + jz)γ jz +2µ0γ| jz|

√

jt ( jt + jz)
2

ε2 := ρV 2
12,crit2 =

µ0

2
(3 jt + jz)γ jz −2µ0γ| jz|

√

jt ( jt + jz)
2
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The complete linear approach

Solving the nonlinear algebraic equation system

....but the problem is the resistivity :

η =
1
jz

(2aV12y0x− (2aV12 +2bV21)xy)

which is positive in 2 quadrants, and negative in the other 2
quadrants

Possible interpretation(s) of a negative resistivity ??
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To avoid negative resistivities:
Linearization of the original set of resistive MHD

equations

ρ
(

V 2
11 +V12V21

)

+2p4 −2a jz = 0 ,

ρ
(

V 2
11 +V12V21

)

+2p5 −2b jz = 0 ,

p3 = 0 ,

−ρ(V12V21 +V 2
11)y0 + p2 +ρg = 0 ,

−ρV 2
11x0 −ρV12V21x0 + p1 = 0 ,

(−V11 p1 −V21 p2)x0 +(V11 p2 −V12 p1)y0 = qE0 ,

V21 p2 +V11 (p1 −2x0 p4)−2V12y0 p4 = 2aq(V11x0 +V12y0) ,

V12 p1 −2V21x0 p5 +V11 (2y0 p5 − p2) = 2bq(V21x0 −V11y0) ,
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Spatially linearized resistive MHD equations

= 0
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Solutions of the linearized system

Neglecting gravity and setting y0 = 0 delivers

p4 = −ρ
2

(

V 2
11 +V12V21

)

+a jz
p5 = −ρ

2

(

V 2
11 +V12V21

)

+b jz

Normalize V12,V21 on V11, jz on jt

V21 =
1+ jz
1− jz

V12 +2s

√

1− j2
z

1− jz

with the restriction of s ∈ [−1,1].
This guarantees that λ2

v = 1+V12V21 ≥ 0.
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Solutions of the linearized system

And for the resistivity it follows:

η = −2ax2−2xy(aV12 +bV21)+2by2

But the problem also in this case is:

No electric field !

But, at least (for special values of s) the plasma can cross the
separatrix.
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V
12

= V11 = 1 jz =0.8s = −1 , ,
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Conclusions and outlook

• No real reconnection solutions for purely resistive
stationary stagnation point flows.

• Either it is necessary to use additional dissipation terms,
e.g., radiation (Steinolfson),

• or to use higher orders of x and y.

• Search for explanations for effective negative resistivity
("anti-dissipation")
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The complete linear approach
Solving the nonlinear algebraic equation system

Now we use the assumption that V11 = 0. Then we rewrite the
MHD equations:

ρV12V21 +2p4 −2a jz = 0 ,

ρV12V21 +2p5 −2b jz = 0 ,

−ρV12V21y0 + p2 +ρg = 0 ,

−ρV12V21x0 + p1 = 0 ,

−V12y0 p1 −V21x0 p2 = qE0 ,

V21 p2 −2V12y0 p4 = 2qV12ay0 ,

V12 p1 −2V21x0 p5 = 2qV21bx0 ,

V12 (p4 +qa)+V21 (p5 +qb) = 0 . Dieter Nickeler – Stationary 2D resistive MHD flows


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

