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Excursion: Assumptions and basic MHD
equations

Assumptions

e Solving the problem in pure 2D, d/dz =0

o (Vn V12) (x—xo)
Vor Voo Y —Y0

in analogy to the magnetic field B

- By, B
(5 )5
B>1 By y
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Motivation and introduction:
possibilities...

What are the typical or possible types of dynamical systems
allowing the plasma to cross the magnetic separatrices in
2D stationary resistive MHD?
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resistivities can be a quadric, what are possible shapes?
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What are the typical or possible types of dynamical systems
allowing the plasma to cross the magnetic separatrices in
2D stationary resistive MHD?

* For divergence free fields geometries/topologies of field
lines are restricted, see e.g. Parnell et al. (1996)

 for general 2D vector fields there are more possibilities =
resistivities can be a quadric, what are possible shapes?

* How can vector fields be classified? (Eigenvalue structure)
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 ...but maybe there are no ‘linear’ fields, but only higher
order fields
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 ...but maybe there are no ‘linear’ fields, but only higher
order fields

e ...using all orders of x and y of the MHD equations or only
that of order zero and one ?
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Aims:

e (1) Find restrictions that tell us which kind of flows fit to
which type of magnetic field lines, e.g. X-lines to X-lines
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Aims:

* (1) Find restrictions that tell us which kind of flows fit to
which type of magnetic field lines, e.g. X-lines to X-lines

e (11) Find restrictions that deliver reasonable resistivities.

e (111) Determination of the complete skeleton of RMHD
solutions in 2D.
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Assumptions and basic MHD equations
Assumptions

e Solving the problem in pure 2D, d/dz =0

o (Vll V12> (X—m)
Vor Voo Y — Y0

in analogy to the magnetic field B
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Assumptions and basic MHD equations

Basic MHD equations

V- (pV) = 0,

p(f’/-f})?/ — fx§—€7p—pg5y,g>0
EO_I’VxBy_\LyBx = MNJz,
V-Vp+ypV-V = (y—1)nj2,

where

B=V x (A2, = VA x &,
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First Conclusions:

* the density must be constant
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* the density must be constant

First Conclusions:

* the pressure 1s a quadratic form

P = Po

P1X

P2y

pP3Xxy

p4x

2

pPsy
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P2y

pP3Xxy

p4x

P

pPsy

P

- the resistivity cannot be constant, otherwise the

flow 1s completely field aligned!
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* the density must be constant

First Conclusions:

* the pressure 1s a quadratic form

P = Po

P1X

P2y

pP3Xxy

p4x

P

pPsy

P

- the resistivity cannot be constant, otherwise the

flow 1s completely field aligned!

 the electric field must be zero!

Ohm'’s law must be regarded as a

for M

Consequently :
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Assumptions and basic MHD equations

The ‘standard” magnetic skeleton

Standard: A = ax?* + by?

xBocz\/j,?—jg
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Example: The complete linear approach
Resulting algebraic equation system

p (Vi +ViaVar ) +2pa — 2aj,
p (V121 +Vi2Va1) +2ps — 2bj,
pP3

—p(Vi2Var + Vi )yo + p2 + pg
—pViixo — pViaVaixo + pi

(=Vitp1 —Vaip2)xo+ (Vitp2 —Vizp1)yo =
Va1p2 + Vi1 (p1 — 2x0pa) —2Vi2yops =
Viap1 —2Va1xops + Vi1 (2yops —p2) =

2Viops +2Va1ps =
2paVii =
—2psVi1 =

qEo ,

2aq(Vi1xo +Vi2y0)
2bq (Va1xo — Vi1yo) ,
q(—2aVip —2bVyy),
—2aqV1y,

2bgV11
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The complete linear approach

Solving the nonlinear algebraic equation system

Now we use the assumption that Vi1 =0 and xp = 0.

_ pg PXVEH __ pg
P2 = =73~ Gy Ty VP

;
ps = %((261 bY)Jerp”‘:%\/B)
V
ps = 3(@-mbi+22+1 VD).
_pg
yO N 2bfYJZ7
V21 _ 2Ybj, pV122:|:\/l_)
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The complete linear approach

Solving the nonlinear algebraic equation system

The discriminant D:

= (pVi2)* + P(jz, i, VPVia + Qljzs jis¥) = O

Define

Jr (e + Jz)
€1 1= pV122,crit1 — (3]t _I_]Z) YJ: +2;UO’Y‘]Z‘ \/ t :

oS S

Ji (J +J)
€ 1= pV122,crit2 — (3]t+]z) Yjz — 2/107’]2’ \/ el
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The complete linear approach

Solving the nonlinear algebraic equation system

....but the problem is the resistivity :

|
nN=— (2CZV12y()x — (2CZV12 + 2bV21)xy)

Jz

which 1s positive 1n 2 quadrants, and in the other 2
quadrants

Possible interpretation(s) of a negative resistivity ??
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To avoid negative resistivities:

Linearization of the original set of resistive MHD
equations

Y (V121 +V12V21) +2ps—2aj, = 0

Y (V121 +Vi2Vai) +2ps —2bj, = 0
p3 = 0,

—p(ViaVo1 + Vi Yo+ p2+pg = O

—PV121X0 —pVi2Voixo+p1 = O

(=Vitp1 —Vaip2)xo+ (Vitpa —Vizpt)yo =  qko,
Va1p2 + Vi1 (p1 — 2x0p4) —2Vizyops = 2aq(Viixo +Vi2yo),
Vizp1 —2Vaixops + Vit (2yops —p2) = 2bq(Vaixo —Vi1yo)
2Viopa +2Vaips = q(—2aVia —2bVy),
2psV11 = —2aqV11,
—2psVi1 = 2bgV1
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Spatially linearized resistive MHD equations

p (Vi +ViaVa1) +2ps —2aj;
p (Vi +Vi2Va1) +2ps — 2b ;.
pP3

—p(ViaVa1 + Vi1 )yo + p2 + pg
—PV121X0 —pVi2Va1xo + p1

(=Viip1 —Voip2)xo+ (Viipo —Viapi)yo =
Voip2 + Vi1 (p1 —2xops) —2Vioyopsa =

Viop1 —2Voixops + Vit 2yops — p2) =
7V1f1 Na —|— ?V’)1 Nz p—

1y T V=5 S

0“4‘/11 —
“rarii

—777:‘/11 —_—

- r v iy

aq(Vi1xo +Vi2yo)
(Va1x0 — Vi1yo)
—2aVyn —2hVay).
—2aqVi+
2hqVy
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Solutions of the linearized system

Neglecting gravity and setting yo = O delivers

Py = —%(V121+V12V21)+ajz
ps = —5 (Vi +ViaVar) +bj;

Normalize Vip,V>1 on Vi1, j, on J;

with the restriction of s € [—1,1].

This guarantees that k% =1+ ViV > 0.
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Solutions of the linearized system

And for the resistivity it follows:

n= —ax® — 2xy(aVip +bVay) + 2by?

But the problem also 1n this case 1s:

No electric field !

But, at least (for special values of s) the plasma can cross the
separatrix.
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Conclusions and outlook

No real reconnection solutions for purely resistive

stationary stagnation point flows.

Either 1t 1s necessary to use additional dissipation terms,

e.g., radiation (Steinolfson),

or to use higher orders of x and y.

Search for explanations for effective negative resistivity

("anti-dissipation")
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The complete linear approach

Solving the nonlinear algebraic equation system
Now we use the assumption that V1 = 0. Then we rewrite the

MHD equations:

PVi2Va1 +2ps —2aj,
pVi2Va1 +2ps —2bj;
—pVi2Varyo+ p2+p8
—pVi2Va1xo + pi

—Vi2yop1 — Vai1xop2

Va1p2 —2Vi2yop4

Vi2p1 —2Va1x0ps

Viz (pa+qa) + Va1 (ps + gb)

O . Dieter Nickeler — Stationary 2D

resistive MHD flow:



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

