Narrow-Line Regions of Seyfert Galaxies Optical Integral-Field Spectroscopy

Ivana Stoklasová

Advisor: Bruno Jungwiert (ASCR, Prague) Co-advisor: Pierre Ferruit (CRAL, Lyon)

Ondřejov 15.1.2009

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Narrow-Line Regions (NLRs)

Unified Model of AGN

Urry & Padovani (1995)

Seyfert galaxies:

- Low luminosity AGN $(L \sim 10^{40-43} \text{ erg s}^{-1})$
- Hosts: S0–Sbc

NLRs: Ionized gas

- $\bullet~T\sim 10^4\,K$
- $n_e \sim 10^2 10^3 \, cm^{-3}$
- Extent: $10^2 10^3 \, \text{pc}$
- Spatially resolved
 - The only AGN part

(日)

- Ionization source: AGN radiation
- Velocities: $10^2 10^3 \text{ km s}^{-1}$
- Forbidden lines

Narrow-Line Regions (NLRs)

Unified Model of AGN

Urry & Padovani (1995)

Seyfert galaxies:

- Low luminosity AGN $(L \sim 10^{40-43} \text{ erg s}^{-1})$
- Hosts: S0–Sbc

Optical imaging (HST)

Complex Structure of NLRs

Filamentary structure NGC 1068

Central 200 pc in [O III]

Macchetto et al. (1994), HST

Kinematics NGC 5252 - RUTGERS FABRY-PEROT 15" 6.7 kpc 15" 6.7 kpc Projected Major Axis Projected Major Axis of Galaxy [O III]λ5007 Velocity Field [O III]λ5007 Intensity

Morse et al. (1996)

Integral-Field Spectroscopy (IFS)

- Spatially resolved spectroscopy
- <u>Simultaneous</u> acquisition of 10² 10⁴ spectra
- Datacube $(x, y, \lambda) \rightarrow$ "3D" spectroscopy

Principles of different integral-field units (IFUs). Credit: University of Durham.

(日)

Thesis Data

• 16 nearby Seyfert galaxies, redshifts $z \in (0.002, 0.05)$

- I1 Sey 2s
- 3 Sey 1.5s
- 2 Sey 1.2s

Optical IFU: OASIS at 3.6m CFHT (Mauna Kea, Hawaii)

- observations in 2 spectral domains (~ 1000 Å each)
- OASIS constructed in CRAL, Lyon
- \sim 1000 spectra simultaneously
- array of hexagonal lenslets (close packing)
- spatial sampling 0.27" 0.41"
- spectral sampling 1.92 1.95 Å
- field of view (FOV) $10^{\prime\prime} \times 8^{\prime\prime}$ or $15^{\prime\prime} \times 12^{\prime\prime}$

• Observations in 2000 – 2002, P. Ferruit et al.

Thesis Objectives

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kinematics of ionized gas in NLRs

- Rotation
 - gravitational potential
- Outflow or inflow motions
 - AGN influence
- Properties of ionized gas
 - Electron density
 - Ionization structure
 - Dust distribution
 - Source of ionization
- Underlying stellar populations
 - Age and metallicity
 - Stellar kinematics

Stellar Population Modelling

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Modelling of the Spectra

Two steps:

- Stellar component
 - continuum emission, line absorption
- Emission lines of gas

Modelling of the Spectra

Two steps:

- Stellar component
 - continuum emission, line absorption
- Emission lines of gas

Modelling of the Spectra

Two steps:

- Stellar component
 - continuum emission, line absorption
- Emission lines of gas

Models of Stellar Component

Degrees of approximation

- Smooth continuum polynomial fit
- Galaxy spectrum from outside of NLR
- Individual stellar spectra
- Synthetic evolutionary spectra of stellar populations

(日)

Models of Stellar Component

Degrees of approximation

- Smooth continuum polynomial fit
- Galaxy spectrum from outside of NLR
- Individual stellar spectra
- Synthetic evolutionary spectra of stellar populations

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Models of Stellar Component

Degrees of approximation

- Smooth continuum polynomial fit
- Galaxy spectrum from outside of NLR
- Individual stellar spectra
- Synthetic evolutionary spectra of stellar populations

Motivation

• Correction of the hydrogen lines for underlying absorption

- Stellar velocities
- Composition of stellar ages (and metallicities)

Stellar Population Modelling

Synthetic evolutionary models of stellar populations

GALAXEV library, Bruzual & Charlot (2003)

Modelling directly in the wavelength (not Fourier) space

"Penalized Pixel Fitting", Cappellari & Emsellem (2004)

Homogenized S/N across FOV, irregular bins of S/N = 50

Voronoi tesselation, Cappellari & Copin (2003)

Stellar populations of different ages (Z= Z_{\odot})

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで、

7500

LOSVD Modelling

(Line Of Sight Velocity Distribution)

Recovering LOSVD – directly in wavelength space (no FT)

LOSVD Gauss-Hermite series:

$$\mathcal{L}(\mathbf{v}) = \frac{e^{-\frac{1}{2}(\mathbf{v}-\bar{\mathbf{v}})^2/\sigma^2}}{\sigma\sqrt{2\pi}} \left[1 + \sum_{m=3}^M h_m H_m\right]$$

• Model spectrum (templates T_k , Legendre pol. P_l):

$$G_{\text{mod}}(u) = \sum_{k=1}^{K} w_k [\mathcal{L} \star T_k](u) + \sum_{l=0}^{L} b_l P_l(u)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Model Parameters

Stellar templates

• Two simple stellar populations (SSPs): 11 Gyr, 100 Myr

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

- from library Bruzual & Charlot (2003)
- selection based on Cid Fernandes et al. (2004)

IMF

- Salpeter
- Cut-offs: $m_{\rm min}=$ 0.1 M_{\odot} , $m_{\rm max}=$ 100 M_{\odot}

Stellar evolution

Padova evolutionary tracks

Examples of stellar fits

Mass Fractions of Young Stars

NGC 2992

NGC 3081

NGC 5929

Stellar Velocities

- Mean LOS motions (LOS = Line Of Sight)
- Computed from Doppler shift

Analytic Velocity Fields

Flat disk with circular motion

Linear rotation curve

Flat rotation curve

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Morphology and Kinematics of Gas

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Gas Emission Lines

- Recombination lines (Balmer series of H):
 - Hα λ 6563 Å
 - Hβ λ 4861 Å
- Forbidden lines (collisionally excited):
 - [O III] λλ 4959, 5007 Å
 - [N I] λλ 5198, 5200 Å
 - [O I] λλ 6300, 6364 Å
 - [N II] λλ 6548, 6583 Å
 - [S II] λλ 6717, 6731 Å

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

э

Emission Line Modelling

Line profiles:

- Single-Gaussian models of narrow lines
- Add a broad Gaussian in Sey 1s
- Fitting software: FIT/SPEC (Rousset 1992)
 - Allows fits on whole datacubes
 - Constraints on intensities, velocities and FWHM

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

- Constraints on forbidden line ratios
- Non-linear least squares
- Interface: ESO MIDAS
- Created at CRAL Observatoire de Lyon

NLR morphologies – [O III]

Misalignments – NGC 5728

 $1'' \leftrightarrow 200\,pc$

Misalignments - NGC 4051

 $1'' \leftrightarrow 60\,\text{pc}$

S-shaped velocity isocontours (H α)

Signatures of non-circular motions due to

- non-axisymmetric potentials (bars, warps, spirals)
- radial flows

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Twisted isovelocity contours - models

Jungwiert et al. (2003)

Mean LOS velocities of gas

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペー

LOS velocity dispersion

Line Splitting – Mrk 348, NGC 4051

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | のへで

Properties of NLR Gas

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Electron densities

Ratio of [S II] lines sensitive to n_e in the range $10^2 - 10^4$ cm⁻³

Critical densities:

- for [S II] 6717 Å: $1.5 \times 10^3 \, {\rm cm}^{-3}$
- for [S II] 6731 Å: $3.9 \times 10^3 \, {\rm cm}^{-3}$

NGC 2992

< □ > < 同 >

∃▶▲∃▶ ∃ ∽�?

Interstellar Extinction

Balmer decrement $H\alpha/H\beta$

- Intrinsic value
 - 2.86 in gas ionized by stellar radiation
 - 3.1 in gas ionized by AGN

 $1'' \leftrightarrow 200 \, \text{pc}$ $1'' \leftrightarrow 225 \, \text{pc}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Classification of emission objects

Diagnostic diagrams

- combinations of forbidden and permitted lines
 - e.g. [O III]/H β vs. [N II]/H α
- \Rightarrow Separation of emission objects by the ionizing source

Diagnostic Diagrams NGC 5728

Spatially resolved diagnostic diagrams

- Ionization structure of the NLR
- Classification and models only valid for global spectra
- Detailed photoionization modelling necessary
 - Derive ionization parameter, temperature, density
 - Ionization source(s), edge of AGN-ionized NLR

Summary

NLRs of 16 nearby Seyfert galaxies studied by IFS

- Kinematics of gas
 - S-shaped velocity fields found in 80% of Sey 2s
 - Non-axisymmetric potentials? Outflows?
 - Outflow detected in NGC 4051
 - Tilted ring detected in Mrk 348
 - Emission line splitting in 80% of objects
 - Need of better models
- Gas properties
 - Electron densities are strongly peaked
 - Interstellar extinction distributed unevenly
 - Dust necessary to include in models

(日) (日) (日) (日) (日) (日) (日) (日)

- Radial gradient of ionization structure
 - Future photoionization modelling
- Stellar populations
 - Radial gradients of stellar age
 - Stellar velocity fields to be modelled

Future Perspective

Objectives:

- Interpretation of 3D structure of the NLRs
- Dynamics of host galaxies
- Role of NLRs in AGN feeding

Methods:

- Kinematic modelling
 - Analytic models developed with B.Jungwiert
 - Elliptical rings, tilted rings
 - Fourier analysis
 - N-body models
 - Make use of velocity channel maps, p-v diagrams
- Ionization structure modelling
 - Numerical photoionization codes CLOUDY, MAPPINGS

Acknowledgements

The research has been supported by grants:

- Centre for Theoretical Astrophysics (LC06014)
- Institutional Research Plan No. AV0Z10030501, ASCR
- 205/03/H144/2003/02 of the Czech Science Foundation

PhD fellowship provided by the French government

Forbidden Transitions

Ion	Transition		Wavelength	Probability [s ⁻¹]	
[O I]	${}^{3}P_{2}$	\rightarrow	$^{1}D_{2}$	6300.3 Å	$6.3 imes10^{-3}$
[O I]	³ P ₁	\rightarrow	${}^{1}D_{2}$	6363.8 Å	$2.1 imes10^{-3}$
[O III]	${}^{3}P_{2}$	\rightarrow	$^{1}D_{2}$	5006.9 Å	$2.0 imes10^{-2}$
[O III]	³ P ₁	\rightarrow	${}^{1}D_{2}$	4958.9 Å	$6.7 imes10^{-3}$
[N I]	${}^{2}D_{3/2}^{0}$	\rightarrow	${}^{4}S^{o}_{3/2}$	5197.9 Å	$2.28 imes10^{-5}$
[N I]	${}^{2}D_{5/2}^{o}$	\rightarrow	${}^{4}S_{3/2}^{o}$	5200.4 Å	$6.13 imes10^{-6}$
[N II]	³ P ₂	\rightarrow	${}^{1}D_{2}$	6583.4 Å	$3.0 imes10^{-3}$
[N II]	³ P ₁	\rightarrow	${}^{1}D_{2}$	6548.1 Å	$1.0 imes10^{-3}$
[S II]	${}^{4}S_{3/2}$	\rightarrow	$^{2}D_{5/2}$	6716.4 Å	$2.6 imes10^{-4}$
[S II]	${}^{4}S_{3/2}$	\rightarrow	$^{2}D_{3/2}$	6730.8 Å	$8.8 imes 10^{-4}$

Emission Line Ratios

 $\begin{array}{l} 0.5 < [N \ I] \ \lambda 5198 \ / \ [N \ I] \ \lambda 5200 < 1.5; \\ [O \ III] \ \lambda 5007 \ / \ [O \ III] \ \lambda 4959 = 2.88; \\ [O \ I] \ \lambda 6300 \ / \ [O \ I] \ \lambda 6364 = 3.0; \\ [N \ II] \ \lambda 6583 \ / \ [N \ II] \ \lambda 6548 = 2.96; \\ 0.35 < [S \ II] \ \lambda 6717 \ / \ [S \ II] \ \lambda 6731 < 1.5 \ . \end{array}$

くしゃ (雪 (山) (J) (J

Critical densities

Ion	Wavelength	n _e ^(crit)
[O I]	6300 Å	$1.8 imes10^6\mathrm{cm}^{-3}$
[O III]	5007 Å	$7.0\times10^5\text{cm}^{-3}$
[S II]	6717 Å	$1.5 imes10^3\mathrm{cm}^{-3}$
[S II]	6731 Å	$3.9\times10^3\text{cm}^{-3}$
[N I]	5200 Å	$2.0\times10^3\text{cm}^{-3}$
[N II]	6583 Å	$8.6\times10^4\text{cm}^{-3}$

Ionization Potentials

Atom	First	Second
0	13.618 eV	35.12 eV
S	10.36 eV	23.34 eV
Ν	14.534 eV	29.60 eV
He	24.59 eV	54.42 eV

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < @

Seyfert 1 – Morphology – Mrk 79

 $1'' \leftrightarrow 440\,\text{pc}$

Tomography – Velocity Channel Maps – NGC 4051

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < @

Elliptical streaming – NGC 4388

Veilleux et al. (1999)

Velocities Observations [O III], $H\alpha$

Circular model

Elliptical model

FRE 40

30 60 -30

N-body simulations – NGC 1068

Emsellem et al. (2004)

Observations and model (central 20")

(日)

Modelling: N-body + SPH hydrodynamics

Radio emission - NGC 4051

Radio emission - NGC 5728

Stellar population ages

(Mass fractions of young stars)

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

OASIS optical scheme

Bacon et al. (2001)

Synthetic Stellar Populations

The GALAXEV code [Bruzual & Charlot 2003]

- Evolutionary population synthesis of stellar spectra
- Basic ingredients
 - input: libraries of stellar spectra (observational STELIB [LeBorgne et al. 2003], theoretical [LeJeune et al. 1997,1998])
 - stellar evolution prescription (Padova models)
 temporal evolution of single stellar populations (SSPs)

(日) (日) (日) (日) (日) (日) (日) (日)

- Assumed IMF: Salpeter or Chabrier
 - Cutoffs: $m_L = 0.1 M_{\odot}, \ m_U = 100 M_{\odot}$

Initial Mass Functions

• Salpeter IMF (1955):

 $\Phi(\log m) \propto m^{-1.35}$

• Chabrier IMF (2003):

$$\Phi(\log m) \propto \left\{ egin{array}{ll} \exp\left[-rac{(\log m - \log m_c)^2}{2\sigma^2}
ight] & ext{for } m \leq 1 \ M_{\odot} \ m^{-1.3} & ext{for } m > 1 \ M_{\odot} \end{array}
ight.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

with $m_c = 0.08 M_{\odot}, \sigma = 0.69$