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Abstract. Existence principles for the BVP (¢(u)) = f(t,u,v'), u(t;+) = Ji(u(t;)), o' (t;i+) =
M; (W' (t;), ¢ = 1,2,...,m, u(0) = u(T), v (0) = «'(T) are presented. They are based on
the method of lower/upper functions which are not well-ordered. We continue our investigations
from [16], where existence principles based on well-ordered lower /upper functions have been proved
and from [13]-[15], where related results for the case that ¢ is the identity have been delivered.
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1. Introduction

We will consider the problem

(1.1) (e(u' (1)) =f(t,u(®), u'(t)) ae. on [0,T],
(1.2) u(ti+) = Ji(u(ty), o'(ti+) = M;(u'(t;), i=1,2,....,m
(1.3) u(0) =u(T), «'(0)=u'(T)

where

u(t) =4/ (t;—) = lim u/'(¢), i=1,2,....m+1, «(0)=1d'(0+)= lim u'(¢)

t—t;— t—0+
and
meN, 0=ty <ty < <ty <tpy1 =T < o0,
(1.4) f is a Carathéodory function on [0,7] x R?

J; and M; are continuouson R, i =1,2,... m,

¢ is an increasing homeomorphism R — R, ¢(0) =0, ¢(R) =
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Throughout the paper we keep the following notation and conventions:
For a function w defined a.e. on [0,7], we put

T
|u]|o = sup ess |u(t)| and ||ul; = / lu(s)| ds.
0

te€[0,T]

For a given interval J C R, C(J) is the set of functions which are continuous on
J, C(J) is the set of functions having continuous first derivatives on J and L(J)
is the set of functions which are Lebesgue integrable on .J.
Denote D = {t1,t,...,t,,} and define Cp (or C{,) as the sets of functions
w: [0,T] — R,
o] (t) if te0,t4],
u(t) _ Ur1) (t) if te (tl,tg],

U[m) (t) if te (tm, 1],

where w; is continuous on [t;,%;41] (or continuously differentiable on [t;,¢;41]) for
i=0,1,....,m. If ue Cl, we define ||ullp = ||ullec + ||t/[|]oc- Cp and C} re-
spectively with the norms ||.||« and |.||p are Banach spaces. Further, ACp is
the set of functions u € Cp which are absolutely continuous on each subinterval
(tiytiv1), © = 0,1,...,m. The set of functions satisfying the Carathéodory condi-
tions on [0, 7] x R? will be denoted by Car([0,T] x R?). As usual, ya; will denote
the characteristic function of the set M C R. For ¢ € C(R) increasing on R and
x € R, we define

{z}, = max{u-a)l. w0},
Given a Banach space X and its subset M, let cl(M) and 0M denote the closure
and the boundary of M, respectively.

Let €2 be an open bounded subset of X. Assume that the operator F : cl(§2) —
X is completely continuous and Fu # u for all u € 9. Then deg(I—F,2) denotes
the Leray-Schauder topological degree of 1 — F with respect to €2, where I is the
identity operator on X.

A solution of the problem (1.1)—(1.3) is a function u € C{, such that ¢(u’) € ACp
and (1.1)—(1.3) hold.

A function ¢ € C}; is called a lower function of (1.1)—(1.3) if ¢(o’) € ACp and
o(a'(t)) > f(t,o(t),o'(t)) forae. tel0,T],

(
(1.5) o(tit) = Ji(o(t)), o' (L) > Mi(o' (1)), i =1,2,...,m,
0(0) = o(T), o'(0) = o'(T).

I
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Similarly, a function ¢ € Cl, with ¢(¢’) € ACp is an upper function of (1.1)-(1.3)
if it satisfies the relations (1.5) but with reversed inequalities.

Up to now, the only paper dealing with the problems with a ¢-Laplacian and
impulses is our previous paper [16], where we have established existence principles
based on the existence of well-ordered lower /upper functions. As concerns problem
(1.1), (1.3) (without impulses), there are various results about its solvability, see
e.g. [4], [5], [6], [8], [9], [10], [11], [12] and [19]. The papers which are devoted
to the lower/upper functions method for the problem (1.1), (1.3) mostly assume
well-ordered oy/09. We can refer to the papers [1], [3], [7] and [18]. The paper
2] is, to our knowledge, the only one presenting the lower /upper functions method
for the problem (¢(vw') = f(t,u), (1.3) under the assumption that o7 > o9, i.e.
lower /upper functions are in the reverse order. If ¢ = ¢, the authors get the
existence results for 1 < p < 2, only. Therefore the existence principle (Theorem
3.1) which we state here for the impulsive problem (1.1)—(1.3) and the case (1.6) are
new even for the non-impulsive problem (1.1), (1.3).

Our basic assumption is the existence of lower /upper functions:

(1.6) o1 and o9 are respectively lower and upper functions of (1.1)—(1.3)
such that (1) > o9(7) for some 7 € [0,T],

i.e., in contrast to [16], they are not well-ordered. Furthermore, as in [14]-[16], we
will assume that the impulse functions J;, M; fulfil the following weak monotonicity
like conditions

' < oo(ty) = Ji(x) < Ji(o2(t;), i=1,2,....m,
(18) { y <oy(ti) = Mi(y) < Mi(o1(t:)),
' y > oy(t;) = Mi(y) > M(oh(t), i=1,2,...,m,

To transfer the given problem (1.1)-(1.3) into a fixed point problem in C},, we
will borrow some ideas from [10] and [16]. First, notice that it can be equivalently
rewritten as (1.1), (1.2),

(1.9) u(0) = w(T) = u(0) + u'(0) — u'(T).

Further, for (¢,d) € Cp x R denote by a(¢,d) the unique solution a € R of the
equation

(1.10) d+/T¢_1(a+€(t)) dt =0
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(see [16, Lemma 3.2]) and define the operators N : C} +— Cp and J : C — C}
respectively by

<N@Wb/7@aaﬂwm

+ D [o(Mi(a' (1)) = o (2 (1) x(y,, 1 8). tE€[0.7],

(1.11)
and -
(112)  (T@)O =Y [hla) - o(t)] x(, 7y t € 0.7)

Finally, for x € C} and ¢ € [0,7T], define

(1.13) <HM@=A¢*@WuMﬂww»HN@W0®
+2(0) + 2'(0) — 2'(T) + (T (x))(t).

Then F : C} +— Cl is an absolutely continuous operator and u is a solution of
(1.1)—(1.3) if and only if F(u) = u (see [16, Theorem 3.5]).

In the proof of our main result we will need to evaluate the Leray-Schauder
degree of a certain auxiliary operator with respect to sets determined by couples
of well-ordered lower/upper functions. This is enabled by the following proposition
which follows from [16, Theorem 4.4].

1.1. Proposition. Assume that (1.4) holds and let « and [ be respectively lower
and upper functions of (1.1) — (1.3) such that

(1.14)  a(t) < pB(t) for t€[0,T] and o(r+)<pB(1+) for T €D,

and
(1.16) { y <o) = Miy) < M(o/(t:)),
' y > ﬂ,(ti) — Ml(y) > Mi(ﬁ/(ti))> i=12...,m.

Further, let h € L[0,T] be such that
(L.17)  |f(t,z,y)| < h(t)  forae t€[0,T] and all (x,y) € [a(t), 5(t)] x R
and let the operator F be defined by (1.10) — (1.13). Finally, for v € (0,00) denote

{ Qa, 8,7) ={u e Cp: at) <u(t) < B(t) fortel0,T],

(1.18)
alt+) < u(r+) < B(t+) for 7 €D, ||[v/|lo <7}
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Then deg(l — F,Qa, 5,7)) = 1 whenever Fu # u on 0Q(«, 3,7) and

llloo + [18llo0 .
(1.19) ~> {th|1}¢1 S — where A = o in (t; — ti1).

Proof. Using the Mean Value Theorem, we can show that

/ |oo + [|8]]o0
(1.20) o'l < A}, 4 10 £ 15e

holds for each u € Cp fulfilling a(t) < u(t) < 5(t) on [0,7] and a(7+) < u(t+) <
B(t+) on D. Thus, if we denote by ¢ the right-hand side of (1.20), we can follow
the proof of [16, Theorem 4.4]. O

2. A priori estimates

Notice that from a priori estimates given by Lemmas 2.1-2.3 in [15] and Lemma 2.4
in [14], only the first one depend on the form of the differential equation (1.1) and
requires a modification for the purposes of this paper.

2.1. Lemma. Let p; € (0,00), h e L[0,T), M; € C(R), ¢ = 1,2,...,m. Then
there exists d € (p1,00) such that the estimate

(2.1) 4]0 < d
is valid for each u € ACL and each M; € C(R), i=1,2,...,m, satisfying (1.3),
(22)  |o(u'(&u))| < p1 for some &, €10,T],

(23)  W(ti+) =MW (), i=1,2,...,m,
24) (¢ )| < h(t) for ae te[0,T)

(25)  sup{|Mi(y)|: [yl <a} <b = sup{|M;(y)| : |y <a} <b
for i=1,2,...,m, a € (0,00), b € (a,0).

Proof. Suppose that u € AC{ and M; € C(R), i = 1,2,...,m, satisfy (1.3)
and (2.2)—(2.5). Due to (1.3), we can assume that &, € (0,7], i.e. thereis j €
{1,2,...,m+ 1} such that &, € (¢t;_1,t;]. We will distinguish 3 cases: either j =1
or j=m+1lorl<j<m+4l. B

Let j = 1. Then, using (2.2) and (2.4), we obtain |¢(u'(t))| < p1 + ||h]|1 for
t e [O,tl], i.e.

(2.6) |u'(t)] < ai on [0,t],
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where a; = {p1 + H%Hl}(bl Since M; € C(R), we can find by(a;) € (ay,00) such

that |Mi(y)| < bi(ay) for all y € (—ay,a1). Hence, in view of (2.3) and (2.5), we
have |u/(t14)| < b1(a1), wherefrom, using (2.4), we deduce that

/(1)) < {{bl(m)h + ||E||1}¢1 for ¢ € (t1, ta).

Continuing by induction, we get b;(a;) € (a;,00) such that

(0] < e = {{Bia)} 4RI}, on (i ton]
for 1 =2,...,m, ie.
(2.7) |u']|oo < d:=max{a;: i=1,2,...,m+1}.
Assume that j = m + 1. Then, using (2.2) and (2.4), we obtain
(2.8) U ()| < amy1 on (tm, 11,

where B
Am41 = {Pl + Hhul} .
61

Furthermore, due to (1.3), we have [u/(0)| < @;,,+1 which together with (2.4) yields

that (2.6) is true with
a] = {{am+1}¢ -+ ”h”1}¢1

Now, proceeding as in the case j = 1, we show that (2.7) is true also in the case
j=m+1.
Assume that 1 < 7 < m+ 1. Then (2.2) and (2.4) yield

WO < apr = {4 IR}, on (t.ty]
If j <m, then
WO < ayer = {{brertasen) } IR} on (e teo]
where b;i1(aj+1) > aj41. Proceeding by induction we get (2.8) with

s = {{bulan)} 1B}

and by, (@) > am, wherefrom (2.7) again follows as in the previous case. O
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Remaining a priori estimates can be taken from [15] and [16] without any change:
2.2. Lemma. ([15, Lemma 2.2].) Let po,d,q € (0,00) and J; € C(R), i =
1,2,...,m. Then there exists ¢ € (pg,00) such that the estimate

(2.9) |u|loo < ¢

is wvalid for each u € Cp and each J; € CR), ¢ = 1,2,...,m, satisfying (1.3),
(1),
(2.10)  u(ti+) = Ji(u(t;)), i=1,2,...,m,
(2.11)  u(ru)| < po  for some 7, €0,T]
and
(2.12)  sup{|Ji(z)| : |z| < a} <b = sup{|J;(z)] : |z| < a} <b

for i=1,2,...,m, a € (0,00), b€ (a+ q,o0).
2.3. Lemma. ([15, Lemma 2.3].) Assume that oy, oy € ACL, J;, M, J;,
M; € C(R), i=1,2,...,m, satisfy (1.7), (1.8),

(2.13) { v >o(t) = j;<x> > ji(al(ti)) = Ji(o1(t)),
x < 02(ti) — :]Vz(CC) < QZ(O'Q(tZ)) = Jz<0'2(tz)), 1=1,2,...,m

and -
<oi(t;) = M(y) < M;(d(t;)),
(2.14) y < oy (t;) N(y) (01(2:))
y > oh(t;) = M;(y) > M;(oh(t;)), i=1,2,...,m.
Define
(2.15) B = {u € Cp : u satisfies (1.3),(2.10),(2.3) and one
of the conditions (2.16),(2.17),(2.18)},
where
(2.16) u(sy) < o1(sy) and u(t,) > o9(t,) for some s,,t, €[0,T],
(2.17) u>oy on [0,T] and inf |u(t) — o1 ()] =0,
te(0,7
(2.18) u<oy on [0,T] and inf |u(t) — oq(t)| = 0.
te[0,7

Then each function u € B satisfies

|u'(&u)] < p1 for some &, € [0,T], where

(2.19) 2 / !
1= 2 (Il + oallo) + Il + o + 1.



2.4. Lemma. ([14, Lemma 2.4].) Assume that oy, oo € ACL, J;, J; € C(R),
i=1,2,...,m, satisfy (1.7) and (2.13). Then

(2.20) min{oy (7,+), oo(1u+)} < u(r,+) <max{oi(1,+), 02(7u+)}
for some 1, €[0,T)

is true for each w € Cp fulfilling (1.3), (2.10) and one of the conditions (2.16) -
(2.18).

3. Main result

3.1. Theorem. Assume that (1.4), (1.6), (1.7) and (1.8) hold and let h € L[0,T]
be such that

(3.1) |f(t,z,y)| < h(t) for ae. t €[0,T] and all (x,y) € R

Then the problem (1.1) —(1.3) has a solution u satisfying one of the conditions
(2.16) — (2.18).

Proof. e STEP 1. We construct a proper auxiliary problem.
Let o1 and o9 be respectively lower and upper functions of (1.1)—(1.3) and let
p1 be associated with them as in (2.19). Put

h(t) =2h(t)+1 for a.e. t €[0,7] and p = p; + Z (I1M; (o (8))| + | Mi(oh(t:))])-

By Lemma 2.1, find d € (p,00) satisfying (2.1). Furthermore, put py = ||o1/oc +
|lo2|loo + 1 and

(3.2) q:zmax{< Y max | M;(y )|>,d+1}

m ly|<d+1
and, by Lemma 2.2, find ¢ € (py + ¢, 00) fulfilling (2.9). In particular, we have

(3.3) c> HUIHOO + HU?HOO +q+1, d> ”0/1“00 + HU;”oo + 1.

Finally, for a.e. t € [0,7] and all z,y € R and ¢ =1,2,...,m, define functions

( f(t,z,y) — h(t) — if ©<—c—1,
ft,z, y)+(:v+c)(h(t)+1) if —c—1l<z<—c
(34)  flt,zy) =1 flt,z,y) if —c<z<ec,
flt,z,y)+ (x—c)( t)+1) if e<x<c+1,
(St z,y) + h(t) + if ©>c+1,



(x+q if x<—c—1,

Ji(=¢)(c+1+x)—(x+q)(z+c) if —c—1<x<—¢
(35)  Ji(z) =< Ji(x) if —c<z<eg,

Ji(e)(c+1—-a)+(x—q)(x—c) if c<x<c+1,

[ 2 —¢ if x>c+1,

(v if y<-d-1,

Mi(—d)(d+1+y)—yy+d) if —d-1<y<—d,
(3.6)  Mi(y)=1{ Mi(y) it —d<y<d,

Mi(d)(d+1—y)+y(y—d) if d<y<d+1,

W if y>d+1

and consider the auxiliary problem

(3.7) (b)) = Ft,u, o), (2.10), (2.3), (1.3).

Due to (1.6), fe Car([0,7] x R), J;, M, € C(R) for i = 1,2,...,m, and, as
in the proof of [15, Theorem 3.1], they satisfy the assumptions of Lemmas 2.1-2.4.
According to (3.3)—(3.6) the functions oy and oy are respectively lower and upper
functions of (3.7). By (3.1) we have

(3.8) |F(t,z,y)| < h(t) forae. te[0,T] and all (z,y) € R?

and

(3.9) { flt,z,y) <0 forae te[0,T] and all (z,y) € (—o0, —c — 1] x R,

ft,z,y) >0 forae. t€[0,7] and all (z,y) € [c+ 1,00) x R.

e STEP 2. We construct a well-ordered pair of "big” lower/upper functions for (3.7).
Put

(3.10) A* :q+z max | J;(z)]

and
04(0) = A* + mQa

(311) O'4(t) = A"+ (m — 2)q—|— %t for t € (ti,tz‘+1], 1=20,1,...,m,
Ug(t) = —O'4<t> for t € [O,T]

Then 03,04 € ACL, and, by (3.5) and (3.10),

(3.12) o3(t) < —A* < —c—1, oy(t)> A" >c+1 for t €]0,T].

9



In view of (3.2),

(3.13)  o4(t) = —% < —(d+1) and o(t) = % >d+1 for t €[0,T).

Furthermore, by (3.5) and (3.9), (3.11), (3.12), we have

outit) = A+ (m = i) g + s = 0u(t) = ¢ = Tioa(t:))

and

0= (o(ay(1)) < f(t,04(t),04(t)) for a.e. t € [0,T],

respectively. Moreover, 04(0) = A* + mq = 04(T) and 04(0) = %L = 04(T) and,
by virtue of (3.2) and (3.6),

o (tir) = L = gl(t) = Mi(o(t:)) for i=1,2,....m,

T
i.e. o4 is an upper function of (3.7). Finally, since o3 = —oy4, we see that o3 is
a lower function of (3.7).
Clearly,
(3.14) o3 <oy on [0,7] and o3(7+) < o4(7+) for 7 €D.

Having a from (1.10), let us define for z € C{, and t € [0, T

N(@))(t) = / Fls,2(s),2/(s)) ds

0

(T@)(t) =Y [Fet) —2(t)] x4, 71®)

i=1

and

(3.15) { (Fl))(t) = / o (a(N (@), (T (@)(D) + (N(@))(s)) ds
+2(0) +2'(0) — 2'(T) + (T (2))(t).

By [16, Theorem 3.5], F : Ck — CL is completely continuous and u is a solution
of (3.7) whenever Fu = u.
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e STEP 3. We prove the first a priori estimate for solutions of (3.7).
Define

(3.16) ={ueCp: ||| <C* o3 <u<oy on [0,7T],
o3(T+) <u(r+) < U4(T+) for 7 € D},
where
(3.17) C*=1+ {“%”1 i { lo3]]00 + ||U4||oo} }
A ¢ o1

and A is defined in (1.19). We are going to prove that for each solution w of (3.7)
the estimate

(318) u € CI(Q()) = u € ()

is true. To this aim, suppose that u is a solution of (3.7) and u € cl(€y), i.e.
|4l < C* and

(3.19) o3 <u<oy on [0,7].

By the Mean Value Theorem, there are & € (t;,t;11), ¢ = 1,2,...,m, such that
/' (&)] < (loslloo + [[oalloc)/A. Hence, by (3.8), we get

(3.20) o]0 < C*,

where C* is defined in (3.17). It remains to show that o3 < u < o4 on [0,7] and
o3(7+) < u(t+) < o4(7+) for 7 € D. Assume the contrary. Then there exists
k € {3,4} such that

(3.21) uw() =ox(§)  for some & € (0,7
or
(3.22) u(ti+) = oy (t;+) for some t; € D.

CASE A. Let (3.21) hold for k = 4.

(i) If £ =0, then u(0) = 04(0) = 04(T) = u(T) = A* + ¢m which gives, in view
of (1.3), (3.13) and (3.19),
mq

u'(0) =u/(T) = T = oy(t) for t €[0,T].
Further, due to (3.9) and (3.12), we can find § > 0 such that u > ¢+ 1 on
[0,0] and
o(u'(t)) — / Fls,u(s),u/(s))ds >0 for t €[0,d].
Hence u/(t) > 4/(0) = o(t) on (0,0] which implies that u > o4 on (0,0],

contrary to (3.19).
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(i) If £ € (ti,tiy) for some t; € D, then v/(§) = o04(§) = “H = oy(t) for
t € [0,T] and we reach a contradiction as above.

(iii) If £ =t; € D, then u(t;) = 04(t;) and, by (3.5), (3.12) and (3.3),
u(tit) = ou(ti+) = oa(ti) —q > c+ 1= q> [lo1]c + [|o2]| -

By virtue of (3.19) we have u/(t;+) < o)(t;+) and u/(t;) > o)j(t;). Now, since
the last inequality together with (3.6) and (3.13) yield u/(t;+) > o(t;+), we
get v/ (t;+) = oy(ti+) = % = o4(t) for t € [0,7]. Similarly as above, this
leads again to a contradiction.

CASE B. Let (3.22) hold for k =4, i.e. u(t;+) = o4(t;+). By (3.5) and (3.12),
Ji(u(t;)) = o4(ti+) = o4(t;) — q¢ > A* — ¢, wherefrom, with respect to (3.10), we get
u(t;) > ¢+ 1 and hence J;(u(t;)) = u(t;) — q. Therefore u(t;) = o4(t;) and we can
continue as in CASE A (iii).

If (3.21) or (3.22) hold for k = 3, then we use analogical arguments as in CASE

A or CASE B.

e STEP 4. We prove the second a priori estimate for solutions of (3.7).
Define sets

O ={ueQ: u(t)>o1(t) for t €[0,7], u(t+) > o1(7+) for 7 € D},
Qo ={ueQ: ult) <oy(t) for t €[0,T], u(t+) < o2(7+) for 7 € D}

and Q = Q \ cl(Q; UQ,). Then
(3.23) Q = {u e Qp: u satisfies (2.16)}
and, due to (1.18) and (3.16),
Qo = Qo3,04,C"), Q= Q01,04,C") and Qy = Q(03,09,C").

Moreover, by (1.6), we have Q; Ny = 0.
Consider ¢ from STEP 1. We will show that the estimates

(3.24) wed@) = |Jullo<ec U] <d

are valid for each solution w of (3.7). Indeed, let u be a solution of (3.7) and let

u € (). Then u € B, due to (3.18) and (2.15), and u satisfies (2.2)—(2.4). We
have already noticed that f, J; and ]\A/[/i, 1 =1,2,...,m, satisfy the corresponding
assumptions of Lemmas 2.1-2.4. So, by Lemma 2.3, there is &, € [0,7] such that
(2.19) holds and by Lemma 2.1 the estimate (2.1) is true. Further, by Lemma 2.4,
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u satisfies (2.11) with py defined in STEP 1. Finally, by Lemma 2.2, we have (2.9),
i.e. each solution u of (3.7) satisfies (3.24).

e STEP 5. We prove the existence of a solution to the problem (1.1)—(1.3).

Consider the operator F defined by (3.15). We distinguish two cases: either F
has a fixed point in 98 or it has no fixed point in Q.

Assume that Fu = u for some u € 0€2. Then u is a solution of (3.7) and, with
respect to (3.24), we have ||ullo < ¢, ||t/[|s < d, which means, by (3.4)—(3.6), that
u is a solution of (1.1)—(1.3). Furthermore, due to (3.18), u satisfies (2.17) or (2.18).

Now, assume that Fu # u for all u € dQ. Then Fu # u for all u € 9 U
00 U 08y, If we replace f, h, J;, My, 1 =1,2,...,m, «, B and 7 respectively
by f, h, J;, M;, i =1,2,...,m, o3, 04 and C* in Proposition 1.1, we see that
the assumptions (1.14)—(1.17) and (1.19) are satisfied. Thus, by Proposition 1.1, we
obtain that

(3.25) deg(I — F,Q(o5,04,C*)) = deg(I — F, Q) = 1.

Similarly, we can apply Proposition 1.1 to show that

(3.26) deg(1— F,Q(0y,04,C%)) = deg(I— F, ) =1
and
(3.27) deg(I — F, QUo3,09,C*)) = deg(I — F, Q) = 1.

Using the additivity property of the Leray-Schauder topological degree we derive
from (3.25)—(3.27) that

deg(I — F,Q) = deg(I — F, Q) — deg(I — F, Q) — deg(I — F, Q) = —1.

Therefore, F has a fixed point u € Q. By (3.24) we have [|uflo < ¢ and |[t/[|o < d.
This together with (3.4)—(3.6) and (3.23) yields that u is a solution to (1.1)—(1.3)
fulfilling (2.16). O
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