Construction of Lower and Upper Functions
and Their Application to Regular and
Singular Periodic Boundary Value Problems

Irena Rachtiinkova ™!, Milan Tvrdy ®*

& Mathematical Institute, Academy of Sciences of the Czech Republic,
115 67 PRAHA 1, Zitndg 25, Czech Republic

b Department of Mathematics, Palacky University, 779 00 OLOMOUC,
Tomkova 40, Czech Republic

Abstract

We present new existence and multiplicity results for regular and singular periodic
second order boundary value problems.

Key words: Second order nonlinear ordinary differential equation, periodic
solution, singular problem, lower and upper functions, repulsive singularity,
Duffing equation.

1991 MSC: 34B15, 34C25

1. Introduction

In the literature concerning nonlinear boundary value problems we can often
find methods based on the lower and upper functions approach (see e.g. [1]
and references therein). On the other hand, the problem of construction of
lower and upper functions has been solved very rarely. In this paper we fill
this gap and present conditions ensuring the existence of nonconstant possibly
nonsmooth lower and upper functions to the periodic boundary value problem

u" = f(t,u), u(0)=u2n), u'(0)=u'(27) (1.1)
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and find estimates for them. This enables us to prove the existence theorem
for the periodic problem for the Duffing equation with a repulsive singularity
which extends the classical result of Lazer & Solimini [4] and supplements
the results obtained by some of their followers (see e.g. [2], [8] or [13]). In
particular, our result is closely related to that of Omari & Ye [8].

Throughout the paper we assume:

[ :0,27] x R — R fulfils the Carathéodory conditions on [0,27] x R, i.e.
[ has the following properties: (i) for each x € R the function f(.,x) is
measurable on [0, 27]; (ii) for almost every ¢ € [0,2n] the function f(¢,.)
is continuous on R; (iii) for each compact set KC R the function mxk(t) =
sup zex | f(t, z)| is Lebesgue integrable on [0, 27]. The set of functions satisfy-
ing the Carathéodory conditions on [0, 27] x R is denoted by Car([0, 27| x R).

Furthermore, we keep the following notation:

For a given subinterval J of R (possibly unbounded), C(.J) denotes the set of
functions continuous on J, L[0, 27] stands for the set of functions (Lebesgue)
integrable on [0, 27], Ly[0,27] is the set of functions square integrable on
[0, 27], AC|0, 27] denotes the set of functions absolutely continuous on [0, 27]
and BV [0, 27] is the set of functions of bounded variation on [0,27]. If z €
BV[0,27] and ¢ € [0,27), then the symbol ATz(¢) is defined by ATx(t) =
z(t+) —x(t) = lim, 4y x(7) —2x(t), while 2* and z*s stand for the absolutely
continuous part of x and the singular part of x, respectively. We suppose
x¥"¢(0) = 0. For a given 7 € [0,27), AC([0,27] \ {7}) is the set of functions
x € BV[0,27] such that o — A*z(7) x(r24 € AC[0, 27] (as usual, for M C R,
X denotes the characteristic function of M). For = € C[0,27], y € L0, 27]
and z € Ly [0, 27] we denote |[|z[|oo = Supyejgaq |2(1)],

<
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Finally, for 3 € L[0, 27], its nonnegative and nonpositive parts are denoted
by T and 3, respectively.

By a solution of (1.1) we understand a function u : [0,27] — R such that
u' € ACI0,27], u(0) = u(27), v'(0) = u/(27) and u"(t) = f(t,u(t)) for a.e.
t € [0,2n7].

The following definition generalizes most of the earlier ones and is taken
from [9].

1.1. Definition. Functions (o1, p;) € ACI0,27] x BV|[0, 27] are said to be
lower functions of the problem (1.1), if the singular part pi™® of p; is nonde-
creasing on [0,27], o1(t) = pi(t) and p\(t) > f(t,0.(t)) for a.e. t € [0,27],
01(0) = 01(2m) and p;(0) = p1(27).

Similarly, functions (o9, po) € AC|0, 27r] x BV [0, 27| are said to be upper func-



tions of (1.1), if p3™ is nonincreasing on [0,27], o4(t) = pa(t) and ph(t) <
f(t,02(t)) for a.e. t € [0,27], 02(0) = 02(27) and pa(0) = po(27).

For the existence results obtained in this paper we will need the following
theorem which is contained in [9, Theorems 4.1 and 4.2].

1.2. Theorem. Let (01, p1) and (09, p2) be respectively lower and upper func-
tions of (1.1).

(I) Suppose o1(t) < o9(t) on [0,27]. Then there is a solution u of (1.1) such
that o1(t) < u(t) < oa(t) on [0, 27].

(IT) Suppose o1(t) > oo(t) on [0,27] and there is m € L[0,2x] such that
f(t,z) > m(t) (or f(t,x) < m(t)) for a.e. t € [0,27] and all x € R. Then
there are a solution u of (1.1) andt, € [0, 27] such that o9(t,) < u(ty) < o1(ty)
and |[u'loe < [lmlls-

2. Construction of lower and upper functions

Let us consider an auxiliary boundary value problem

o' =p, o =pQ), (2.1)
o(0) = o(27) = ¢, p(0) = p(27), A¥p(1) = —277, (2.2)

where 3 € L[0, 27| and ¢ € R.

2.1. Definition. Let 7 € [0,27), ¢ € R and 8 € L[0, 27] be given. By a so-
lution of the problem (2.1), (2.2) we mean a couple of functions (o, p) €
AC[0,27] x AC([0,27] \ {7}) satisfying (2.2) and

a'(t) = p(t), p'(t)=p(t) ae. onl0,27]. (2.3)

2.2. Proposition. Let c € R, 7 € [0,27) and 8 € L|0, 27]. Then the problem
(2.1), (2.2) possesses a unique solution (o, p). Moreover, p*™ = =27 [3X(r2x]
and

o(t)=c—g(t, 1) (273) + /(]%g(t, s) B(s)ds on [0, 27], (2.4)
where

g(t,s) = t(s —2m)

(t—2m)s

if t<s and g(t s)= 5
m

if s<t. (2.5)
Proof. For ¢,c; € R, put

c+qt+/%ﬁ—@5@m5 if t<m,
o(t) = 0 (2.6)

cter(t—2m) — [ (t—5)B)ds if <1

t



and
t

cl+/ B(s)ds if t <,
0

) 2.7)
Cl_/t B(s)ds if 7 <t.

p(t) =

Then o and p belong to AC([0,27] \ {7}) and satisfy (2.3) and (2.2). Fur-
thermore, Ato(7) = 0 (i.e. o is absolutely continuous on [0, 27]) if and only
if

2 —
o = —/0 T%S B(s)ds, (2.8)

while ¢ € R may be arbitrary. Inserting (2.8) into (2.6) we can check that o
verifies (2.4). Finally, in virtue of (2.7) we have

p(t) + 2708 X(r2m (1) = €1 + /Ut B(s)ds on [0,27],
ie. p*=p+ QWBX(T,QW} and p*"e = _QWBX(T’QW]. O
The following lemma will be often used in this paper.
2.3. Lemma. Let u € AC[0,27] and v’ € L0, 27]. Then
lullz < 2[j]l2 (2.9)

holds whenever u(0) = u(27) = 0 and

™
ol < /% 11 (2.10)

is true whenever u(0) =u(27) and w=0.

Proof. The inequality (2.9) is due to Scheeffer [12, p. 207] (see also [7, 11.2]).
For the inequality (2.10) (Sobolev’s inequality) see e.g. [6, Proposition 1.3]).
U

2.4. Proposition. Assume that there are a,A € R, 7 € [0,27) and b €
LL[0, 27| such that a <0, b= 0 and

f(t,z) <a+b(t) forae tel0,2n] and all z € [A(t), B(t)], (2.11)

where
A(t) = A+ ah(t,7), B(t) = A(t) + g B}, on [0,27], (2.12)
ht, )= L2 _;T D iri<r hit, ) = 2T ”2(27 =D i<t (213)



Then there exist lower functions (o, p) of (1.1) such that

A(t) <o(t) < B(t) on [0,27] and pe AC([0,27]\ {r}).  (2.14)

Proof. By Proposition 2.2, the problem (2.1), (2.2) with 3(¢) = a+b(¢) a.e. on
[0, 27] has a unique solution (o, p) for any ¢ € R. In particular, p € AC([0, 2]\
{7}). Moreover, with respect to (2.4), (2.5) and (2.13), o has the form

27
o(t)=c—2mag(t,7)+ % t(t—2m)+ / g(t,s)b(s)ds
0
2m
=c+ah(t,T) +/ g(t,s)b(s)ds on [0,27].
0
Let us put

co = —% /027r (/027r g(t,s) b(s)ds) dt

oo(t) = co + /027rg(t, s)b(s)ds for t € [0,2n].

and

Then o5 = 0 and o((t) = b(t) a.e. on [0,27]. Multiplying the last rela-
tion by oy, integrating it over [0, 27] and using the Holder inequality we get
llob |3 < 116]|1]|oo]|eo- Further, the Sobolev inequality (2.10) (see Lemma 2.3)
vields [|og[13 < \/Z [[Bllx [|96]|2, and so [|of]l2 < /% [[b]l1, wherefrom using again
the Sobolev inequality (2.10) we get

T
loolleo < & 11Bl]1- (2.15)
This implies
ah(t,7)— % Iblly < ah(t, )+ oo(t) <ah(t,T)+ % ||6]]y on [0, 27].

Now, choosing ¢ = ¢+ [|b]|1+A, we obtain o (t) = £||b||1+A+ah(t,T)+00(t)
on [0, 27]. Thus, with respect to (2.15), we have

A+ ah(t,r) S o(t) < A+ ah(t,r)+ 5 bl on (0,27,
which means that (2.14) holds. Since a < 0, according to (2.11) this yields
pt)=a+0bt) > f(t,o(t)) ae. on [0,27].

Furthermore, with respect to (2.2) we have ¢(0) = o(27) and p(0) = p(27) and
hence, by Definition 1.1 the functions (o, p) are lower functions of (1.1). O

The following assertion is dual to Proposition 2.4 and its proof can be omitted.



2.5. Proposition. Assume that there are a,A € R, 7 € [0,27) and b €
L[0, 27| such that a >0, b =0,

f(t,z) > a+b(t) fora.e te|0,2n] and all x € [A(t), B(t)],
where A(t) and B(t) are defined by (2.12) and (2.13). Then there exist upper
functions (o, p) of (1.1) fulfilling (2.14). O

Theorems 2.6 and 2.7 are simple examples of existence results which follow
immediately from Theorem 1.2 and Propositions 2.4 and 2.5.

2.6. Theorem. Assume that there are Al_,Az ER, a1 <0,a, >0, 7,7 €
[0, 27] and by, be € L[0, 27] such that by = by = 0,

(=1)" f(t,2) = (=1)" (ai + bi(t))
for all x € [A; + a; h(t, ), B; + a; h(t,7;)], a.e. t € [0,27] and all i € {1,2},
Ay + ag h(t,7) > By +ay h(t,m) for all t € |0,2n], (2.16)

where h(t,7) is given by (2.13) and B; — A; = Z||bil[y for i =1,2. Then
the problem (1.1) possesses a solution u such that
Ay +arh(t,m) <u(t) < By +ash(t,m2) on [0,27]. O

2.7. Theorem. Assume that there are A;, Ay € R, a1 <0, ap > 0, 71,79 €
[0,27] and by, by € L[0,27| such that the assumptions of Theorem 2.6 are
satisfied with

Al + a; h(t, ’/"1) Z B2 + ao h(t, ’/"2) fOT‘ all t e [0, 271']

instead of (2.16). Furthermore, let there exist m € L[0, 2x| such that f(t,z) >
m(t) (or f(t,x) < m(t)) for a.e. t € [0,27] and all x € R. Then the problem
(1.1) possesses a solution u such that ||u'||e < ||m|l1 and As+as h(t,, ) <
u(ty) < By + ay h(ty, ) for somet, € [0,2x]. O

3. Periodic problems with strong singularity

We will consider the following singular Duffing equation with periodic condi-
tions

u" —g(u) =e(t), u(0)=u(2r), u(0)=1u'(2n), (3.1)

where
g € C(0,00) and e € L0, 27| (3.2)



and ¢ has strong singularity at 0, i.e.

1

lim [ ¢(§)d§ = . (3.3)

=0+ J

Classical Lazer and Solimini’s considerations [4] concerning the problem (3.1)
have been extended by several authors (see e.g. [2], [3], [5], [8], [10], [11] and
[13]). Provided g € C(0,00), € is essentially bounded on [0, 27] and under the
assumptions (3.3),

zlg[%rg(x) = 00, (3.4)
1 1 = 1
timint 2 > 2 tmint [ g(e)de > 2,

there is d > 0 such that g(x) < —e for all z € [d, 0),

Omari and Ye proved the existence of a solution to (3.1) in [8, Theorem 1.2]. In
[10, Theorem 3.2] we showed a related result, where e need not be essentially
bounded and (3.4) need not be fulfilled. Here we generalize the result of [10]
for functions g unbounded from below.

3.1. Theorem. Assume (3.2), (3.3),

hxrgégrlfg(x) > —00 (3.5)
and @)

. . .9z 1

1 f——">>——. :

iminf=-—= > — (3.6)

Furthermore, let there exist Ay, Ay € (0,00) such that

g(x) < —e forall x € [Ay, By, (3.7)
g(x) > —e forall x € [Ay, By, (3.8)
where A; > By and
™
BI_AI :BQ—AQ = 5“6—5”1 (39)

Then the problem (3.1) has a positive solution.

3.2. Remark. If g € C(0,00) satisfies (3.3), then limsup, o, g(z) = oo,
which implies the existence of a sequence {£,}°°, C (0,1) such that

g(en) >0 forall neN, lime, =0, lirrlng(en) = 00. (3.10)

For the proof of Theorem 3.1 we will need the following two lemmas, where



we deal with the auxiliary family of problems
u" = g,(u) +e(t), u(0)=u(2r), «(0)=1d'(27), (3.11)

where n € N, ¢, are from (3.10) and
0 if x <0,
gn(x) = g(sn)i if z€l0,e,], (3.12)
g(x) if > e,
3.3. Lemma. Assume that g € C(0,00) satisfies (3.3), (3.5) and (3.6) and

let g, n € N, be given by (3.12). Then there exist n € (0,%) and C > 0 such
that

1
gn(z) T > _(Z —n)a* = Clz| forall x €R and all n € N. (3.13)

Proof. By (3.6), there are n € (0,1) and A € (1, 00) such that

g9(z) 1

CASHAS S > A .
= (4 n) forall z> A (3.14)
Put
0 if <0,
p(z) = g(A)% if zel0,A4] (3.15)
g(z) if 2> A

and ¢,(x) = gn(z) — p(z) on R. In virtue of (3.5), there is C' > 0 such that
¢n(z) > —C for all z € R and all n € N. Thus, since according to (3.14) and
(3.15) we also have

1
p(x) > _(Z —n)z forall x € |0,00),

we deduce that (3.13) is true. O

3.4. Lemma. Assume that g and g,, n € N, are as in Lemma 3.3. Then for
any r > 0 and any e € L]0, 27| there exists R > r such that

u(t) <R on [0,27] (3.16)
holds for all n € N and all solutions u of (3.11) with the property

i <r. .
in u(t) <r (3.17)



Proof. Assume that (3.16) does not hold. Then we can choose a subsequence
{9k}, of the sequence {g,}>°, and a sequence of solutions {uy}, of the
corresponding problems (3.11) satisying (3.17) and

li = 0. 1
im max, ug(t) = oo (3.18)

In particular, for any k£ € N, there is ¢, € [0,27] such that ug(ty) = 7.
Furthermore, if we extend the functions ug, £ € N, and e to functions 27-
periodic on R, we get that

up(t) = gr(ug(t)) +e(t) fora.e.t € R and any k€ N. (3.19)
On the other hand, if we multiply (3.19) by wug(t), integrate from ¢, to ¢y + 27

and take into account Lemma 3.3, we get that there exist n € (0, 1) and C' > 0
such that for any k£ € N

== [ (s uo)ds - [ els) m(s)as

123
1
< (g =) lluells + C llwelly + llells flunlloo
holds. Furthermore,
tp+2m , ,
Jurlloo < fun(te)] +/t Jug,(s)]ds <+ V2 [Jug[]2. (3.20)
k

Thus,

(Wl =Tl 5)° < G =) el + V37 C el + lell =+ 5 Tl

(3.21)
Inserting ug(t) = vi(t) + 7 on R into (3.21), we obtain
(lvglla = )* _ 1 a b
Uil —0® (1 , (3.22)
vkl I3 4 [vklla {lok]l3

where a, b, ¢ € R do not depend on k. Now, (3.18), (3.20) and (3.21) yield

lilgn |vill2 = o0 and lilgn v ll2 = oo. (3.23)

Since vg(t1,) = v(ty, + 27) = 0, by Scheeffer’s inequality (2.9) we have ||v;]|3 <
L CAFERE!

([vkll2 = ¢)?
S ICAE

(1vkll2 — )
(oA

>



Therefore by virtue of (3.22) and (3.23) we have

U (k=0 (1 a b 1
_:l1m7§hm<——n+ +_>:__77,
4k Aol LAY lvellz — Nlowll5/ 4

a contradiction. O

Proof of Theorem 3.1. Let A > 1 and R > A be given by (3.14) and
Lemma 3.4 with » = By, respectively. In virtue of (3.2) and (3.5) we have
g« :=min{0,inf,co 5 g(z)} € R. Put

R
K =llefs +2rlg.| and K'=Kle|i+ [ lg(@)dz.

It follows from (3.3) and Remark 3.2 that we can choose £ € {¢,}°°, such
that ¢ € (0, Ay) and

/A2 g(x)dz > K* and g(e) > 0. (3.24)

For x € R and a.e. ¢t € [0,27], put f(¢,z) = e(t) + g(x), where

,

0 if <0,
gle)t if z€l0,2),
g(x) it z €[5 R),

g(R) if z>R.

Then f € Car([0,2n] x R) fulfils the assumptions of Theorem 2.7 with a; =
ag = 0, bi(t) = bo(t) = e(t) — € a.e. on [0,27] and m(t) = g. + e(t) a.e. on
[0, 27]. Thus, by Theorem 2.7, the problem (1.1) has a solution u such that
u(t,) € [Ag, By] for some ¢, € [0,27] and ||v'||.c < K. By Lemma 3.4 we have
u(t) < R for all t € [0,27]. It remains to show that u(t) > ¢ holds on [0, 27].

Let to,t, € [0,27] and u(ty) = mingepoq u(t) and u(t;) = maxejoon u(t).
Clearly, As < u(t;) < R. Due to the periodic boundary conditions we have
u'(ty) = u'(t;) = 0. Now, multiplying the differential relation u"(t) = e(t) +
g(u(t)) by u/(t) and integrating over [to,t1], we get

t1

0=/ ") () dt = / Y ydi+ [ glal) o) dt,

to to to

i.e.

/uu(tl)g(x)da? — _/tl e(t) Ul(t)dt < K ||e||s.

(to) to

10



Further,
Ao _ R _
[ g@de < Kl + [ lgta)lde = K*
’u.(to) Ao

which, with respect to (3.24), is possible only if u(tg) > . Thus, u is a solution
to (3.1). O

3.5. Theorem. If e is essentially bounded from below on [0,2x], then the
condition (3.8) can be omitted in Theorem 3.1.

Proof. By (3.10) there is Ay € (0, A;) such that e(t) + g(42) > 0 a.e. on
[0, 27]. Taking this Ay we can argue as in the proof of Theorem 3.1 with the
only difference that by(t) = 0 a.e. on [0, 27], which implies A, = By in the
application of Theorem 2.7. O

Let us complete the above existence results by an easy consequence of Theo-
rem 2.6.

3.6. Theorem. Assume that (3.2), (3.7), (3.8) and (3.9) are satisfied and let
Ay > By. Then (3.1) has a solution u such that Ay < u(t) < By on [0, 27].

Proof. For a.e. t € [0,27] define f(t,x) = e(t) +g(A)) if v < Ay and f(t,z) =
e(t) + g(x) if x > Ay. Then f € Car([0,27] x R) fulfils the assumptions of
Theorem 2.6 with a; = ay =0, by(t) = by(t) = e(t) —€ a.e. on [0, 27]. Hence,
by Theorem 2.6, the problem (1.1) has a solution wu satisfying A; < u(t) < By
on [0, 27], which means that w is a solution of (3.1). O

3.7. Example. Notice that the function

1+ sin(z)

g(r) = —0.242 + 7@“ x € (0, 00), (3.25)
verifies the assumptions (3.2), (3.3), (3.5) and (3.6) of Theorem 3.1, while it
does not satisfy the condition (3.4) required by Omari and Ye in [8, Theorem
1.2]. Since lim,_, », g(x) = —o00, we can find for any e € L[0, 27| and any By > 0
a number A; € [By, 00) such that g fulfils (3.7) with any B; € (A4;, 00). Thus,
by Theorem 3.5, if e is essentially bounded from below, the problem (3.1)
with ¢ given by (3.25) has at least one positive solution. Provided e is not
essentially bounded from below, we will use Theorem 3.1 which requires that
g fulfil (3.8). Let us restrict ourselves to e € L]0, 27] such that € = —7. We
can show that the equation g(x) = 7 has exactly 5 roots x;, i = 1,2,...,5,
in the interval [0.12, 00). (In particular, we have x; ~ 0.126, x5 &~ 0.143, x5 ~
0.165, x4 &~ 0.206, 5 =~ 0.236, g(x) > 7 on (x9,x3) U (x4,25) and g(z) < 7 on
(1, x2) U (23, 24) U (z5,00).) Let 2d < x3 — x5 and assume in addition that
7|le — €|l < 3d. We have 9 — 27 > d and x;.; — x; > 2d for i = 2,3,4. We

11



can apply Theorem 3.6 to obtain the existence of solutions u; and uy of the
problem (3.1) such that u(t) € [x2 — d,zo + d] and us(t) € (x4 — d, x4 + d]
on t € [0,2n], i.e. uy(t) < us(t) on [0,27]. Moreover, by Theorem 3.1 there
is another solution uz of (3.1) such that us(t3) € [z3 — d,z3 + d] for some
ts € [0,27]. In virtue of the definition of d this means that ug can coincide
neither with u; nor with us.

3.8. Remark. The existence theorem which concerns the case 4; > B, and
does not need (3.3) has been proved in [11, Corollary 3.7].
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