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Preface

This text is intended as a self-contained exposition of generalized linear differential and
integral equations whose solutions are in general regulated functions (i.e. functions which can
have only discontinuities of the first kind). In particular, the problems studied below cover as
their special cases linear problems for systems with impulses. (For representative surveys of
results concerning systems with impulses see e.g. [BS], [BPS] or [ZaSe|.) Essentially, the text
is a collection of the papers [Tv89], [Tv91], [Tv96], [Tv98] and [Tv99]. In comparison with the
original versions of these papers, the notation used was unified and the common preliminaries
were summarized in Chapter 1. Furthermore, some minor improvements of the exposition and
corrections of several misprints were included.

Chapter 2 is a compilation of the papers [Tv89] and [Tv91]. In this chapter the properties
of the Perron-Stieltjes integral with respect to regulated functions are investigated. It is shown
that linear continuous functionals on the spaces G |[a,b] of functions regulated on [a,b] and

left-continuous on (a, b) and G, [a, b] of functions regulated on [a, b] and regular on (a,b) may

reg|
be represented in the form

b
B(z) = g(a) + / p(t) (1))

where ¢ € R and p(¢) is a function of bounded variation on [a,b]. Some basic theorems (e.g.
integration-by-parts formula, substitution theorem) known for the Perron-Stieltjes integral with
respect to functions of bounded variation are extended to a more general case.

In Chapter 3 (cf. [Tv99]) the continuous dependence of solutions to linear generalized

differential equations of the form
t
o(t) =20) + [ dlAus)]als). te .
0

on a parameter k € N is discussed. In particular, known results due to S. Schwabik [Schw92]
and M. Ashordia [As93] are extended or amended.

Boundary value problems of the form
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and the corresponding controllability problems are dealt with in Chapter 4. (This chapter is
based on the paper [Tv91].) The adjoint problems are given in such a way that the usual dual-
ity theorems are valid. As a special case the interface boundary value problems are included.
In contrast to the earlier papers (cf. e.g. [VTT71], [Tv73], [Tv74], [ST74], [ST79] and the mono-
graph [STV]) the right-hand side of the generalized differential equation as well as the solutions
of this equation can be in general regulated functions (not necessarily of bounded variation).
Similar problems in the space of regulated functions were treated e.g. by Ch. S. Honig [H675],
[H682], [H680], L. Fichmann [Fi] and L. Barbanti [Ba], who made use of the interior (Dushnik)
integral. In our case the integral is the Perron-Stieltjes (Kurzweil) integral.

In Chapter 5 (cf. [Tv98]) we investigate systems of linear integral equations in the space G7
of n-vector valued functions which are regulated on the closed interval [0, 1] and left-continuous

on its interior (0, 1). In particular, we are interested in systems of the form

1
£(t) — A(t) £(0) — / Bit,s) diz(s)] = £(2),

where the n-vector valued function f and an n X n-matrix valued function A are regulated on
[0,1] and left-continuous on (0, 1) and the entries of B(¢,.) have a bounded variation on [0, 1]
for any ¢ € [0, 1] and the mapping ¢ € [0, 1] — B(t,.) is regulated on [0, 1] and left-continuous
on (0,1) as the mapping with values in the space of n x n-matrix valued functions of bounded
variation on [0, 1]. We prove basic existence and uniqueness results for the given equation and
obtain the explicit form of its adjoint equation. A special attention is paid to the Volterra
(causal) type case. It is shown that in that case the given equation possesses a unique solution
for any right-hand side from G7, and its representation by means of resolvent operators is
given. The results presented cover e.g. the results known for systems of linear Stieltjes integral

equations

1 t
£(t) - /0 K (t,5) 2(s) = g(t) or (t) - /0 (K (1, )] 2(5) = g(1).

The study of such equations in the space of functions of bounded variation was initiated mainly
by S. Schwabik (see [Schw72], [Schw74] and [STV]).



Chapter 1

Preliminaries

1.1. Basic notions

Throughout this text we denote by N the set of positive integers, R is the space of real numbers,
R™*" ig the space of real m x n-matrices, R” = R”*! stands for the space of real column n-
vectors and R™*! = R! = R.

For a matrix A € R™*" rank(A) denotes its rank and A" is its transpose. Furthermore,
the elements of A are usually denoted by a;;,%=1,2,...,m, j =1,2,...,n, and the norm |A|
of A is defined by

m
A= max 3 agl.
J =1

j=1,2,...,n <=

We have

A= (aij)i=12,..m and A" =(aj;)j=12,.n for AeR™"

j:172a"'an i:1,2,...,m

and

n

|z| = Z|5Ez|a zt = (z1,72,...,2,) and |z']= max |z;| for zeR".
; j=1,...,n

Furthermore, for a matrix A € R™*"  its columns are denoted by al’] (A = (a[j])jzl,g,m,n).

Obviously,

|A| = max |aV]] forall AeR™"
e

1=1,2,...,n

The symbols I and 0 stand respectively for the identity and the zero matrix of the proper type.

For an n x n-matrix A, det (A) denotes its determinant.

If —co < a < b < o0, then [a,b] and (a,b) denote the corresponding closed and open

intervals, respectively. Furthermore, [a,b) and (a, b] are the corresponding half-open intervals.

7
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The sets d = {tg,t1,...,tm} of points in the closed interval [a,b] such that a =ty < t; <
-+ <ty = b are called divisions of [a,b]. Given a division d of [a, b], its elements are usually
denoted by tg,t1,...,ty. The set of all divisions of the interval [a, b] is denoted by D]a, b].

Given M C R, x s denotes its characteristic function (x/(t) =1 if ¢ € M and xp(t) =0
ift¢g M.)

Finally, if X is a Banach space and M C X then cl(M) stands for the closure of M in X.

1.2. Functions
1.2.1. Regulated functions. A function F' : [a,b] — R"™*" which has limits

F(t+) = lim F(r) e R"™" and F(s—)= lim F(r) € R™"

T+ T—8—

for all ¢ € [a,b) and all s € (a,b] is said to be regulated on [a,b]. The set of all m x n-
matrix valued regulated functions on [a,b] is denoted by G"*"[a,b]. For F' € G™*"[a,b], we
put F(a—) = F(a) and F(b+) = F(b). Furthermore, for any ¢ € [a,b] we define

AYF(t) = F(t+) — F(t), A F(t) = F(t) — F(t—) and AF(t) = F(t+) — F(t—).

(In particular, we have A~ F(a) = ATF(b) =0, AF(a) = AT F(a) and AF(b) = A~ F(b).) We
shall write G"[a, b] instead of G"*![a, b], G*![a, b] = G[a, b]. Obviously, F € G™*"[a, b] if and
only if all its components f;; : [a,b] — R are regulated on [a, b] (fi; € Gla,b] fori=1,2,...,m,
i=1,2,...,n).

It is known (cf. [H675, Corollary 3.2a]) that if FF € G™*"[a,b], then for any € > 0 the
set of points ¢ € [a,b] such that |[ATF(t)] > ¢ or |A”F(t)| > ¢ is finite. Consequently, for
any F' € Gla,b] the set of its discontinuities in [a,b] is countable. The subset of G"™*"[a, ]
consisting of all functions regulated on [a,b] and left-continuous on (a,b) will be denoted by
G™*"[a, b].

The set of all functions F' € G™*"[a, b] which are regular on (a,b), i.e.
2F(t) =F(t—)+ F(t+) forall te (a,b),

will be denoted by G "[a, b].
We define

|F|| = sup |F(t)] for F e G™"[a,b).
te(a,b]

Clearly, ||F|| < oo for any F € G™*"[a,b] and when endowed with this norm, G™*"|a, b]
becomes a Banach space (cf. [Ho75, Theorem 3.6]). As G"*"[a,b] and G"*"[a, b] are closed in

reg
G™*"[a, b], they are also Banach spaces.
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1.2.2. Functions of bounded variation. For F : [a,b] — R™*" its variation var’F on
the interval [a, b] is defined by

m
varbF = sup Y |F(t;) — F(t;_1)|
deDlab] 521
(the supremum is taken over all divisions d = {tg,t1,...,tn} € D[a,b] of [a,b]). If var® F < oo,
we say that the function F' has a bounded variation on the interval [a,b]. BY*"[a, b] denotes
the Banach space of m x n-matrix valued functions of bounded variation on [a, b] equipped with

the norm

F € BY™"[a,b] — ||F|lzy = |F(a)] + var®F.
Similarly as in the case of regulated functions, We shall write BV "*[a, b] instead of BV"*![a, b]
and BV [a, b] instead of BV '*![a,b]. F € BV™*"[q,b] if and only if f;; € BV|[a,b] for all i =
1,2,...,mand j=1,2,,...,n.

A function f : [a,b] — R is called a finite step function on [a,b] if there exists a division
{to,t1,...,tm} of [a,b] such that f is constant on every open interval (¢;_1,t;), 7 = 1,2,...,m.
The set of all finite step functions on [a, b] is denoted by S|a, b]. It is known that S|a, b] is dense
in Gla,b] (cf. [Ho75, Theorem 3.1]). It means that f : [a,b] — R is regulated if and only if it

is a uniform limit on [a, b] of a sequence of finite step functions.

A function f : [a,b] — R is called a break function on [a,b] if there exist sequences
{te}?21 Cla,b], {}ii CR and {¢[}RL, CR

suchthattk;étjfork;éj,c,;:()iftk:a,c;“:Oiftk:b,

D (e I+ el < o0
k=1
and
(1.2.1) FO=> "+ of for t e [a,b]

tp <t tp <t
or equivalently

o
FO =" X (®) + ¢ xon(t) for ¢ € [a,b].
k=1
Clearly, if f is given by (1.2.1), then
ATf(ty) =cf and A”f(ty) =c, for keN.
Furthermore, for any such function we have

fla) =0, [f(t=)=f(t) = f(t+)if t€[a,b]\ {tx};Z,

and
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o0
varhf = (le, |+ lef]).
k=1

The set of all break functions on [a,b] is denoted by B[a,b]. Notice that neither S|a,b] nor
Bla, b] are closed in Gla, b].

It is known that for any f € BV [a, b] there exist uniquely determined functions f° € BV [a, b
and f® € BV[a,b] such that f° is continuous on [a,b], f® is a break function on [a,b] and
f(t) = f°(t) + f°(t) on [a,b] (the Jordan decomposition of f € BV [a,b]). In particular, if
W = {wg }ken is the set of discontinuities of f in [a, b], then

(1.2.2) = (A7 F(we) Xpwp)(8) + AT F(wk) X (w5 () on [a,b].
k=1
Moreover, if we define

n

(1.2.3) @) =" (A7 F(wk) Xue) (8) + AT F (W) X(we51 (1))
k=1
for t € [a,b] and n € N then

: B _ rB _
Jim (£ = f ey =0
(cf. e.g. [STV, the proof of Lemma 1.4.23]). Obviously,
Sla,b] C Bla,b] C BV |[a,b] C Ga, b].

For more details concerning regulated functions or functions of bounded variation see the
monographs by G. Aumann [Au], T. H. Hildebrandt [Hi] and Ch. S. Honig [H675] and the
papers by D. Frankova [Fr89] and [Fr91].

1.2.3. As usual, the space of m X n-matrix valued functions continuous on [a,b] is denoted
by C™*™[a,b] and the space of m x n-matrix valued functions Lebesgue integrable on [a,b] is
denoted by L"*"[a, b]. For given F' € L{"*"[a,b] and G € C™*"[a, b], the corresponding norms
are defined by

b
[Fll, = [ [F@®)[dt and |[Gllc = llgl = sup |G(#)].

t€la,b]

Again, C"'[a,b] = C"[a,b], C'*'[a,b] = Cla, b], L' [a,b] = L} [a,b] and L{*'[a,b] = L, [a, b).
Moreover, the space of m x n-matrix valued functions absolutely continuous on [a, b] is denoted
by AC™*"[a,b], AC"*![a,b] = AC"[a,b], AC'*![a,b] = AC[a,b], and

IFlac = |F ()] + |1 F'|l, for Fe€AC""[a,b].
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1.2.4. Notation. If [a,b] = [0, 1], we write simply G instead of G[0,1]. Similar abbreviations

are used for all the other symbols for function spaces introduced in this chapter.

1.2.5. Functions of two real variables. Let —co < a < b < 00, —00 < ¢ < d < 00 and let
F: [c,d] x [a,b] = R™" Ift € [c,d] and s € [a, b] are given, then the symbols var? F(t,.) and
var? F(.,s) denote the variations of the functions

F(t,.): 7 €la,b] — F(t,7) € R™"
and

F(,s):7€e,d] — F(r,s) € R™*™,
respectively. Furthermore, for s € [a, b] we put

AT F(t,s) = F(1,8) — F(r—,s) if 7€ (¢,d], A7 F(c,s)=0
and

AT F(r,s) = F(t+,5) — F(1,s) if 7€ [c,d), A]F(d,s)=0.
Similarly, for ¢ € [c, d] we put

A F(t,o) = F(t,0) — F(t,o—) if o€ (a,b], ASF(t,a)=0
and

AJF(t,0) = F(t,o+) — F(t,0) if o€ [a,b), AJF(t,b)=0.

The symbol vic gx[q,5 (F) stands for the Vitali variation of F on [c,d] x [a, b] defined by

m
V [edx[ap] (F) = Sup > |F(ti;s5) — Fltiz1,85) — F(ti, sj-1) + F(tiz1, sj-1)| < 00,
ij=1

where the supremum is taken over all net subdivisions
D={c=ty<ti < - <tp=da=sy<s < <5sy=>}

of the interval [c,d] X [a,b]. We say that the function F' has a bounded Vitali variation on
[, d] x [a,b] if Vi gx[ap) (F) < 0o. Moreover, F' is said to be of strongly bounded variation
on [¢,d] x [a,b] if

V (e, x[ab] (F) + varb F(e,.) + var?F(.,a) < co.

The set of n x n-matrix valued functions of strongly bounded variation on [c, d] X [a, b] is denoted
by SBYV™*"([c,d] x [a, b]).

If no misunderstanding can arise, instead of Vi, 4«45 (') we shall write simply v (¥) and
instead of SBY"*"(]0, 1] x [0,1]) we shall write SBVY"*". (For the basic properties of the Vitali
variation and of the set SBV, see [Hi, Section IIL.4] and [STV, Section 1.6].)
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1.3. Integrals and operators

1.3.1. Perron-Stieltjes integral. The integrals which occur in this text are Perron - Stieltjes
integrals. We will work with the following definition which is a special case of the definition
due to J. Kurzweil [Kub7]:

Let —0o < a < b < oo. The couples D = (d,£), where d = {to,t1,...,tm} € Dla,b] is
a division of [a,b] and £ = (&1,&2,...,&n) € R™ is such that

tj—1 <& <t; forall 7=1,2,...,m

are called partitions of [a,b]. The set of all partitions of the interval [a,b] is denoted by
Pla,b]. An arbitrary positive valued function ¢ : [a,b] — (0,00) is called a gauge on [a,b].
Given a gauge ¢ on [a, b], the partition (d,£) of [a, b] is said to be J-fine if

[tj-1,t5] C (& — (&), & + (&) forany j=1,2,...,m.

For given functions f,g : [a,b] — R and a partition D = (d,£) € Pla,b] of [a,b] let us define

m

Sp(f Ag) =Y (&) gt;) — gtj-1)]-

j=1

We say that I € R is the Kurzweil integral of f with respect to g from a to b and denote

b b
1= [t dgn o 1= [ rag
a a
if for any € > 0 there exists a gauge J on [a, b] such that

|I —Sp(f Ag)| < e for all ¢ — fine partitions D of [a,b].

For the definition of the Kurzweil integral it is necessary to mention the fundamental fact
that given an arbitrary gauge ¢ on [a, b], the set of all §-fine partitions of [a,b] is non-empty
(Cousin’s lemma). The Perron-Stieltjes integral with respect to a function not necessarily
of bounded variation was defined by A. J. Ward [Wa] (cf. also S. Saks [Sa, Chapter VI]).
It can be shown that the Kurzweil integral is equivalent to the Perron-Stieltjes integral (cf.
[Schw73, Theorem 2.1], where the assumption g € BV [a, b] is not used in the proof and may
be omitted). Consequently, the Riemann-Stieltjes integral (both of the norm type and of the
o-type, cf. [Hi]) is its special case. The relationship between the Kurzweil integral, the o-
Young-Stieltjes integral and the Perron-Stieltjes integral was described by S. Schwabik (cf.
[Schw73] and [SchwT73al).
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It is well known (cf. e.g. [STV, Theorems 1.4.17, 1.4.19 and Corollary 1.4.27] that if
f € Gla,b] and g € BV [a, b], then the integral

/abfdg

exists and the inequality

b
\/ fdg| < |[f]|vartg
a

is true. The Kurzweil integral is an additive function of interval and possesses the usual linearity
properties. For the proofs of these assertions and some more details concerning the Kurzweil
integral with respect to functions of bounded variation see e.g. [Ku57], [Ku80], [Schw85] and
[STV].

For matrix valued functions F : [a,b] — RP*? and G : [a, b] — R9*™ such that all integrals

/f“yC ng ] (=12,...,;;k=12,...,¢;j=1,2,...,n)

exist (i.e. they have finite values), the symbol

b b
/F(t) d[G(t)] (or more simply /FdG)

stands for the p x n—matrix M with the entries

mz,]—z flkdg/m] (1=1,2,...,p;5=1,2,...,n).
k=17¢

The integrals

/abd[F]G and /ade[G]H

for matrix valued functions F, G and H of proper types are defined analogously.

1.3.2. Linear operators. For linear spaces X and Y, the symbols £(X,Y) and (X, Y) denote
the linear space of linear bounded mappings of X into Y and the linear space of linear compact
mappings of X into Y, respectively. If X = Y we write £(X) and £(X). If & € Z(X,Y),
then % (&), 4 (/) and &* denote its range, null space and adjoint operator, respectively. For
P CY and & € L(X,Y), the symbol «_1(P) denotes the set of all z € X for which & = € P.






Chapter 2

Regulated Functions and the

Perron-Stieltjes Integral

2.1. Introduction

This chapter deals with the space G[a, b] of regulated functions on a compact interval [a, b]. It is
known that when equipped with the supremal norm G[a, b] becomes a Banach space, and linear
bounded functionals on its subspace G [a, b] of functions regulated on [a, b] and left-continuous
on (a,b) can be represented by means of the Dushnik-Stieltjes (interior) integral . This
result is due to H. S. Kaltenborn [Ka], cf. also Ch. S. Honig [H675, Theorem 5.1]. Together
with the known relationship between the Dushnik-Stieltjes integral, the o-Young-Stieltjes
integral and the Perron-Stieltjes integral (cf. Ch. S. Honig [H680] and S. Schwabik [Schw73],
[Schw73a]) this enables us to see that @ is a linear bounded functional on G [a,b] if and only

if there exists a real number ¢ and a function p(¢) of bounded variation on [a, b] such that

b
&(z) = qz(a) + / p(t) d[z(t)] for any z € Gi[a,b],

where the integral is the Perron-Stieltjes integral. We will give here the proof of this fact based
only on the properties of the Perron-Stieltjes integral. To this aim, the proof of existence of

the integral

b
/ £(2) dlg(®)

for any function f of bounded variation on [a,b] and any function g regulated on [a,b] is
crucial. Furthermore, we will prove extensions of some theorems (e.g. integration-by-parts and
substitution theorems) needed for dealing with generalized differential equations and Volterra-
Stieltjes integral equations in the space G[a,b]. Finally, a representation of a general linear

bounded functional on the space of regular regulated functions on a compact interval is given.

15
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Since we will make use of some of the properties of the o-Riemann-Stieltjes integral ,
let us indicate here the proof that this integral is included in the Kurzweil integral. (For the

definition of the o-Riemann-Stieltjes integral, see e.g. [Hi, Sec. I1.9].)

2.2. Preliminaries

2.2.1. Proposition. Let f,g: [a,b] — R and let I € R be such that the o-Riemann-Stieltjes

integral
b
0/ fdg exists and equals 1.
a

Then the Perron-Stieltjes integral

b
/ fdg exists and equals I,
a

as well.

Proof. Let

b
0’/ fdg=1E€R,
a
i.e., for any € > 0 there is a division dy = {sg,51...,5mg} € D[a,b] of [a,b] such that
ISp(fAg) —1I| <e

is true for any partition D = (d,&) € Pla,b] of [a,b] such that d € Dla,b] is a refinement of
dp. Let us define
Lmin{|t —s;];5 =0,1,...,mg} if t & dy,
5.(1) = 2 J
€ if t€ dy.

Let a partition D = (d,¢) € Pla, b, d = {to,t1,-..,tm}, £ = (£1,&2,...,&m)™, be given. Then

D is 0. —fine only if for any j = 1,2,...,my there is an index i; such that s; = ¢;;. Furthermore,
we have
Sp(f Ag) =Y [[f(&) la(ty) — 9] + F(&) [9(&5) — g(t;-1)]]-
j=1

Consequently, for any J.—fine partition D = (d,&) of [a,b] the corresponding integral sum
Sp(f Ag) equals the integral sum Sp(f Ag) corresponding to a partition D' = (d',¢’), where
d' is a division of [a, b] such that dy C d'. Hence

|Spr(f Ag) —I| <e.
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This means that the Kurzweil integral fab f dg exists and

/abfdg:a/abfdg:I

is true. O

To prove the existence of the Perron-Stieltjes integral fab fdg for any f € BV]a,b] and
any g € Gla,b] in Theorem 2.3.8 the following assertion is helpful.
2.2.2. Proposition. Let f € BV[a,b] be continuous on [a,b] and let g € Gla,b], then both the
b b
o-Riemann-Stieltjes integrals O'/ fdg and O'/ gdf exist.
a a
Proof. Let f € BV [a,b] which is continuous on [a, b] and g € G[a, b] be given. According to the
integration-by-parts formula [Hi, II.11.7] for o-Riemann-Stieltjes integrals, to prove the lemma

it is sufficient to show that the integral o f; g df exists.

First, let us assume that an arbitrary 7 € [a,b] is given and g = X[, ;- Let us put

5= {a,b} if T=aor 7=0,
7\ {a,nb} i 7€ (a,b)

It is easy to see that then for any partition D = (d, &) such that
do C d={to,t1,...,tm}
we have 7 = t;, for some k € {0,1,...,m} and
f(r) = fla) if Ga >,
ftgr) = fla) i &gy =T

Since f is assumed to be continuous, it is easy to show that for a given € > 0 there exists
a division d, of [a, b] such that dy C d, and

1Sp(g Af) = [f() = fla)]] <e

is true for any partition D = (d,&) of [a,b] with d, C d, i.e.

Sp(gAf) =

b
O'/ X(a,r] 4f = f(1) — f(a) forall T € [a,b].

By a similar argument we could also show the following relations:

b
O'/a X[a,r) Af = f(7) = f(a) forall 7€ (a,b],

b
7 [ X df =) = £(7) forall 7€ [a.d],

and
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b
0/ X(rp Af = f(b) = f(r) forall 7€ la,b).

Since any finite step function is a linear combination of functions x(;; (@ < 7 < b) and
X(rp] (@ <7< b), it follows that the integral

U/Gbgdf

exists for any f € BV [a, b] continuous on [a, b] and any g € S|a,b].
Now, if g € G[a, b] is arbitrary, then there exists a sequence {g,}3>, C S[a,b] such that

lim ||gn, — g[| = 0.
n—o00
Since by the preceding part of the proof of the lemma all the integrals o fab gn df have a finite

value, by means of the convergence theorem [Hi, Theorem II.15.1] valid for o-Riemann-Stieltjes

integrals we obtain that the integral o f; gdf exists and the relation

b b
le O'/ gndfza/ gdf eR

holds. This completes the proof. O

A direct corollary of Proposition 2.2.2 and of [Hi, Theorem I1.13.17] is the following assertion
which will be helpful for the proof of the integration-by-parts formula, Theorem 2.3.15. (Of
course, we could prove it as well by an argument similar to that used in the proof of Proposition
2.2.2))

2.2.3. Corollary. Let f € BV|[a,b] and g € Gla,b]. Let
AT f(t) ATg(t) = AT f(t)A™g(t) =0 for all t€ (a,b).
Then both the o-Riemann-Stieltjes integrals

b b
O'/ fdg and O'/ gdf

exist.
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2.3. Perron-Stieltjes integral with respect to regulated functions

In this section we deal with the integrals

b b
/ 7(t)dlg(t)] and / o(t) dLf (1))

where f € BV]a,b] and g € Gla,b]. We prove some basic theorems (integration-by-parts for-
mula, convergence theorems, substitution theorem and unsymmetric Fubini theorem) needed
in the theory of Stieltjes integral equations in the space Gla,b]. However, our first task is the
proof of existence of the integral f(f fdg for any f € BV|[a,b] and any g € G[a,b]. First, we

will consider some simple special cases.

2.3.1. Proposition. Let g € Gla,b] and 7 € [a,b]. Then

b

(2.3.1) / Xiar1 g = g(r+) — gla),
b

(2.3.2) / Xiam dg = g(r—) — g(a),
b

(2.3.3) / X[y dg = g(b) — g(7—),
b

(2.3.4) / Xy dg = g(b) — g(r4)

and
b

(2.3.5) /xm dg =g(t+) —g(r—),

where X(q)(t) = x(p)(t) = 0 and the convention g(a—) = g(a), g(b+) = g(b) is used.

Proof. Let g € Gla,b] and 7 € [a,b] be given.
a) Let f = X]a,r]- 1t follows immediately from the definition that

.
| #45=4r) - g(@.
a
In particular, (2.3.1) holds in the case 7 = b. Assume 7 € [a,b). Let € > 0 be given and let

Lir—t| if T<t<b,
5a(t):

€ if t=r1.
It is easy to see that any d.—fine partition D = (d, &) of [, b] must satisfy

&i=to=T1, t1 <T7+e and Sp(fAg)=g(t1)—g(7).
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Consequently,

b
l/fdgzﬂfﬂ—gﬁ)

/fdg—/ fdg+/fdg

a) +g(r+) —g(1) = g(7+) — g(a),

and

i.e. the relation (2.3.1) is true for every 7 € [a, b].

b) Let f = X(a,r). f 7 = a, then f =0, g(7—) —g(a) = 0 and (2.3.2) is trivial. Let 7 € (a, b].

For a given £ > 0, let us define a gauge 0. on [a, 7| by

Hr—t| ifa<t<r,
0 (t) =

€ if t=r.

Then for any d.—fine partition D = (d, &) of [a, 7] we have
tm =&m =7, tm1<7T—¢c¢ and Sp(fAg)=g(tm-1)—g(a).

It follows immediately that

/Wfdgzgﬁ—)—gw)

and in view of the obvious identity

b
/fdg:O,

c¢) The remaining relations follow from (2.3.1), (2.3.2) and from the equalities

this implies (2.3.2).

X[m0l = Xa,b] — X[a,7)>  X(m,0] = X[a,b] — X[a,7] and X[r] = Xla,7] — Xa,7)"

2.3.2. Remark. Since any finite step function is a linear combination of functions x(; (a <
7 < b) and x(rp) (@ < 7 < b), it follows immediately from Proposition 2.3.1 that the integral
fabf dg exists for any f € S[a,b] and any g € GJa, b].

Other simple cases are covered by
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2.3.3. Proposition. Let T € [a,b]. Then for any function f : [a,b] — R the following relations

are true
b _f(T) 'Lf T < ba
2.3.6 dXiar =
(23.5) /an[,] { 0 if T=0,
b _f(T) ,Lf T > a,
2.3.7 dX1er) =
(237) /an[,) { 0 if T=a,
b f(r) if 7>a,
2.3.8 dxirp =
(2.3.8) /af X[r,b] { . P
b f(r) if T<b,
2.3.9 dx(rp =
(2.3.9) /af X(rb] { . P
and
_f(a’) ,Lf T =a,
b
(2.3.10) / fdxz = 0 if a<T<b,
f) if T=0,

where X[q)(t) = x(p)(t) =0 and the convention g(a—) = g(a), g(b+) = g(b) is used.

For the proof see [STV, 1.4.21 and 1.4.22]. O

2.3.4. Corollary. Let W = {w;,ws,...,wy} C [a,b], c € R and h : [a,b] — R be such that

(2.3.11) h(t)=c forall t€ [a,b]\W.
Then

b
(2.3.12) / fdh = F(b) [b(B) — ] — (a) [h(a) —

is true for any function f : [a,b] — R.

Proof. A function h : [a,b] — R fulfils (2.3.11) if and only if
n
h(t) =c+ Y [h(w;) = ] X[w,)(t) on [a,b].
k=1

Thus the formula (2.3.12) follows from (2.3.6) (with 7 = b) and from (2.3.10). O
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2.3.5. Remark. It is well known (cf. [STV, 1.4.17] or [Schw85, Theorem 1.22]) that if g €
BV]a,b], h : [a,b] — R and h, : [a,b] — R, n € N, are such that fab h, dg exist for any n € N
and lim,, o ||y, — || = 0, then [’ A dg exists and

b b
(2.3.13) lim hn dg = / h dg

n— 00 a

is true. To prove an analogous assertion for the case g € Gla,b] we need the following auxiliary

assertion.

2.3.6. Lemma. Let f € BV [a,b] and g € G[a,b]. Then the inequality
(2.3.14) 1Sp(f Ag)l < (f(a)| + |f(B)] +varg f) [|g]
is true for an arbitrary partition D of [a,b].

Proof. For an arbitrary partition D = (d,£) of [a,b] we have (putting £, = a and &, 41 = b)

m+1

S (f Ag)| = £ (b) g(b) = f(a)gla) = D [f(&) = f(&-1)] 9(tj-1)]

J=1

m+1

< (IFO) + [ f @)+ D 1£(&) = F(&-0) llgl
j=1

< (@] + | 0)] + varg f) llgll-

2.3.7. Theorem. Let g € Gla,b] and let hy,,h : [a,b] — R be such that
b
/ hn dg ezists for any n € N and le |hn — hllgy = 0.
a n o0
Then f;h dg exists and (2.3.13) is true.

Proof. Since
[F(O)] < |f(@)] +1f(b) = f(a)] <|f(a)] + var; f,
we have by (2.3.14)
1Sp((hm — i) Ag)| < 2 [|hm — hillsv llg]l

for all m,k € N and all partitions D of [a, b]. Consequently,

b
| / (hus — hi) dg| < 2 [lhms — Bl ]
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holds for all m, k € N. This immediately implies that there is an I € R such that

b
lim hndg = 1.
a

n— 00

It remains to show that
b
(2.3.15) I = / hdg.
a
For a given € > 0, let ng € N be such that
b
(2.3.16) \ / hnodg —I| <e and ||hy, — hlsy <e,
a

and let §. be such a gauge on [a, b] that

b
(2.3.17) |Sp(hny Ag) —/ hn, dg| <€

for all .—fine partitions D of [a,b]. Given an arbitrary d.—fine partition D of [a, b], we have
by (2.3.16), (2.3.17) and Lemma 2.3.6

b b
[ — Sp(hAg)| < ‘I_/ bng dg‘ + ‘/ hno dg — Sp(hn, Ag)‘
+|Sp(hng Ag) — Sp(h Ag)| < 2e + |Sp([hny, — h] Ag)]
<2e+2|lhn, = hllsy llgll <2e(1+lgl)

wherefrom the relation (2.3.15) immediately follows. This completes the proof of the theorem.
O

Now we can prove

b
2.3.8. Theorem. Let f € BV[a,b] and g € G[a,b]. Then the integral / f dg exists and the
a

inequality

b
(2.3.18) | / £ g < (F(@)]+1£®)] +var® ) gl

18 true.

Proof. Let f € BV[a,b] and g € G|a, b] be given. Let W = {wy, }ren be the set of discontinuities
of f in [a,b] and let f = f° + f® be the Jordan decomposition of f (i.e., f€ is continuous on
[a,b] and f® is given by (1.2.2)). We have

: B_ sB _
Jim [ fy = sy =0
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for f2, n €N, given by (1.2.3). By (2.3.3) and (2.3.4),

(2.3.19) / Fdg = 3 IAF Flue) (96) — glun)) + A F(wi) (9(b) — glwp—)]

k=1

holds for any n € N. Thus according to Theorem 2.3.7 the integral fab fBdg exists and
b b
(2.3.20) / f?dg = lim / [ dg.
a n—oo a

The integral f: f€dg exists as the o-Riemann-Stieltjes integral by Proposition 2.2.2. This
means that fab fdg exists and

b b b b b
[ rag= [ soag [(rrag= [ roag i [ rza

The inequality (2.3.18) follows immediately from Lemma 2.3.6. O

2.3.9. Remark. Since

Z\ [A* f(wp) (g(b) — gwg+)) + A~ f(w) (g(b) — g(wp—))]|

<2|lgll (AT fwr)] + AT fwy)]) < 2lgll (var), £) < oo,
k=1

we have in virtue of (2.3.19) and (2.3.20)

(2.3.21) / 72 dg = SOIA F(ui) (900) — gl t)) + A7) (9(8) — glang )]

k=1
As a direct consequence of Theorem 2.3.8 we obtain
2.3.10. Corollary. Let hy, € Gla,b], n € N, and let h € Gla,b] be such that
lim ||k, — h| =0.
n—oo
Then for any f € BV [a,b] the integrals

b b
/fdh and /fdhn,neN
a a

exist and

lim fdhn—/fdh

n— 00
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2.3.11. Lemma. Let h : [a,b] — R, ¢ € R and W = {wg}ren C [a,b] be such that (2.3.11)
and

o0

(2.3.22) > " |h(wg) — €| < o0
k=1

hold. Furthermore, for n € N, let us put W, = {wi,ws,...,w,} and
c if t€la,b]\ Wy,

(2.3.23) hn(t) =
h(t) if teW,.

Then hy, € BV [a,b] for any n € N, h € BV [a,b] and

(2.3.24) | — hllmy = 0.

lim
n—o00
Proof. The functions h,, n € N, and h evidently have a bounded variation on [a,b]. For a

given n € N, we have

0 if teW,orté€la,b\W
hn(t) - h(t) =
c¢—hy(t) if t = wy for some k > n.
Thus,
(2.3.25) nll)rglo hn(t) = h(t) on [a,b]
and, moreover,
> | (rn(ty) = 1ltg)) = (hnlti1) = h(tj1))| <2 > |h(wg) — ¢

holds for any n € N and any division {tg,#1,...,tn} of [a,b]. Consequently,

oo
(2.3.26) varb (hy —h) <2 > |h(wg) —
k=n+1
is true for any n € N. In virtue of the assumption (2.3.22) the right-hand side of (2.3.26) tends
to 0 as n — oo. Hence (2.3.24) follows from (2.3.25) and (2.3.26). O

2.3.12. Proposition. Let h: [a,b] = R, c € R and W = {wy}ren be such that (2.3.11) and
(2.3.22) hold. Then

o0

b
[ g = 3l — ] Aglun) + clo®) — gla)

k=1

is true for any g € Gla, b].
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Proof. Let g € Gla, b] be given. Let W, = {w1,ws,...,wy,} for n € N and let the functions h,,,
n € N, be given by (2.3.23). Given an arbitrary n € N, then (2.3.1) (with 7 = b) and (2.3.5)
from Proposition 2.3.1 imply

n

b
[ e = Y [bw) — ] Aglun) + cla®) ~ g(a))

k=1
Since (2.3.22) yields

n

> I h(wi) — ] Ag(wg)| < 2llgll Y 1h(wk) — €] < o0

and Lemma 2.3.11 implies
lim ||h, — h|lgy =0,
n— o0

we can use Theorem 2.3.7 to prove that

b b 00
hdg = lim hpdg =) [h(wg) — ] Ag(wg) + c[g(b) — g(a)].
/a g n%o/a g ]; K g(wr) +clg(b) — g o

2.3.13. Proposition. Let h: [a,b] — R, ¢ € R and W = {wy }ren fulfil (2.3.11). Then

b
(2.3.27) / fdh = £(b) [b(B) — ] — (a) [h(a) —
is true for any f € BV]a,b).

Proof. Let f € BV [a,b]. For a given n € N, let W, = {wy, wo,...,w,} and let h, be given by
(2.3.23). Then

(2.3.28) lim ||k, — h|| = 0.

n—00
Indeed, let € > 0 be given and let np € N be such that & > ng implies
(2.3.29) |h(wg) —¢| < e.

(Such an ng exists since |h(wg) — c| = |[A"h(wg)| = |[ATh(wg)| for any k € N and the set of
those k € N for which the inequality (2.3.29) does not hold may be only finite.) Now, for any
n > ng and any ¢ € [a, b] such that ¢ = wy, for some k > n (t € W \ W,,) we have

[ (8) = B(8)| = B () — hlwy)| = |e — h(wy)] < e.

Since hy,(t) = h(t) for all the other ¢ € [a,b] (¢ € ([a,b]\W)UW,,), it follows that |k, (t)—h(t)] <

e on [a,b], i.e.

lhn — B <e.



Regulated Functions and the Perron-Stieltjes Integral 27

This proves the relation (2.3.28).
By Corollary 2.3.4 we have for any n € N

b
/ £ dhy = £(B) [h(B) — ] — £(a) [A(a) —c].

Making use of (2.3.28) and Corollary 2.3.10 we obtain

b b
[ ran=tim [ g i, = 10)0) - - f(@) e ~
a a l:‘

2.3.14. Corollary. Let h € BV]a,b], c € R and W = {wg}ren fulfil (2.3.11). Then (2.3.27)
is true for any f € Gla,b)].

Proof. By Proposition 2.3.12, (2.3.27) is true for any f € BV[a,b]. Making use of the density
of S[a,b] C BV [a,b] in G[a,b] and of the convergence theorem mentioned in Remark 2.3.5 we

complete the proof of this assertion. O

2.3.15. Theorem. (Integration-by-parts) Let f € BV[a,b] and g € Gla,b]. Then both the
b b

integmls/ fdg and / g df exist and
a a

b b
(2.3.30) / fdg+ / gdf = F(5)g(b) — f(a) g(a)

+ Y [ATF) ATg(t) - ATf(H) ATg(®)].

te(a,b]

Proof. The existence of the integral f; g df is well known and the existence of f(f gdf is

guaranteed by Theorem 2.3.8. Furthermore,

b b b b
/ fdg+ / gdf = / £t dlg(t) + A*g(t)] + / g(t) dLf(t) — A £(1)

b b
_ / £() d[A g ()] + / o(t) A~ F ().

It is easy to verify that the function h(t) = AT g(t) fulfils the relation (2.3.11) with ¢ = 0 and
h(b) = 0. Consequently, Proposition 2.3.13 yields

b
/ £(8) d[A*g(t)] = —f(a) A*g(a).

Similarly, by Corollary 2.3.14 we have

b
/ g(t) dIA™ F()] = A~ F(5) g(b).
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Hence

(2.3.31) /abfdg—lr/ B df = /f t+]+/ o(t) d[f(t-)]

T £(a) A*gla) + A F() g(b).
The first integral on the right-hand side can be modified in the following way:

b b b
(2.3.32) [ @ digen) = [ ra-)disten)+ [ A7) dig(e+)

Making use of Proposition 2.3.12 and taking into account that Ag;(t) = Ag(t) on [a, b] for the
function g defined by gi(t) = g(t+) on [a, b], we further obtain

b
(2.3.33) [ A fodgen) = 3 A1) Agle)
@ t€la,b]
Similarly,
b
(2.3.34) / o) d[f (t—)] = / (t4) df (t— / Atg(
b
= / g(t+ - > Afg(
a tela,b]

The function f(t—) is left-continuous on [a,b], while ¢(t+) is right-continuous on [a,b). It

means that both the integrals

b
/ f(t-) dlg(t+)] and / g(t+) dlf ()]

exist as o-Riemann-Stieltjes integrals (cf. Corollary 2.2.3), and making use of the integration-

by-parts theorem for these integrals (cf. [Hi, Theorem I1.11.7]) we get

b
(2.3.35) / f(t=) dlg(t+)] +/ g(t+) d[f (t=)] = f(b=) g(b) — f(a) g(at).

Inserting (2.3.32)-(2.3.35) into (2.3.31) we obtain
b
[ 7ag+ / gdf = f(b-) g(b) — £(a) gla-+)
+ ) ATF() t)+ATg()] — D [ATFE) + AT ()] Atg(t)

tela,b] tela,b]
+ fa) Atg(a) + A7 f(b) g(b)
= f(b)g(b) — fa)gla) + > [A"f(t) A g(t) — ATf(t) ATg(t)]

te(a,b]

and this completes the proof. O
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The following proposition describes some properties of indefinite Perron-Stieltjes integrals.

2.3.16. Proposition. Let f : [a,b] — R and g : [a,b] — R be such that f;fdg ezists.
Then the function

h(t)z/atfdg

is defined on [a,b] and
(i) if g € Gla,b], then h € Ga,b] and

(2.3.36) ATh(t) = f(t) ATg(t), A h(t) = f(t)A g(t) on [a,b];
(ii) if g € BVia,b] and f is bounded on [a,b], then h € BV [a, b].

Proof. The former assertion follows from [Ku57, Theorem 1.3.5]. The latter follows immedi-

ately from the inequality

m t; m ‘
S / Fdg| < 31 (var?_ g)]b = [I£] (var’ g)
j=1 7t j=1

which is valid for any division {tg, t1,...,t,} of [a,b]. O
In the theory of generalized differential equations the substitution formula

b t b
(2.3.37) / h(t) d[ / £(s) dlg(s)]] = / W(t) £ (1) dlg(t)]

is often needed. In [Hi, I1.19.3.7] this formula is proved for the o-Young-Stieltjes integral under
the assumption that g € Gla, b], h is bounded on [a, b] and the integral fab f dg as well as one
of the integrals in (2.3.37) exist. In [STV, Theorem 1.4.25] this assertion was proved for the
Kurzweil integral. Though it was assumed there that g € BV [a,b], this assumption was not
used in the proof. We will give here a slightly different proof based on the Saks-Henstock
lemma (cf.e.g.[Schw85, Lemma 1.11]).

2.3.17. Lemma. (Saks-Henstock) Let f,g : [a,b] — R be such that the integral f;fdg
exists. Let € > 0 be given and let 6 be a gauge on [a,b] such that

b
\SD(ng)—/ fdgl<e

is true for any 0—fine partition D of [a,b]. Then for an arbitrary system {([Bi,7il,0:), i =
1,2,...,k} of intervals and points such that

(2.3.38) a<p <o <n<B< <o <yy<b

and
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[Bi,vi) C loi —6(0i), 00+ 6(03)], i=1,2,...,k,

the inequality
k

(2339) I (o0 lo) — a8 — [ 7ag)| <

=1 i

is true. U
Making use of Lemma 2.3.17 we can prove the following useful assertion.

2.3.18. Lemma. If f: [a,b] — R and g : [a,b] — R are such that fabf dg exists, then for

any € > 0 there exists a gauge 0 on [a,b] such that

m t;
(2:3.40) 176 lo(t) — gle-] - [ fag|<e
j=1

ti—1
is true for any 0—fine partition (d, &) of [a,b)].

Proof. Let § : [a,b] — (0,00) be such that

b m t;
Sp(fAg)— | fdg|= (&) lg(tj) —g(ti—1)] —
1Sn(f Ag / 9| \; i) a(t;) — g(tj /

tj—

€
lfd9‘<§

for all 6—fine partitions D = (d,&) of [a,b]. Let us choose an arbitrary J—fine partition D =
(d,€) of [a,b]. Let v; = tp, and §; = t,, 1, 1 = 1,2,...,k, be all the points of the division d
such that

Yi
(&) la(vi) — g(B:)] — / fdg>0.

Bi

Then the system {([5;,vi],04), i = 1,2,...,k}, where o; = &,,, fulfils (2.3.38) and (2.3.39) and

hence we can use Lemma 2.3.17 to prove that the inequality

i i
> (&) l9(w) — 9(B:)] — ; f dg| <§
=1 5

is true. Similarly, if w; = t4, and 6; = t4,_1, 2 = 1,2,...,7 are all points of the division d such
that

F&a) o) ~ 961~ [ 1ag <o,

then the inequality

r w; c
D11 lotwi) — 900 [ el <]
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follows from Lemma 2.3.17, as well. Summarizing, we conclude that

Z (€5) lots) — g(t; 1) — / 7 dg|

tj—1

—Z\ffpz — g(6) /fdg\w{j\fs% g(wr) — g6 ]—/  dg|

< = + t= €
2 2
This completes the proof. ]

2.3.19. Theorem. (Substitution) Let h : [a,b] — R be bounded on [a,b] and let f,g : [a,b] —
b

R be such that the integral / fdg exists. Then the integral
a

b
/ h(t) £(t) dlg(t)

exists if and only if the integral

/abh(t)d[/atf(s)d

exists, and in this case the relation (2.3.37) is true.

Proof. Let |h(t)] < C < oo on [a,b]. Let us assume that the integral

b
/ B(t) £ (1) dlg(t)]

exists and let € > 0 be given. There exists a gauge d; on [a, b] such that

m

b
\Zh(ik)f(ij)[g(tj)—g(tj—1)]—/ h(t) f(t) dlg()]] <

j=1

DN ™

is satisfied for any d; —fine partition (d, ) of [a,b]. By Lemma 2.3.18 there exists a gauge ¢ on
[a, b] such that 6(¢) < d1(¢) on [a,b] and

m t
3146 btt) = otts-0) - | ol <oz

j—1

is true for any d—fine partition (d, &) of [a,b]. Let us denote

t
:/fdg for t € [a,b].
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Then for any d—fine partition D = (d,¢) of [a,b] we have
b
[Sp(ak) = [ (070 dig(v)]
=206 [ Fdo = 3o HEN ) lo(t) ~ glt;)
j=1 tj—1 j=1

J

m b
S () () () — ()] — / B(t) £ (t) dlg )]
> i
m ! t
< I3 n(E)] / fdg— £&) 9(t;) — g(t;—)]]|
j=1 i

m b
| YoM FE) lalt) — glt)) — [ hidg] <.
i=1 a

b
This implies the existence of the integral / h dk and the relation (2.3.37). The second impli-
a

cation can be proved in an analogous way. O

The convergence result 2.3.10 enables us to extend the known theorems on the change of

the integration order in iterated integrals

esan  [owal [neoael [ s ameo) s

where —00 < ¢ < d < 00 and h is of strongly bounded variation on [¢, d] X [a, b] (cf. 1.2.5).

2.3.20. Theorem. (Unsymmetric Fubini Theorem) Let h : [c¢,d] X [a,b] — R be such that
v (h) + varl h(c,.) + var?h(.,a) < oo.

Then for any f € BV [a,b] and any g € G(c,d) both the integrals (2.3.41) ezist and

d b b d
(2.3.42) [ owal [ wes sl = [ ([ o0 dibie) dis ).

Proof. Let us notice that by [STV, Theorem 1.6.20] our assertion is true if g is also supposed
to be of bounded variation. In the general case of g € G[a, b] there exists a sequence {gp}2>; C

Sla, b] such that lim;,_, ||g — gn|| = 0. Then, since the function

b
o(t) = / W, ) d[f (s)]

is of bounded variation on [c,d] (cf. the first part of the proof of [STV, Theorem 1.6.20]), the
integral on the left-hand side of (2.3.42) exists and by Corollary 2.3.10 and [STV, Theorem
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1.6.20] we have

d b b
(2.3.43) / g(t) d[/ h(t,s) d[f(s)]] = lim gn(t) d[/ h(t,s) d[f(s)]]

Let us denote
d
wa(t) = / on(®) di[h(t5)] for s€lab] and neN.

Then wy, € BV |[a,b] for any n € N (cf. [STV, Theorem 1.6.18]) and by [STV, Theorem 1.4.17]
mentioned here in Remark 2.3.5 we obtain

d
lim wy(s) = lim gn(t) d¢[h(t,s)] :=w(s) on [a,b].

[wn(s) = w(s)] < llgn — gll (vargh(.,s)) < llgn — gll (v (h) + var{h(.,a))
for any s € [a,b] (cf. [STV, Lemma 1.6.6]), we have
lim |Jw, —w|| =0.
n—o0

It means that w € Gla,b] and by Theorem 2.3.8 the integral

b b d
[ diren= [ ([ gt aints) )

exists as well. Since obviously

b d b
Jim ([ 0 e ) )] = tim [ (s (o)

b b d
- / w(s) d[f ()] = / ( / o(t) dy[h(t, 5)]) dLf (5))

the relation (2.3.42) follows from (2.3.43). O

2.4. Linear bounded functionals on the space of left-continuous

regulated functions

By Theorem 2.3.8 the expression

b
(2.4.1) Dy (z) = qx(a) +/ pdz
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is defined for any z € Gla,b] and any n = (p,q) € BV][a,b] x R. Moreover, for any n €
BV [a, b] x R, the relation (2.4.1) defines a linear bounded functional on G [a, b].

Proposition 2.3.3 immediately implies

2.4.1. Lemma. Letn = (p,q) € BV[a,b] x R. Then

(2.4.2) Py (X[ap) = ¢
Py(X(rp) =p(7)  for all T € [a,b),

2.4.2. Corollary. Let n = (p,q) € BV[a,b] x R and ®,(x) = 0 for all x € S[a,b] which are
left-continuous on (a,b). Then p(t) =0 on [a,b] and ¢ = 0.

]
2.4.3. Lemma. Let z € Gla,b] and n = (p,q) € BV [a,b] x R. Then
(2.4.3) Dy(x) =x(a) if p=0 on [a,b] and ¢=1,
Dy(x) =x0b) if p=1 on [a,b] and ¢=1,
¢H($) = IE(T—) if p= X[a,r) ON [0’7 b]a TE (0’7 b] and q=1,
Dy(z) = 2(7+) if P=X[ay on [a,b], TE[a,b) and g=1.
Proof follows from Proposition 2.3.1. U

2.4.4. Corollary. Let z € Gla,b] and @,(x) =0 for all n = (p,q) € BV[a,b] x R. Then
(2.4.4) z(a) = z(a+) = z(7—) = z(7+) = z(b—) = z(b)

holds for any 7 € (a,b). In particular, if x € Gpla,b] (z is left-continuous on (a,b)) and

Dy (z) =0 for alln = (p,q) € BV]a,b] xR, then z(t) =0 on [a,b)].
U

2.4.5. Remark. The space BV[a,b] x R is supposed to be equipped with the usual norm
(IInllev xr = |g| + ||pllsv for n = (p,q) € BV]a,b] x R). Obviously, BV[a,b] x R is a Banach

space with respect to this norm.
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2.4.6. Proposition. The spaces G.[a,b] and BV [a,b] x R form a dual pair with respect to

the bilinear form

(2.4.5) z € Gila,b], n € BV[a,b] x R — &, (),
i.e.

Dy (x) =0 for all z € G.la, b)) = n=0€BV][a,b] xR
and

D, (z) =0 for alln € BV[a,b) x R = = =0 € G,[a,D].
Proof follows from Corollaries 2.4.2 and 2.4.4. O

On the other hand, we have

2.4.7. Lemma. Let @ be a linear bounded functional on G.la,b] and let

D(xwy) if tEla,b),
P(xp) i t=0.

(2.4.6) p(t) =

Then p € BV [a,b] and

(2.4.7) [p(a)] + [p(b)] + vargp < 2|2,

where

|2 = sup ().
:EEGL [aab}an”Sl

Proof is analogous to that of part c (i) of [Ho75, Theorem 5.1]. Indeed, for an arbitrary

division {¢g,t1,...,tm} of [a,b] we have

sup  |p(a) co +p(b) cmir + Y _[p(ts) — p(tj-1)] )]
j=1

lcj|<1l,c;€R
m—1
= sup [ B(coX(ap F Cmit X = D € X(t-1,t] + Cm Xt )]
lej[<L,c;€R j=1

< sup[B(R)] =2] 2.
Inl1<2,h€Gr [a,b]

In particular, for ¢y = sgnp(a), ¢p1 = sgnp(b) and ¢; = sgn(p(t;) —p(tj-1)), 7 =1,2,...,m,

we get
[p(@)] + p(O)] + Y Ip(t;) = p(tj—1)| < 2|#],
j=1

and the inequality (2.4.7) immediately follows. O
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Using the ideas from the proof of [H675, Theorem 5.1] we may now prove the following

representation theorem.

2.4.8. Theorem. ¢ is a linear bounded functional on G.la,b] (¢ € G}(a,b)) if and only if
there is an n = (p,q) € BV|[a,b] x R such that

(2.4.8) P(z) = Dy(z)(:= qz(a) + /bp dz) for any z € G;la,b].
a
The mapping
E:n€BVa,b xR — &, € Gj(a,b)
18 an isomorphism.

Proof. Let a linear bounded functional @ on Gy [a,b] be given and let us put

D(x@p) i tE€[ab),

(2.4.9) q=P(Xap) and p(t) = _
@(X[b]) lf t = b

Then Lemma 2.3.6 implies n = (p, q) € BV [a,b] x R and by Lemma 2.4.1 we have
D(X[ap) = Po(X(ap)): P(Xp) = Polxp) and  P(xpy) = Pylxy) forall t€la,b).
Since all functions from S [a, b|NGy, [a, b] obviously are finite linear combinations of the functions
X[ab) X(xps T € [a,0), X

it follows that &(x) = @, (z) is true for any z € S[a,b] N G [a,b]. Now, the density of S[a,b] N
Gv[a,b] in Gy [a, b] implies that

D(z) = Py(x) forall z € Gila,b].

This completes the proof of the first assertion of the theorem.

Lemma 2.3.6 yields that

[@y(2)] < (Ip(a)] + |p(b)| + varg p +la]) |

is true for any =z € G [a, b] and, consequently,

12411 < Ip(a)| + [p(b)] + vargp + la < 2 (Ipllev + |al) = 2Inllzv <=

On the other hand, according to Lemma 2.4.7 we have

lpllsv < (Ip(a)] + [p(b)] + varg p) < 2| 2]].
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Furthermore, in virtue of (2.4.9) we have |g| < ||®|| and hence

Inllvxr = [IpllBv + lg| < 2||2].

It means that

1
5 121 < lInllzv <z < 32|

and this completes the proof of the theorem. O

2.5. Linear bounded functionals on the space of regular regu-

lated functions

Recall that the subspace of Gla,b] consisting of all functions regulated on [a, b] and such that

f(t):%[f(t—)+f(t+)] for all ¢ € (a,b)

is denoted by G,.,[a,b] and the functions belonging to G
on (a,b).

In this section we shall show that linear bounded functionals on G,., [a, b] may be represented

reg |0, D] are usually said to be regular

in the form (2.4.8), as well. To this aim the following lemmas will be helpful.

2.5.1. Lemma. A function f : [a,b] — R is a finite step function on [a,b] which is regular
on (a,b) (f € S[a,b] N G,,la,b]) if and only if there are real numbers ai,aq,...,0n and a
division d = {to,t1,...,tm} of [a,b] such that

N
F(£) =Y ajhi(t) on [a,b],
j=0
where

1 .
ho =1, h1 = X(ap), hj = X1t X(t;.0) for 7=2,3,....,m—1and hy = xp-

Proof. Obviously a function f : [a,b] — R belongs to S[a,bNG

e |@, D] if and only if there are
g[ ) ] y

real numbers cg, ¢y, ..., cnyy1 and a division d = {tg,t1,...,tx} of [a,b] such that
co if t=a,
() = cj if te(tj_1,t;) forsome j=1,2,...,m,
) dEEEif t =ty for some j=1,2,...,m—1,

Cm+1 if t=0.
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i.e.

(2.5.1) f(t) = cox[a) +ZCJX (tj-1.t5

m—1

(¢j + ¢j1) Xt (1)) + Cmp1 xp)(8)  for ¢ € [a, b].
]:1

Mll—‘

It is easy to verify that the right-hand side of (2.5.1) may be rearranged as

m m—1
f = coXab — 0 X(ap + Z Cj X(tj_1b] — Z Cj X (t; ]
j=1 j=1
1 m—1 m—1
- 35 G X[t;] — Cm X[o] T 5 ZCJ-HXt] t Cm41 X[p]
Jj=1 Jj=1
m—1 m—1
= COX[ab}_CUXab_’_ZCrFIXtJ, ZCJXtJ,
Jj=0 Jj=1
1 1%
- 3 Z 17 5 D €1 Xigy] F Cmt1 Xis] — Cm XD
m—1 1
= coXap T (€1 — ) X(ay + Y (i1 — ¢5) (X0 + 3 Xit;])
j=1
+  (em+1 — cm) Xpp)s
wherefrom the assertion of the lemma immediately follows. O

2.5.2. Lemma. The set S[a,b]NG,,[a,b] is dense in G,,[a,b].

Proof. Let z € G,.4[a,b] and € > 0 be given. Since cl(S[a, b]) = Gla, b], there exists a & € S|a, b]
such that |z(t) — £(t)| < € is true for any ¢ € [a,b]. Consequently, we have

(2.5.2) |z(t—) —&(t—)| < e and |z(s+) —&(s+)| <e for t € [a,b), s € (a,b].
Let us put
¢(a) if t=a,
() =1 5@+ +&(t-)) if t€ (ab),
£(b) if t=b.

Obviously £*(t—) = £(t—) and £*(s+) = &(s+) for all t € (a,b] and s € [a,b), respectively. In
particular, £*(t) = £(t) for any point ¢ of continuity of £. It follows that £* € S[a, b]N G, [a, b].

Furthermore, in virtue of (2.5.2) we have for any ¢ € (a, b)

res

| (t) — = —\ t=)]+ [w(t+) — E(t+)]| <e
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wherefrom the assertion of the lemma immediately follows.

39

2.5.3. Lemma. Let ¢ be an arbitrary linear bounded functional on G,,,[a,b]. Let us define

D(X(ap]) if t=a,
(2.5.3) p(t) = é(% X[t + X(t.b})a if te (av b)v
D(X[))s if t="o.
Then
vary p < ||| = sup |2(z)]|

CEEGreg [ﬂyb]:Hl’HSl

(i.e. p € BV]a,b]).

Proof. Let d = {to,t1,...,ty} be an arbitrary division of [a,b] and let o;j € R, j =1,2,...

be such that |a;| <1 forall j =1,2,...,m. Then

- 1
(2.5.4) > ajlp(t;) = p(tj-1)] = o [¢(§X[t1} +X(t1.8) — P(X(a,0])]
e 1 1
Q. [@(§X[tj] +X(t.0) — P(GX101 + X(tj1 )]
=2

9 Xltm 1] T X(tm_1,0)] = @(h),

where

1 1
= o [ X0] + X0 — Xl + m [Xp) = 5 Xltni] = X(to1.01]

1 1
+ o [5 Xit;] + X(t;,0) — 9 Xltj-1] — X(tjfl,b}]
j=2
1 1
= o [5 X~ Xl = @m [5 Xltuo) + Xto1.)]
m—1 1 1
+ Z &) [5 X[t;] = X(tj-1.t5] = 5 X[t Bl
j=2
1 1
= —Oo [5 X[t1] + X(a tl)] - am[g Xltm-1] T X(tm 1,b)]
1 m—1 1 m—1 m—1
3 a]X[t]}_E Qg Xt; Qg X(t;_1,t
j=2 71=2 7j=2
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m—1 Qi +a m

_ J Jj+1 )

= =) N D 4 X
j: ':

m—1

a +a 1
= — 01 X(at) Z e X[t;) T X(t;- 1t t)) = Om X(tmo1.0)-
Jj=2
It is easy to see that h € S[a,b] N
(2.5.4), we have that

[a,b] and |h(t)| < 1 for all ¢ € [a,b]. Consequently, by

reg

sup Za] (Dl < sup o)
laj|<1,j=1,2,...m 2€Greg [a,b],||z[|<1
is true for any division d = {to,t1,...,ty,} of [a,b]. In particular, choosing

Qj = Sgn[p(t]) _p(tjfl)] for ] = ]-7 27 R

we get
m
> In(t) = pltj-1)] < sup ()] < o0
j=1 me@reg [aab}an”Sl
and this yields var?p < ||®|| < co. O

2.5.4. Lemma. Let & be an arbitrary linear bounded functional on G,,[a,b] and let n =
(p,q) € BV [a,b] x R be given by (2.5.3) and q = P(X[a))- Let us define

b
(2.5.5) Dy (z) = qz(a) +/ pdz  for z € Gla,b].

Then @, is a linear bounded functional on Gla, b),

(2.5.6) Dy(z) =P(x) forall z€G,.,la,b]
and
(2.5.7) sup | ®y(x)| < lg| + 2 (Ip(a)| + varg p).

z€G[a,b],||z||<1

Proof. By Theorem 2.3.8, &, (z) is defined and
(2:58) (@) < (Jal + lp(a)| + p(B)] + var’ p) lall for all @ € Gla, bl

It means that @, is a linear bounded functional on G[a,b] and the inequality (2.5.7) is true. It
is easy to verify that the relation (2.5.6) holds for any function A from the set

1
{X[a,b]aX(a,b]a S X7l F X(rb]) Xp; T € (a,b)} :

According to Lemmas 2.5.1 and 2.5.2 this implies that (2.5.6) holds for all z € G, [a,b]. O



Milan Tvrdy 41

2.5.5. Lemma. Let n = (p,q) € BV [a,b] x R. Then @,(z) =0 for all z € S{a,b]NG,,,[a,b] if
and only if ¢ =0 and p(t) =0 on [a,b].

Proof. Let n = (p,q) € BV[a,b] x R and let ¢,(x) = 0 for all x € S[a,b] N G, [a,b]. Then
?(X[a,p)) = ¢ = 0. Furthermore, by Proposition 2.3.3 we have

Dy(X(ap)) = pla) =0,

1
gp77(§ X[7] + X(T,b]) :p(T) =0 for 7€ (aab)

and

By Lemma 2.5.1 this completes the proof. U

2.5.6. Remark. Let us notice that if z € G,,[a,b], then &,(z) = 0 for all n = (p,q) €
BV [a,b] x R if and only if z(t) =0 on [a,b]. In fact, let z € Ga, b] and let &, (z) = 0 for all
n = (p,q) € BV|[a,b] X R. Then by Corollary 2.4.4 we have

z(a) = z(a+) = 2(t—) = z(t+) = z(b—) = x(b) =0 for all ¢t € (a,bd).

In particular, if € G, [a, b], then z(t) = 0 for any ¢ € [a, b].

2.5.7. Theorem. A mapping ¢ : G,,la,b] — R is a linear bounded functional on G,.,[a,b]
(@ € G [a,b]) if and only if there is ann = (p,q) € BV [a,b] xR such that & = @, where P, is

reg
given by (2.5.5). The mapping Z:n € BV [a,b] xR — &, € G, [a,b] generates an isomorphism
between BY [a,b] x R and G¥, [a,b].

reg

Proof. By Lemmas 2.5.4 and 2.5.5 and by the inequality (2.5.7) the mapping E is a bounded
linear one-to-one mapping of BV [a, b] x R onto G*,_[a, b]. Consequently, by the Bounded Inverse

reg
Theorem, the mapping Z~! is bounded, as well. ]






Chapter 3

Initial Value Problems for Linear

Generalized Differential Equations

3.1. Introduction

This chapter deals with the initial value problem for the linear homogeneous generalized

differential equation

t
(3.1.1) z(t) — 2(0) —/0 d[A(s)]z(s) =0, te]0,1], z(0)=1z,

where A € BV™™ and € R" are given and solutions are functions z : [0,1] — R" with
bounded variation on [0,1] (z € BV").

The basic properties of the Perron-Stieltjes integral with respect to scalar regulated func-
tions were described in Chapter 2. The extension of these results to vector or matrix valued
functions is obvious and hence for the basic facts concerning integrals we shall refer to the

corresponding assertions from Chapter 2.

Let P, € LT*" for k € NU {0} and let X; € AC™" be the corresponding fundamental

matrices, i.e.

Xk(t):I—i—/Oth(s)Xk(s) ds on [0,1] for ke NU{0}.

The following two assertions are representative examples of theorems on the continuous

dependence of solutions of linear ordinary differential equations on a parameter.

3.1.1. Theorem. If

1
lim / | P (s) — Py(s)| ds =0,
0

k— 00

then

43
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lim X (t) = Xo(t) wuniformly on [0, 1].

k— 00

3.1.2. Theorem. (Kurzweil & Vorel, [KV]) Let there exist m € Ly such that

(3.1.2) |Pe(t)| <m(t) a.e. on [0,1] forall keN

and let
t

t
lim Py(s) ds = / Py(s)ds uniformly on [0, 1].
0

k—00 0

Then
lim X (t) = Xo(t) wuniformly on [0,1].

k—o00

3.1.3. Remark. For ¢t € [0,1] and k¥ € NU {0} denote

t
Ag(t) = / Py (s) ds.
0
Then the assumptions of Theorem 3.1.2 can be reformulated for A as follows:

A € AC™™ for all k € NU{0},

sup || Ag |, < oo,

keN

lim Ay (t) = Ap(t) uniformly on [0, 1].
k—o0

Besides, the assumption (3.1.2) means that there exists a nondecreasing function hy € AC such
that

|Ak(t2) - Ak(t1)| S |h0(t2) - ho(t1)| for all tl,tQ € [0, ]_]

In fact, we can put

t
ho(t):/0 m(s)ds on [0,1].

3.2. A survey of known results

The following basic existence result for the initial value problem (3.1.1) may be found e.g. in
[STV] (cf. Theorem II1.1.4) or in [Schw92] (cf. Theorem 6.13).

3.2.1. Theorem. Let A € BV™ " be such that
(3.2.1) det[I—A~A()] #0 for all t € (0,1].

Then there exists a unique X € BV ™ "™ such that

(3.2.2) X(t) =1+ /0 d[A(s)] X (s) on [0,1].
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3.2.2. Definition. For a given A € BV"*" the n x n-matrix valued function X € BV"*"
fulfilling (3.2.2) is called the fundamental matriz corresponding to A.

When restricted to the linear case, Theorem 8.8 from [Schw92], which describes the depen-

dence of solutions of generalized differential equations on a parameter, reads as follows.

3.2.3. Theorem. Let Ay € BV™*" satisfy (3.2.1) and let Xy be the corresponding fundamental
matriz. Let Ay, € BV " k € N, and scalar nondecreasing and left-continuous on (0, 1]

functions hy, k € NU{0}, be given such that hy is continuous on [0, 1] and

(3:23)  lim Ax(t) = Ao(t) on [0,1],

(3.2.4) |Ak(t2) — Ak(t1)| < |hk(t2) — hk(t1)| for all ti,ts € [0, 1] and k€ NU {0},
(3.2.5)  limsuplhg(t2) — hi(t1)] < ho(te) — ho(t1) whenever 0 <t <ty <1.
k—o00

Then for any k € N sufficiently large the fundamental matriz Xy corresponding to Ay exists

and

lim X (t) = Xo(t) wuniformly on [0,1].

k—o0

3.2.4. Lemma. Under the assumptions of Theorem 3.2.3 we have

(3.2.6) sup var Ay < oo
keN
and
(3.2.7) klim [A(t) — Ak(0)] = Ao(t) — Ao(0) wuniformly on [0,1].
—00

Proof. i) By (3.2.5) there is ko € N such that
hi(1) — hi(0) < ho(1) — ho(0) + 1 for all &k > k.
Hence for any k£ € N we have
varA; < op = max ({V&I‘Ak; k< ko} U {ho(l) — ho(0) + 1}) < 00.

Thus we conclude that (3.2.6) is true.

ii) Suppose that

(3.2.8) lim Ag(t) = Ap(¢) uniformly on [0,1]
k—o00

!The author is indebted to Ivo Vrkoé for his suggestions which led to a considerable simplification of this
proof.



46 Milan Tvrdy

is not valid. Then there is £ > 0 such that for any £ € N there exist my > £ and ¢, € [0,1] such
that

(3.2.9) A, (1) — Aolte)] >

We may assume that myq > my for any £ € N and

(3.2.10) lim t;, =ty € [0, 1].
£—00

Let ty € (0,1) and € > 0 be given. Since hg is continuous, we may choose 1 > 0 in such a
way that to —n € [0,1], to +n € [0,1] and

(3.2.11) ho(to + 1) — ho(to — 1) < e.
Furthermore, by (3.2.3) there is #; € N such that
| A, (to) — Ao(to)] <e forall ¢>14
and by (3.2.4), (3.2.5) and (3.2.11) there is 5 € N, ¢y > /1, such that

(3.2.12) |Am‘,(7'2) — Amg(71)| < ho(to+n) —ho(to — 1) +e < 2¢
whenever 7,79 € (tg — n,to +n) and £ > fo.

The relations (3.2.3) and (3.2.12) imply immediately that
(3.2.13) |[Ao(72) — Ao(m1)| = lim [Ap, (72) — A, (11)] < 2¢
whenever 71,79 € (tg — n,to +n).
Finally, let /3 € N be such that ¢3 > ¢ and
(3.2.14) |te —to] <mn forall £> /3,

then in virtue of the relations (3.2.10)-(3.2.14) we have

| A, (te) — Ao(te)]
< [Am, (te) = Am, (t0)| + | Am, (to) — Ao(to)| + [Ao(to) — Ao(te)| < 5e.

Hence, choosing ¢ < % g, we obtain by (3.2.9) that
€ > |Am,(te) — Ao(te)| > €.

This being impossible, the relation (3.2.8) has to be true. The modification of the proof in the
cases top = 0 or tp = 1 and the extension of (3.2.8) to (3.2.7) is obvious. O
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Lemma 3.2.4 shows that Theorem 3.2.3 is a special case of the following result due to
M. Ashordia (cf. [As93]).

3.2.5. Theorem. Let Ay € BV"™™*™ satisfy (3.2.1), let Xy be the corresponding fundamental
matriz and let {Ap}72, C BY™" be such that (3.2.6) and (3.2.7) are true. Then for any k € N

sufficiently large the fundamental matriz Xy corresponding to Ay exists and

lim X (t) = Xo(t) wuniformly on [0,1].

k—o00

3.2.6. Remark. Under the assumptions of Theorem 3.2.5 we have

lim Ag(t—) = Ap(t—) and lim Ag(s+) = Ap(s+)
k—o0

k— 00

for all ¢ € (0,1] and all s € [0,1), respectively. Thus Theorem 3.2.5 cannot cover the case when
there is ¢y € (0, 1] such that

Ak(tg—) = Ak(t()) for all k€N while AO(tO—) 75 Ao(t()).

In particular, Theorem 3.2.5 does not apply to the following simple example.

3.2.7. Example. Consider the sequence of initial value problems

T, =ay(t)zr on [—1,1], =z(-1) =1,

where
0 if ¢ < A,
1 — oy .
ak(t) = if t € (ag, Br),
Br — ay, ( )
1 ift > B;

{ag}32, is an arbitrary increasing sequence in [—1,0) tending to 0; {8}, is an arbitrary

decreasing sequence in (0, 1] tending to 0 and

. A
1 =»xe|0,1).
kl)r{olo o — ,Bk o [ ’ )
For the corresponding solutions we have
v it 1< o, Fif t<0,
Loy . ~ .
zi(t) =q efrer @ if t € (o, Br), and xzy(t) = kli)rglo zp(t) =< e*x if t=0,

e ¥ if t> B, exr if ¢t>0,
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while the unique solution x(t) of the ”limit” equation

0 if t<0,
t
z(t) = 5—]—/ dla(s)] z(s), t € [-1,1], where a(t) = lim ag(t) =< » if t=0,
-1 k— o0
1 if ¢>0
is given by
T if ¢<0,
L if t=0
$(t) = 1= %:1: 1 =0,
9 _
XF it t>0,
11—
ie. z(t) # xo(t) on [—1,1].
On the other hand, zg is a solution to
0 if t<0,
t
zo(t) = §+/ dlao(t)] zo(s)t € [—1,1], where ap(t) = l—e™> if t=0,
-1

(e—1)e > if t>0

and ay, tends to ag in the following sense:

(a) given arbitrary o € (—=1,0) and § € (0,1), limg_,o ax(t) = ao(t) uniformly on [—1,q]
and limy_,oolak(t) — ar(B)] = ao(t) — ao(B) uniformly on [B,1];
(b) limy o0 ak(t) = ao(t) + ao(t), where
0 if t<0,
ap(t) = wt+e ”—1 if t=0,
l—el™4+e” if t>0;
(c) for any z € R and € > 0, there is § > 0 such that for any &' € (0,0) there is ko € N such
that for any k > ko we have oy, > —08', By, < ' and the relations

yk(o>—yk<—a'>—% <e and |5(8) - 7(0) — Atag(0) 2| <

are satisfied for any solution y, on [—d',0] of
yr = ap(t)yr  with yp(=8") € (z — 6,2+ 0)

and any solution zp on [0,0'] of

2. = ay(t) z,  with 2x(0) € (2 — &,z + 9).



Continuous Dependence on a Parameter

In fact, for given z € R, § > 0 and k € N such that oy > —9’ we have

t—ap

yk(t) = ek y(—0') on [oy, 0]

and thus
A~ ap(0) z %k
0) — yp (=" —7‘:‘ Fmor — 1) yp(—d') — (% — 1
‘yk() yr(—4") = Aay(0) (ePr=or — 1) ygp(—4") — (e ) z
% ok
< o e+ o e
where
—ap —ap
lim |efk—2k —e"‘ =0, ‘eﬂk—ak — 1‘ <2 and \z—yk(—‘s')‘ <.

k—o0

Analogously, if k£ € N is such that £, < ¢’, we have

B

2k(0") = 2k(Br) = ePu=k 2;,(0)
and thus
B
‘zk(é') — 2:(0) — ATag(0) z‘ = ‘(eﬁk*“k —1) 25 (=0") — (e —1) z‘
_Br _Br
< ‘eﬁk*% — elf’{‘ |z| + ‘eﬁk*"k — 1‘ ‘z — zk(O)‘,
where
lim
k—00

Notice that if

h B
‘eﬁk—“k —e *”‘ =0, ‘eﬁk—“k - 1‘ <2 and ‘z—zk(())‘ <.

xo(t):§+/ dlap(t)] zo(s) on [—1,1],

then
1 A" ap (0)

T amae) ~ ) 200) = T A g5y )

A7a0(0) = (

49

The convergence described in Example 3.2.7 is closely related to the notion of the emphatic

convergence introduced by J. Kurzweil (cf. [Kub8, Definition 4.1]).

3.2.8. Definition. A sequence {A;}72, C BV™*" converges emphatically to Ay € BV"*" on

[0,1] if

(i) there exist nondecreasing functions h : [0,1] — R, & € NU{0}, which are left-continuous

on (0,1] and such that

|Ak(t2) — Ak (t1)] < [hi(t2) — hi(t1)]

for all k € NU {0} and #1,12 € [0,1];
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(ii) limsupy_, o [hk(tz) — hk(tl)] < [ho(tz) — ho(tl)] whenever 0 < t; < t5 < 1 and hy is

continuous at t; and t9;

(iii) there is Ag € BV™ " guch that limy_ e Ag(t) = Ag(t) + Ao(t) whenever ho(t) = ho(t+)
and |Ag(ts) — Ao(t1)| < |ho(ta) — ho(t1)| for all ty, ¢, € [0,1], where hgy stands for the
break part of hg;

(iv) if ho(to+) > ho(to), then for any z € R™ and any € > 0 there exists § > 0 such that for
any 0’ € (0,0) there is kg € N such that

lyi(to + 8") — yr(to — 0') — AT Ag(tg) 2| < e

holds for any k > ko, any y; € R™ such that |z — yx| < § and any solution y; of the

equation

t

yp(t) =y + /t » d[Ak(s)]yk(s) on [to— &t + ']

The following assertion is a restriction of Theorem 4.1 from [Ku58] to the linear case.

3.2.9. Theorem. Let Ay, converge emphatically on [0,1] to Ag and let the sequence { X }7°, C
BY ™ ™ of the fundamental matrices corresponding respectively to A, k € N, be uniformly
bounded on [0,1] and such that

lim Xy (t) = Zo(t) on [0,1] whenever ho(t+) = ho(t).

k— 00

Then Zg € BY™ "™ and the function X defined by

Xo(t) = Zy(1) if  ho(t+) = ho(t),
o Zy(t—) otherwise

is the fundamental matriz corresponding to Ag.

3.2.10. Remark. Let us notice that necessary and sufficient conditions ensuring the uniform
convergence of fundamental matrices X, corresponding to Ax, & € N, to the fundamental

matrix Xy corresponding to Ay may be found in the paper [As96] by M. Ashordia.

Results related to Theorem 3.2.9 obtained by the method of ”prolongation” of functions
of bounded variation to continuous functions along monotone functions and using the concept

of convergence under substitution instead of the emphatic convergence were also obtained by
D. Frainikova in [Fr89] (cf. also [Fr91]).
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3.3. Emphatic convergence

3.3.1. Notation. For a given function F' € BV™*" the symbol ./(F') stands for the set of
the points of discontinuity of F' in [0, 1], while

ST(F)={te[0,1); ATF(t) #0} and .~ (F) = {t €[0,1); A" F(t) # 0}.

If the set (F) = T(F)U.~(F) is finite, then for an arbitrary compact set M such
that

631 M=Uln61C O\ SF) and o, 510 g ] = for £,
7=1

we define

FM(t) = F(t) = F(ay) if t € [, B]-

Provided the set .(Ap) contains at most a finite number of elements, we can extend
Theorem 3.2.9 to the case that the functions Ay, £ € N U {0}, need not be left-continuous on
(0,1] in the following way.

3.3.2. Theorem. Let Ay € BV™*", 7 (Ag) = {7},

det [I-A" Ay(t)] #0 on (0,1]

and let Xo be the fundamental matriz corresponding to Ag. Assume that the sequence { A},
C BY"™*" s such that

(i) supyvarAy < oo and det [I—A~Ag(t)] #0 on (0,1] for all k € N;
(ii) limg—oo AN (s) = AY () uniformly on M for any M C [0,1]\ 7 (Ao) fulfilling (3.3.1);

(iii) if 7 € S (Ap) then for any z € R™ and any ¢ > 0 there exists § > 0 such that for any
8" € (0,0) there is ko € N such that the relations

lyr(1) — y(T = 8") = A= Ag(7) [T=A"Ag(1)] " 2| <,
‘Zk(T +0") = z1(1) — AT Ay (1) z‘ <eg

are satisfied for any k > ko and yi and zp such that |z — yp(1 — 0")| < 0, |z — 2, (7)| < 4
and
t

) =uelr =)+ [ dlAemels) on (=37,

2 (t) = 2 (1) +/ d[Ag(s)] zx(s) on [r,7+ .
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Then for any k € N sufficiently large the fundamental matriz Xy corresponding to Ay is
defined on [0,1] and
lim X (t) = Xo(t) on [0,1].
k—o0

Proof. Without any loss of generality we can restrict ourselves to the case that m =1, i.e. let
S (Ap) = {7}, where 7 € (0,1). Assume that z € R" is given and let z; for any k¥ € N U {0}

denote the solution to the equation

t
o) =7+ [ Ao on (0.1
0
By Theorem 3.2.5, our assumptions (i) and (ii) imply that for any a € (0,7) we have

lim z4(t) = zo(t) uniformly on [0, .

k—o0
Consequently,
(3.3.2) lim zx(t) = zo(t) for all t € [0,7).
k—o0

Furthermore, for any ¢ € (0,7) and k£ € N we have

(3.33)  |wo(r) — ap(7)| < |mo(T) —wo(T — ') — A” Ag(7) LA~ Ag(7)] " mo(7—)]
+ AT A (1) T =AT Ag(7)] ™ mo(T=) — (zk(7) — z1(T — 0'))|
+ |zo(T — ') — 2k (T — )|

Let an arbitrary £ > 0 be given. By the assumption (iii) there exists § € (0,¢) such that
for all §' € (0,d) there exists k1 = k1(0’) € N such that for any k£ > k; and for any solution y

of the equation
t
nlt) =ulr =)+ [ dlAmels) on =]
such that |y, (7 — ¢") — zo(7—)| < § we have
(3.3.4) lyk(T) —yi(r — 8') = A™ Ao (1) T =A" A (7)] P zo(7—)| < e
Let us choose §' € (0,0) in such a way that
, )
|zo(T—) —z(T —&)| < 3
is true. Furthermore, according to (3.3.2) there is kg € N such that ky > k; and

(3.3.5) |zo (T — ') — zp(T — 0')| < g for all k > ko.



Continuous Dependence on a Parameter 53

In particular, for k > ky we have
|To(T—) — zp(T — &")] < 4.

Thus, if we put yx(t) = zx(t) on [7 — ', 7], then the relation (3.3.4) will be satisfied for any

k > kg, i.e., we have
(3.3.6) (1) — 2p(1 — ') = A" Ag(T) T—=A " Ag(7)] L xo(r—)| < e
for all k > ky. Now, inserting (3.3.5)-(3.3.6) into (3.3.3), we obtain that

b 0
|z (T) — 2o(7)] < g Tgte< 2¢
is satisfied for any k > ko, i.e.

(3.3.7) lim k(1) = zo(7).

k—o0

Further, we will prove that there is n > 0 such that
lim z(t) = xo(t)
k—o00
is true on (7,7 + n) as well. To this aim, let £ > 0 be given and let ny € (0,¢) be such that

(3.3.8) |zo(s) —xo(T+)| <e forall se€ (r,7+no).

By the assumption (iii) there exists n € (0,79) such that for any ' € (0,7) there is ¢; =
?1(n") € N such that for any k£ > ¢; and for any solution zj of the equation

()= 2 + [ AN ) o0 o7+
such that |z (1) — zo(7)| < n we have
(3.3.9) |2k (T + 1) — 26(1) = AT Ag(7) 2o (7)] < €.
Let us choose i’ € (0,n) arbitrarily. By (3.3.8), we have
(3.3.10) lzo(T — ') — 2o (T4)| < €.
Furthermore, by (3.3.7) there is ¢y € N such that £y > ¢; and

|zk(T) — zo(T)| <n for all k> £.

Thus, by (3.3.9), for any k > ¢, we have

(3.3.11) lzi (T + 1) — 21(7) — AT Ag(7) 30 (7)| < €.
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Making use of (3.3.10)-(3.3.11) we finally get for any k > ko

lze (T + 1) — zo(T + 1)
<zg(r+ 1) = 2 (1) — 0(7+) + 20 (7)| + |20(T + 1) — TO(TH)| + |2K(T) — TO(7)]
= |zp(T + 1) — z(1) — AT Ag(7) 20 (7)| + |20 (T+) — 20(T + 0')| + |78(T) — T0(7)] < 3¢,

ie. limyg oo zk(t) = xo(t) for all ¢t € (7,7 + 7).
The proof of the theorem can be completed by using Theorem 3.2.5 and taking into account

that € R™ was chosen arbitrarily. The extension to the general case m € N is obvious. [

3.3.3. Remark. Obviously, if we did not restrict ourselves to the case of only a finite num-
ber of discontinuities of Aj, we should replace the assumptions (i)-(ii) in Theorem 3.3.2 by

assumptions of the form (i)-(ii) from Definition 3.2.8.

3.3.4. Remark. The following concept due to M. Pelant (cf. [Pe]) leads to another interesting
convergence effect which most probably cannot be explained by Theorem 3.3.2.

Let A € BV™™ and let the divisions Dy = {0 = t§f < --- < t’;k =1}, k € N, of [0,1]
be such that D, D {t € [0,1];t = 5%,i = 0,1,...2F} U {t € (0,1]; [A~A(t)] > ;} U {t €
[0.1); [A*A()] = £}

For a given k € N, let us put

A(t) if té€ Dy,
Ap(t) = A(thy — A(th )

k k
tz' - tifl

(t - ti'c—l) if te (tf—latf)'

Then we say that the sequence {Ay, Dy }°, piecewise linearly approzimates A.

Furthermore, for a given A € BV"*" | let us define Ay on [0, 1] by

(3.3.12) Apt) =AM = Y ATAB) X = Y ATA) Xy ()
s (A) sey-i_(A)
+ Z (I— [exp (A*A(s))]_1> X[s,11(t)
seS 7 (A)
+ Z (exp (ATA(s)) — I) X(s,1] (8)-
s€y+(z4)

Then det [I—A~Ay(t)] # 0 on (0,1] and the following assertion may be proved (cf. [Pe]).

Let A € BV™ ", let Ag be given by (3.3.12), let { Ay, Dy}, piecewise linearly approzimate
A and let for a given k € N, Xy, denote the fundamental matriz corresponding to Ay. Then

lim Xy (t) = Xo(t) forall ¢e€]0,1].

k—00
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Furthermore, if A € BV™*" is such that the relations
(3.3.13) det[I—A~A(t)] #0 on (0,1] and det[I+ATA(#)] #0 on [0,1)

are true, then for ¢ € [0, 1] we can define

(3.3.14) A=A = D ATAG) Xt = D ATA®) X ()
Sey*(A) sEer(A)
+ Z In [I —A_A(s)] ! X([s,1] (t)
€. 7 (A)
+ Z In [I+A+A(3)] X(s,1] (t)
s (A)

and the following assertion is an immediate corollary of the above mentioned result of M. Pelant.

3.3.5. Theorem. Let A € BV™ " be such that (3.3.13) holds and let X be the fundamental
matriz corresponding to A. Let Aj be given by (3.3.14), let {Ay, Dy}72, piecewise linearly
approzimate Ay and let for a given k € N, X, denote the fundamental matriz corresponding
to Ag. Then

lim Xy (t) = X(t) for all t€|0,1].

k— 00






Chapter 4

Linear Boundary Value Problems
for Generalized Differential

Equations

4.1. Introduction

This chapter is devoted to linear boundary value problems for generalized linear differential

equations
t
(4.1.1) z(t) — z(0) —/0 d[A(s)] z(s) = f(£) — £(0), te€]0,1],
1
(4.1.2) M z(0) + ; K(s)djz(s)]=r (e R™)

and the corresponding controllability problems. In particular, we obtain the adjoints to these
problems in such a way that the usual duality theory can be extended to them. In contrast
to the earlier papers (cf. e.g. [VTT71], [Tv73], [Tv74], [ST74], [ST79] and the monograph
[STV]) the right-hand side of the equation (4.1.1) can be in general a regulated function (not
necessarily of bounded variation). Similar problems in the space of regulated functions were
treated e.g. by Ch. S. Honig [H675], [H682], [H680], L. Fichmann [Fi] and L. Barbanti [Ba],
where the interior (Dushnik) integral was used. Let us notice that by Theorem 2.4.8 the left-
hand side of the additional condition (4.1.2) represents the general form of a linear bounded
mapping of the space of functions regulated on the closed interval [0, 1] and left-continuous on
its interior (0,1), equipped with the supremal norm, into R”.

The basic properties of the Perron-Stieltjes integral with respect to scalar regulated func-
tions were described in Chapter 2. The extension of these results to vector valued or matrix

valued functions is obvious (they are used componentwise in these situations) and hence for

o7
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the basic facts concerning integrals with respect to regulated functions we shall refer to the

corresponding assertions from Chapter 2.

4.2. Auxiliary lemma

The following property of the functions of strongly bounded variation (cf. 1.2.5) will be helpful

later.

4.2.1. Lemma. Let W : [0,1] x [0,1] — R"*" be such that
(4.2.1) v(W) 4 var W (0,.) < oco.

Then for any g € G™, the function

1
(4.2.2) w(t) = /0 AW (5, 8)]g(s), te[0,1]

is defined and has a bounded variation on [0, 1] and
1

(4.2.3) w(t+) :/ ds[W (t+,s)] g(s) if te€]0,1),
0

1
w(t—):/o A,[ (1=, )] g(s) if t€ (0,1].

Proof. Let g € G™ be given. Since (4.2.1) implies that varjW (¢,.) < oo for any t € [0,1]
(cf. e.g. Lemma 1.6.6 in [STV]), the function (4.2.2) is defined for any ¢ € [0, 1]. Furthermore,
let an arbitrary division d = {#o,t1,...,tx} of [0,1] be given. Then by Lemmas 1.4.16 and
1.6.13 of [STV] we have

k k
D lwty) —w(ty1)] <Y varg(W(ty,.) = Witj-1,.) lgll < (W) gl
j=1 j=1

and consequently
varg w < v(W) ||lg|| < oo.
In particular, w € G™. Moreover, by [STV, Lemma 1.6.14]) all the functions
W(t+,.) and W(s—,0), t€][0,1),s e (0,1]

are of bounded variation on [0, 1]. Thus the integrals on the right-hand sides of (4.2.3) are well
defined. As g is on [0, 1] a uniform limit of a sequence of finite step functions and any finite

step function on [0, 1] is a linear combination of simple jump functions on [0, 1]

(4.2.4) X[0,0]» X[e1], 0 €[0,1],
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it is sufficient to verify the relations (4.2.3) for the case that g is a simple jump function of the
type (4.2.4). Let g = x[o,4], where o € [0, 1]. Then for any ¢ € [0, 1] we have

w(t) = /0(r AT (1 5)] + (W(t, 04) — W(t,0) = W(t,0+) — W(t, o).

Consequently,

w(t+) = W(t+,0+) — W(t+,0) if t €]0,1)
and

w(t—) =W(t—,0+) — W(t—,0) if t € (0,1].

On the other hand, we have

/1 ds[W (t+, 8)] g(s) = W (t+,0+) — W (t+,0) if t € [0,1)
0
and

/1 ds[W (t—, s)]g(s) = W(t—,0+) — W(t—,0) if ¢t € (0,1].
0

This means that the function g = x[o ,] satisfies the relations (4.2.3) for any o € [0, 1). Similarly
we could verify that the function g = x/4,1) satisfies (4.2.3) for any o € [0, 1], and this completes
the proof. O

4.3. Boundary value problem

We will consider the boundary value problem of determining a function z : [0,1] — R”
fulfilling the generalized differential equation (4.1.1) and the additional condition (4.1.2).

Throughout this chapter we assume

(4.3.1) A€ BV A(0+) = A(0), A(t—) = A(t) on (0,1],
(4.3.2) det(I + ATA(t)) #0 on [0,1);

(4.3.3) M e R™*™; K € BY™*";

(4.3.4) feG} and reR™.

4.3.1. Remark. The assumptions (4.3.1) and (4.3.3) ensure that

(4.3.5) 21 €GL s a(t) — z(0) —/0 d[A(s)] (s)
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defines a linear bounded operator on G} (cf. Proposition 2.3.16 and Theorem 2.3.8) and
(4.3.6) Kz eGE — Mz(0)+ /01 K(s) d[z(s)]

defines a linear bounded mapping of G} into R™ (cf. Theorem 2.4.8). Hence, by

(4.3.7) o zEGE (j‘i) €G! x R™

we define a linear bounded mapping of G} into G} x R™.
Moreover, notice that according to Theorem 2.4.8, any linear continuous mapping % of G}
into R™ can be expressed in the form (4.3.6), where M € R™*" and K € BV™*",

4.3.2. Remark. It is well-known (cf. [STV, Theorem II1.2.10]) that under the assumptions
(4.3.1)-(4.3.2) there exists a unique n x n—matrix valued function U (t, s) such that

(4.3.8) U(t,s) =1+ /Ot d[A(7)]U(7,s) for t,se€][0,1].

It is called the fundamental matriz of the homogeneous equation
(4.3.9) z(t) — x(0) — /Ot d[A(s)]z(s) =0 on [0,1]
and possesses the following properties

[U(t,s)| +varjU(t,.) + varjU(.,s) +v(U) < M < 0o for t,s€[0,1],

U(t,7)U(r,s) =U(t,s) for t,s,7 €[0,1],
detU(t,s) #0 for t,s €[0,1],
Ut+,s) =[I + ATA@)| U(t, ) for t€[0,1),s € [0,1],
U(t—,s) =U(t,s) for t € (0,1],s €[0,1],
Ult,s+) =Ul(t,s)[I + ATA@)]™" for t€[0,1],5s €[0,1),
U(t,s—) =U(t, s) for t€[0,1],s € (0,1].

For a given ¢ € R"™, the equation (4.3.9) possesses a unique solution z: [0, 1] — R" on [0, 1]
such that 2(0) = ¢ and this solution is given by (cf. [STV, Theorem III.2.4])

z(t) =U(t,0)c, te€][0,1].

It is well-known (cf. [STV, Theorem I11.2.13]) that for any f : [0,1] — R™ of bounded variation
on [0,1] (f € BV™) and any ¢ € R™ there exists a unique solution z of (4.1.1) on [0, 1] such
that z(0) = c. This solution has a bounded variation on [0, 1] and is given on [0, 1] by

z(t) = U(t,0) c+ f(t) = f(0) + /0 ds[U (2, 5)] (f(s) = £(0)).
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To extend this assertion also to equations (4.1.1) with right-hand sides f € G}, the following
lemma will be helpful.

4.3.3. Lemma. Assume (4.3.1) and (4.3.2). Then for any f € G} the function

(4.3.10) P(t) = f(t) — £(0) — /Ut ds[U (2, 5)] (f (s) — £(0))

is defined and regulated on [0, 1] and left-continuous on (0,1). The operator
(4.3.11) U: feGl —»yeG]

is linear and bounded.

Proof. The function ¢ is obviously defined on [0, 1]. Let us put

(4.3.12) Wi(t,s)=Ul(t,s)if t>s and W(t,s)=U(t,t)if t <s.
Then
t t
(4.3.13) / AUt )] (f(s) — £(0)) = / 4 (t,9)] (F(s) - F(0))
0 0

holds for any ¢ € [0,1] and f € G’ . Since obviously
(4.3.14) v (W) + var{W (0,.) < oo,

we may use Lemma 4.2.1 to show that ¢» € G} for any f € G7}. The boundedness of the

operator ¥ follows from the inequality
()] < 2 (vargW (t,.) [| 1| < 2(v (W) + vargW (0,.)) [|£]

(cf. [STV, Lemma 1.6.6]). O

4.3.4. Proposition. Assume (4.3.1) and (4.3.2). Then for any f € G} and any ¢ € R™ the
equation (4.1.1) possesses on [0,1] a unique solution x € G} such that x(0) = c. This solution

belongs to G} and is given by
(4.3.15) r=0c+ Vf,

where U is the linear bounded operator on G} given by (4.3.10) and (4.3.11) and ® is the linear
bounded mapping of R" into G} given by

D:ceR"— U(t,0)c.
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Proof. Let f € G} and ¢ € R" be given. By Lemma 4.3.3 the function « given by (4.3.15) is
defined on [0, 1] and belongs to G7 . Hence the integral

/ d[A(s)] 2(s)
0

is defined for any ¢ € [0, 1]. Inserting (4.3.10) into this integral and taking into account (4.3.5)
and (4.3.12)-(4.3.14) we obtain by Theorems 2.3.19 (substitution) and 2.3.20 (change of the

integration order)
t t
/ A[A(s)] 2(s) = [U(£,0) — I e + / A[A()] (£(s) - £(0)
0 0
t t
- / | / QAW (r.9)] ((s) — £(0))
0 0
t
— [U(4,0)~ I~ / 4, (U5, )] (F(s) — £(0))
— 2(t) — 2(0) — £(t) + £(0)

for any t € [0, 1]. Hence z is a solution of (4.1.1) on [0, 1]. Obviously, z(0) = c. The uniqueness

of this solution follows from the uniqueness of the zero solution to the equation

u(t) = [ ala@)u(

on [0,1] (cf. [STV, Theorem III.1.4]). The boundedness of the operator ® is evident and the

boundedness of ¥ was shown in Lemma 4.3.3. O

Now, by a standard technique due to D.Wexler (cf. [We]) we can prove the normal solvability
of the operator & given by (4.3.7).

4.3.5. Proposition. Assume (4.3.1)-(4.3.3). Then the operator o has a closed range in G} x
R™.

Proof. By (4.3.15) a couple (f,r) € G} x R™ belongs to the range # (<) of the operator « if
and only if there exists a ¢ € R"” such that

(HB)ec=r— (XD)f,
ie. Z(o)=0_1(%(#P)), where
©: (f,r)eG xR™ —»r—(#V)f € R"

is obviously a continuous operator. % (#®) being finite dimensional, it is closed and conse-
quently Z (/) is closed as well. O
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By Theorem 2.4.8 the dual space to G" may be represented by the space BY" x R™, while
for (y,d) € BV™ x R" the corresponding linear bounded functional on G7} is given by

(4.3.16) z € G} — (x,(y,0)) :=0" z(0) + /01 y"(s) d[z(s)] € R.
Thus, the adjoint operator to & may be represented by the operator

g BV x R" x R™ +— BV" x R™
defined by the relation

(4.3.17) (o x,(y,7,0)) : = (L =, (y,7)) + 0" (X x) = (z,5"(y,7,0))
for x € G}, yeBV", y€eR"” and § € R™.

4.3.6. Definition. The operator &* : BV"” x R® x R™ +— BV"™ x R™ fulfilling (4.3.17) is
called the adjoint operator to <.

The next theorem provides an explicit form of the adjoint operator to «.
4.3.7. Theorem. Assume (4.3.1)-(4.3.3). Then the adjoint operator «/* is defined by
(4.3.18)  &*: (y",7",0") e BV" x R" x R™

1 1 ~

76 +5 KO~ [ o' O dAE0L67M — [ y7(s) diAs)) € YT xR,
t 0

where

(4.3.19)  A(t) :{ jg;r) Zz iii

Proof. Let z € G}, y € BV", v € R® and 6 € R™. Inserting (4.3.5) and (4.3.6) into the
left-hand side of (4.3.17) we obtain

1 t
(4.3.20) (Fx,(y,7,09)) :/0 y (s)d[ac(t)—/0 d[A(S)]:E(S)]
1
+ 0" (M z(0) +/ K(t) d[z(t)])
0
1 1 t
:/ (4" (t) + 67 K (8)) d[x(t)]+6TMx(0)+/ yT(t)d[/ d[A(s)] (s)].
0 0 0
Furthermore, by the Substitution Theorem (cf. Theorem 2.3.19) we have
1 t
/0 yo(1)d] /0 d[A(5)) 5(5)]
1 1 1
= [ v daenao -~ [ al [ v daelso.
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Now, integrating by parts (cf. Theorem 2.3.15) we obtain

1 t
(4321) | vroal [ aae)a)

1 1 1
= ([ @ dae) e+ [ ([ 56 dae) dt)
+ Y ATwTH) ATz - > ATwT(t) A x(h),

0<t<1 0<t<1

where

1
w'(t) = /t y"(s)d[A(s)] for te€][0,1].

AtTw™(0) = —y"(0) ATA(0) =0, ATw™(t) = —y"(t) ATA(t) for t€(0,1)
and
Aw"(t) = —y" () ATA(#) =0 for te (0,1],

the relation (4.3.21) reduces to

1 t
/0 YT (1)d] /0 A[A(s)] (5)]

1 1 1
.y /0 y™(5) d[A(s)]) 2(0) + /0 ( / y™(s) d[A(s)]) dlz(t)]

— ) YT )AT A ATx(1).

0<t<1
Let us put 27(t) = y"(¢)ATA(¢) for t € [0,1) and 27(1) = 0. Then 2" (¢t+) = 2" (t—) = 0 for
€ (0,1), 27(0) = 27(0+) = 2"(1-) = 27(1) = 0 and 2" (¢) = 0 if and only if ATA(t) = 0.
Hence, using Proposition 2.3.12 we get

1
/0 ) @)= Y 2T Axt) = Y yT(H) ATA®) Ata()

0<t<1 0<t<1

and

1 t 1
/0 ROL / A[A(s)] 2(s)] = ( / y*(5) d[A(s)]) 2(0)

(e sl - [ 70 i),

If we define B(t) = AT A(t) on [0,1] (i.e. B(1) =0), then B(t) = 0 if and only if A1TA(t) =
0 and, moreover, B(0) = B(0+) = B(t—) = B(t+) = B(1—) = B(1) for any ¢t € (0,1).

Consequently,

1
/t y'(s) d[B(s)] = y"(#) AT B(t) = —y"(t) A*A(t) = —2"(t) on [0,1)
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(cf. Corollary 2.3.14). Thus,
1 t
(43.22) [ vl [ diatae)
1 1 1
= ([ @ dae) o + [ ([ 56 diae) diso)

0

1 1
4 /0 ( / y™(s) d[B(s)]) d[z(t)
1 1 1
oy / ¥ (1) dLA(t)]) £(0) + / ( / y*(s) d[A(s)]) (1)),

where the convention A(1+) = A(1) is used. Finally, inserting (4.3.22) into (4.3.20) we obtain

1

1
(@, (y,7,0)) = | (¥ (&) + 0" K(t) — | y"(s) d[A(s+)]) d[z()]
0

. t
(6T M - / y*(s) d[A(s)])2(0).
]

4.3.8. Theorem. Assume (4.3.1)-(4.3.3) and let y € BV"™, v € R" and § € R™. Then
(y,7,0) € A (™) if and only if

1 ~
(43.23) V(0 =y + [ 96 A - 8 (K (0 - K)o [0.1],
(4.3.24) y(0) + 6" (K(0)—M) =0, y"(1)+dé"K(1)=0,
where A is defined by (4.3.19).

Proof. By (4.3.18), (y,v,9d) € A#(«) if and only if

1 ~
(4.3.25) yT (1) = /1t YT (s) d[A(s)] — 6" K () on [0,1]
and

1
(4.3.26) "M = A y" (s)d[A(s)].

For ¢ = 1 the relation (4.3.25) yields y™(1) — §" K (1) = 0. Thus, (4.3.25) may be rewritten as
(4.3.23). Furthermore, for ¢t = 0 we get from (4.3.25)

1
(4.3.27) y™(0) = / y(s) d[A(s)] — 67 K(0).
0
Since
/1 yT(s) d[A(s) — A(s)] =0 forall yeBV",
0

the relation (4.3.27) reduces by (4.3.26) to y™(0) = ¢ (M —K(0)). This completes the proof. [



66 Milan Tvrdy

4.3.9. Definition. The problem of determining a function y : [0, 1] — R™ of bounded varia-
tion on [0, 1] and 6 € R™ such that (4.3.23) and (4.3.24) are true is called the adjotnt problem
to the problem (4.1.1), (4.1.2).

By (4.3.16), Proposition 4.3.5 and Theorem 4.3.7 the linear operator equation

v ().

where h € G} is given by h(t) = f(t) — f(0) on [0, 1], fulfils the assumptions of the fundamental
theorem on the Fredholm alternative for linear operator equations (cf. e.g. [Ru, Theorem
4.12]). Thus, we have:

4.3.10. Theorem. Assume (4.3.1)-(4.3.4). Then the problem (4.1.1), (4.1.2) possesses a so-
lution if and only if

1
/0 Y7 (H) d[F ()] + 07 = 0

holds for any solution (y,0) of the adjoint problem (4.3.23), (4.3.24). O

4.3.11. The adjoint problem. For any § € R™ fixed, the equation (4.3.23) is a generalized
linear differential equation which was treated in detail in Section III.4 in [STV]. Let us recall
here some basic facts. For given § € R™ and 1 € R", the equation (4.3.23) possesses a unique

solution y on [0, 1] such that y(1) = n. This solution is given on [0, 1] by
4329 0 =" VL0~ 07 O - K)o [ (K6 K1) 4V 6,0)
where V' is an n x n—matrix valued function uniquely determined on [0, 1] x [0, 1] by the relation
V(t,s) =TI+ /t V(t,7)d[A(r)], t,s€][0,1].
s

The relationship of the matrix valued functions U and V' is given by Theorem III.4.1 of [STV].

Under our assumptions (4.3.1) and (4.3.2) we have according to this theorem
(4.3.29) Ul(t,s) =V(t,s)+ V(t,s) ATA(s) + ATA(t)U(t,s) for t,s€]0,1]

(where ATA(1) = 0). It is easy to verify that a couple (y,d) € BV™ x R™ is a solution to the
adjoint problem (4.3.23), (4.3.24) if and only if y is given by (4.3.28), where n* = —§* K(1)

and ¢ satisfies the algebraic equation

1
(4.3.30) 5T (M+/0 K(s) ds[V (s,0)]) = 0.
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Let us put W(t) = V(¢,0) = U(t,0). Then by (4.3.29) W (t) = A1t A(t) U(t,0) and consequently
W(0) = W(0+) = W(t+) = W(t—) = W(l-) = W(1) = 0
holds for any ¢ € (0,1). This implies that

/K 301—/1( U(s,0)]

holds, i.e. the equation (4.3.30) may be rewritten as
(4.3.31) (M + / K(s (s,0)]) =0.
Inserting n* = —0" K (1) and

1
/t K1) AV (s,0)] = K1) (V(L1) - 1)

into (4.3.28) we may now easily complete the proof of the following characterization of the
adjoint problem to (4.1.1), (4.1.2).

4.3.12. Proposition. Assume (4.3.1)-(4.3.3). Then a couple (y,0) € BV™ x R™ is a solution
to the problem (4.3.23), (4.3.24) (i.e. (y,0) € A (")) if and only if

y'(t) = —5T / K(s (s t)]) for te€[0,1]

and 0 verifies the equation (4.3.31). Moreover, for the dimension dim A4 (a*) of the null space
N (/™) of the operator <« the relation

(4.3.32) dim A(e/*) = m — rank (M + /1 K(s) ds[U(s,0)])
0
s true. U

Since, on the other hand, z € G’ is a solution of the homogeneous boundary value problem

(4.3.9),
1
+/0 K(s)d[z(s)] =0

(i.e. z € #(&)) if and only if z(t) = U(¢t,0) c and

/ K(s) d,[U(s,0)]) ¢ = 0,

the following assertion follows immediately from (4.3.32).
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4.3.13. Theorem. Assume (4.3.1)-(4.3.3). Then

dim A(&) — dim A (") =n —m. O

4.3.14. Remark. Let us note that the main assertions of this section (Propositions 4.3.4, 4.3.4
and 4.3.12 and Theorems 4.3.7, 4.3.8, 4.3.10 and 4.3.13) remain valid when the assumptions
(4.3.1), (4.3.2) and (4.3.4) are respectively replaced by

(4.3.1°) AcBY™" ATAW0) =0, A A(t) = ATA(t) on (0,1),A  A(1) =0,
(4.3.2) det(I — (A" A(t))?) #0 on (0,1),

and

(4.3.4) feGy, and reR™,

and A(t) = A(t) on [0,1] (see [Tv00], where also

some more details concerning the periodic problem (4.1.1), z(0) = z(1) can be found). Notice

the space G7 is replaced by the space G

reg

that by virtue of Theorem 2.5.7 the left-hand side of (4.1.2) represents also a general linear
bounded mapping of G"_ into R™.

reg

Finally, let us note that it is known (cf. [PT, Proposition 2.3]) that if A and f fulfil the
assumptions (4.3.1’), (4.3.2’) and (4.3.4’), then the equation (4.1.1) reduces to the distributional

differential equation
o —Az=f,

where the product A’z is the functional on the usual (cf. [Halp] and [PT, Sec. 1.3]) space 2"

of n—dimensional test functions given by:

1 t
Ap:ipeon b—>/0 o7 (s) d(/o d[A(s)] 2(s)) € R.

For related results concerning linear periodic problems or linear differential equations with
distributional coefficients, see also [Wy], [BS], [BPS] or [Li].

4.4. Controllability type problem

Let us assume that
(4.4.1) U is a linear space and £ € £ (U,G7).

In this section we will consider the problem (4.4.2), (4.1.2) of determining z € G} and u € U
such that

(4.4.2) x(t)—x(O)—/O d[A(s)] x(s) + (B u)(t) — (#u)(0) = f(t) = f(0) on [0,1]

and (4.1.2) are satisfied.
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4.4.1. Remark. If m =n,

I 0 0
M = (I) JK(t) = (I) and r = <x1> ,

then the condition (4.1.2) reduces to the couple of conditions
z(0) =2°,  z(1) =z

Furthermore, if U = L} (the space of n—vector valued functions square integrable on [0, 1]),

P and q are Lebesgue integrable on [0, 1], @ is square integrable on [0, 1],

t t
A(t) = /0 P(s)ds, f(t) = /0 g(s)ds on [0,1]

and
t
B :uely »—>/ Q(s) u(s) ds,
0
then the equation (4.4.2) reduces to the ordinary differential equation
' =P(t)z + Q(t)u+q(t)

on [0,1]. Thus, the given problem (4.4.2), (4.1.2) is a generalization of the controllability
problem for linear ordinary differential equations. The problem (4.4.2), (4.1.2) could be also
viewed as a (possibly infinite dimensional) perturbation of the boundary value problem (4.1.1),
(4.1.2).

To obtain necessary and sufficient conditions for the solvability of the problem (4.4.2),

(4.1.2) in the form of the Fredholm alternative the following abstract scheme will be applied.

4.4.2. Abstract controllability type problem. Let X, Y, Y™ and U be linear spaces and
let

heY,yeY" — (h,y)y €R
be a bilinear form on Y x Y. For M C Y and N C Y1, let us denote

M ={yeY": (myy=0 forall mec M}
and

Nt={heY: (hy)y =0 forall ye N}.

Let @ € 2(X)Y), 2 € £(U,Y) and h € Y be given and let us consider the operator
equation for (z,u) € X x U

(4.4.3) dr+2u=h.
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Let us denote

(4.4.4) N =R () and N =7 (2).

(Obviously (/V;; and JVE are linear subspaces of Y7.)
Let us assume that
(4.4.5) (*# ()" =#() and dim.A}, < oo
In particular, we have (cf. (4.4.4))
(4.4.6) # () = (A"

Furthermore, let £ = dim JV; and let {y',4?,...,y*} be a basis of [/V;{ In virtue of (4.4.6),
the equation (4.4.3) possesses a solution in X x U if and only if there exists a solution u € U

to the equation
(4.4.7) Cu=b,
where ¥ € £ (U,R¥) and b € R¥ are given by

¢:uelU— ((2 U,yj>Y)j:1,2,...,k: € R”
and

b= ((h,y)y)j=12,..k € RF.

Since dim % (¢) < k < oo, it follows that (+% (¢))* = # (%) (cf. [Ru]) or, in other words, the

equation (4.4.7) possesses a solution in U if and only if

(4.4.8) vTh=0 for all v € RF such that v™ (Cu) =0 for all v € U.
It is easy to verify that the condition (4.4.8) is equivalent to the condition
(4.4.9) (hyy)y =0 forall ye 47, NAY,.

Summarizing the above considerations we get the following proposition.

4.4.3. Proposition. Assume o € Z2(X)Y), 2 € Z2(U,Y), h € Y and (4.4.5). Then the
equation (4.4.3) possesses a solution in X x U if and only if (4.4.9) is satisfied. O

Let us notice that up to now no assumptions on topologies in X, Y, Y* and U and on
the boundedness of the operators o/, # have been needed. Of course, the assumptions of the
above proposition are fulfilled if X and Y are Banach spaces, Y7 is the dual space of Y, ({.,y)y
for y € Y* are linear bounded functionals on Y), the range % (&) of & is closed in Y and
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the null space A#(&*) of the adjoint operator &* to & has a finite dimension. (In this case
N = NT*).)

The problem (4.4.2), (4.1.2) reduces to the operator equation (4.4.3) if we put
X=G?, Y=G?xR" Y'=BV"xR" xR™,
1
(7). 7.8 = 675 497 F0) + [ 37 dlf ()

for feG}, reR™, yeBV", yeR" and 0€R",

(% u)(t) — #u)0) f(t) = £(0)

2:uelU—
0 0

)eGZme and h(t):( )eGZme
and if we make use of (4.3.7) again. By Propositions 4.3.5 and 4.3.12 the assumptions of the

above proposition are fulfilled and hence the following assertions are true (cf. Theorem 4.3.8).

4.4.4. Theorem. Assume (4.3.1)-(4.3.4) and (4.4.1). Then the problem (4.4.2), (4.1.2) pos-

sesses a solution in G x U if and only if

1
(4.4.10) /0 Y7 (t) [ (8)] + 677 = 0

holds for any solution (y,0) of the system (4.3.23), (4.3.24) such that

1
(4.4.11) /0 () d[(ZW)(H)] =0 for all uel.

4.4.5. Corollary. Assume (4.3.1)-(4.3.3) and (4.4.1). Then the problem (4.4.2), (4.1.2) pos-
sesses a solution in G} x U for any f € G} and any r € R™ if and only if the only solution
(y,0) of (4.3.23), (4.3.24) which fulfils (4.4.11) is the zero solution (i.e. y(t) = 0 on [0,1],

§=0). O

4.4.6. Remark. In accordance with the usual terminology the system (4.4.2), (4.1.2) is called
completely controllable (or more precisely completely (%, M, K)—controllable) if it pos-
sesses a solution in G} x U for any f € G} and any r € R™ (cf. [Hala], [Ma], [La]). The
problem (4.3.23), (4.3.24), (4.4.11) adjoint to (4.4.2), (4.1.2) in the sense of Theorem 4.4.4
is a generalization of classical observability problems for linear ordinary differential equations
and Corollary 4.4.5 is a generalization of the well known theorem (cf. e.g. [Russ], [Ro]) on
the duality between controllability and observability problems for linear ordinary differential

equations. Controllability is often considered for homogeneous differential equations. In an
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analogous situation for the problem (4.4.2), (4.1.2) (i.e. f(¢) = f(0) on [0,1]) we obtain that
the system

(4.4.12) 2(t) — 2(0) — /0 d[A(s)] 2(s) + (Bu)(t) — (Bu)(0) =0 on [0,1],

(4.1.2) possesses a solution in G} x U for any r € R™ if and only if the only couple (y,d) €
BV™ xR™ fulfilling (4.3.23), (4.3.24) and (4.4.11) is the zero one. In fact, it follows immediately
from (4.4.10) that (4.4.12), (4.1.2) has a solution in G} x U for any r € R™ if and only if 6 =0
holds for any couple (y,d) € BV™ x R™ fulfilling (4.3.23), (4.3.24) and (4.4.11). By 4.3.11 this

implies that y(¢) = 0 on [0, 1] for any such couple, of course.

4.4.7. Corollary. Assume (4.3.1)-(4.3.3) and let U= G" and
t
B :ueGh r—)/ d[B(s)]u(s), te€]0,1],
0

where B(s) is an n X h—matriz valued function of bounded variation on [0, 1], right-continuous
at 0 and left-continuous on (0,1]. Then the problem (4.4.2), (4.1.2) has a solution if and only
if (4.4.10) holds for any solution (y,0d) of the system (4.3.23), (4.3.24) such that

/1 y"(s)d[B(s+)] =0 forall te]0,1].
t

Proof follows from Theorem 4.4.4 and from the relation

1 t
/0 Y (t) d] / A[B(s)] u(s)] =
1 1 1
y /0 ¥ (t) d[B(1)]) u(0) + /0 ( / y™(5) d[B(s)]) dlu(t)]

forall weG? and yeBV",

which can be verified analogously to the corresponding relation for the n X n—matrix valued
function A(t) in the proof of Theorem 4.3.7. O

4.4.8. Corollary. Assume (4.3.1)-(4.3.3) and let U= G" and
t
B :uecGh r—)/ B(s) d[u(s)],
0
where B(s) is an n X h—matriz valued function of bounded variation on [0,1]. Then the problem

(4.4.2), (4.1.2) has a solution if and only if (4.4.10) holds for any couple (y,d) € BV™ x R™
fulfilling (4.3.23), (4.3.24) and y*(t) B(t) =0 on [0, 1].
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Proof. Since by the Substitution Theorem (cf. Theorem 2.3.19) the relation

1 1 t
/0 ¥ (1) Al(Bu) ()] = / ROL / B(s) d[u(s)]]
1
- / y* () B(2) d[u(t)

holds for all y € BV™ and u € G’%, the proof follows immediately from Theorem 4.4.4. O

4.4.9. Definition. Let T' = {t1,t9,...,t,} be such that
(4.4.13) 1>t >te>--->1t,>0.

Then we denote by Ur the subset of G} consisting of all functions u € G} which are constant

on each of the intervals
0,t,], (t1,1], (tg+1,te], E=1,2,...,v—1.

4.4.10. Proposition. LetT = {t1,tq,...,t,} fulfil (4.4.13) and let Ur be defined by Definition
4.4.9. Then Ur is a linear space. Furthermore, if y € BV", then

1
(4.4.14) / y"'(t) d[u(t)] =0 forall u e Up
0
holds if and only if
(4.4.15) y"(t) =0 for any T € Up.

Proof. The first part of the proposition is evident. Let us suppose that (4.4.14) holds. Then
for a given 7 € T, the function (. ;) belongs to Uy and (cf. Proposition 2.3.3)

1
/0 y™ (1) dlxry(8)] = 7 (7) = 0.

Analogously, x[;) € Ur, while

ie., (4.4.15) is true.
On the other hand, since obviously Ur C BV™, it follows from [STV, Lemma 1.4.23] that
(4.4.14) holds for any y € BV" satisfying (4.4.15) and any u € Up. O
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4.4.11. Corollary. Assume (4.3.1)-(4.3.4) and let U= Uyp and
% :uelUm—ueGy,

where T = {ty};_, C (0,1) and Ur satisfy the assumptions of Proposition 4.4.10. Then the
problem (4.4.2), (4.1.2) has a solution if and only if (4.4.10) holds for any couple (y,d) €
BV”™ x R™ fulfilling (4.3.23), (4.3.24) and such that y(7) =0 for any T € T.

Proof follows immediately from Theorem 4.4.4 and Proposition 4.4.10. O

4.4.12. Example. Let P € L1*", g € L}, K € BV™*" My, N, € R™*" (k = 0,1,...,v),
r € R™ and let T = {t;};_, C (0,1) satisfy (4.4.13). Consider the problem (P) of determining
a function z € G} which is absolutely continuous on every interval (txy1,%], K = 1,2,...,v,

and satisfies

T'(t) — P(t)z(t) = q(t) a.e. on [0,1]
and
v 1
H = Myx(0) + Nox(1) + Z[Mk z(ty+) + Ny z(te—)] + /0 Ky(s) d[z(s)] = r.

k=1

Such problems are usually called interface boundary value problems (cf. e.g. [Br], [Co],
[Schw80] or [Ze]).

Let Ur and # have the same meaning as in Proposition 4.4.10 and let us put

t t v
A(s) :/0 P(r)dr, f(t)= /0 q(t)dr for t€[0,1], M = kZ:O[Mk + N |
and

K (t) =Ko(t) + Y [Mp X[o,1,] (t) + Ni X[o,1,) (D] + No for ¢ € [0,1].
i=1

Then
1
H = Mxz(0)+ / K(s)d[z(s)] forall ze€ G}
0

and the function z € G7 is a solution of the interface problem (P) if and only if there is u € U
such that the couple (z,u) € G} x U is a solution to the controllability type problem (4.4.2),
(4.1.2). Now, Corollary 4.4.11 yields that (P) has a solution if and only if (4.4.10) is true for
all couples (y,d) € BV"™ x R™ satisfying the equation (4.3.23) together with the conditions

(4.4.16) y"(0) + 6" (Ko(0) — Mp) =0, y"(1) + 8" (Ko(1) + No) =0,
(4.4.17) y"(ty) =0, k=1,2,...,v.
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Finally, let us notice that for any ¢ € [0, 1] we have

K(t) = K(1) = Ko(t) = Ko(1) + Y [My x[0.,](t) + Nic X10.4,) (V)]
k=1

This implies that a couple (y, d) € BV™ x R™ solves the system (4.3.23), (4.4.16), (4.4.17) if and
only if y™ + §" K is absolutely continuous on every interval [«, 5] such that [«, 5] C [0,1]\ T
and the relations

—(y"+ 6" Ko)' () +y" P(t) =0 a.e. on [0,1],
AT (y" + 0" Ko)(tr) = 0" My, A7 (y" + 6" Ko)(tx) =0" Ng, i=1,2,...,v

(4.4.16) and (4.4.17) are satisfied.






Chapter 5

Linear Integral Equations in the

Space of Regulated Functions

5.1. Introduction

This chapter is devoted to linear operator equations of the form
(5.1.1) x— YLz =f,

where ¢ is a linear compact operator on the space G} and f € G}. Due to Schwabik (cf.
[Schw92a, Theorem 5]) it is known that .# is a linear compact operator on G} if and only if
there are functions A € GI*" and B : [0, 1] x [0, 1] — R™*™ such that B(t,.) € BV"*" for any
te0,1],

1
(5.1.2) (Zz)(t) = A(t) (0) +/0 B(t,s) d[z(s)] for z € G} and ¢ € [0,1],
and the mapping
Mp: t€0,1] = Mp(t) = B(t,.) € BY™*"

is regulated on [0, 1] and left-continuous on (0,1) (i.e. B € #[*", see Definitions 5.3.2 and
5.3.3).

In Sections 5.4 and 5.5 we prove basic existence and uniqueness results for the equation
(5.1.1) and obtain the explicit form of its adjoint equation. An important tool for the proofs
of our main results is in particular the theorem on the interchange of the integration order for
Stieltjes type integrals (i.e. the Bray Theorem ). Its proof for the Perron-Stieltjes integral is
given in Sec. 5.3 (cf. Theorem 5.3.13).

Special attention (cf. Sec. 5.6) is paid to the causal case, i.e. to the Volterra-Stieltjes

integral equations of the form
2(t) — A(t) a(0) — / Bt,s) dia(s)] = £(t), € [0,1],

77
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where A(0) = 0.
Similar problems in the space of regulated functions were treated e.g. by Ch. S. Honig
[Ho75], [H680], L. Fichmann [Fi] and L. Barbanti [Ba], where the interior (Dushnik-Stieltjes)

integral was used.

5.2. Auxiliary lemma

By Theorem 2.4.8, & € L(G},R™) (i.e. @ is a linear bounded mapping of G} into R™, cf.
1.3.2) if and only if there exist M € R™*" and K € BV"*" such that

1
&x = M z(0) + / K(t)d[z(t)] forall z e Gf}.
0
Furthermore, for any M € R™*™ and any K € BV™*" the relation
1
M z(0) +/ K(t)d[z(t)] =0 forall ze G}
0
holds if and only if
M =0 and K(t)=0on [0,1].

By a slight modification of Corollary 2 from [Schw92a] we can obtain an analogous result also

for linear bounded mappings of G} into G":

5.2.1. Lemma. ¢ € L(G},G") if and only if there exist A € G™*" and B : [0,1] x [0,1] —
R™ ™ such that

(5.2.1) B(.,s) € G for all s €10,1],
(5.2.2) B(t,.) e BV™"™  for all te€]0,1],
(5.2.3) there is a (< oo such that varyB(t,.) < for all t€]0,1]

and £ is given by (5.1.2). Furthermore, for given functions A € G™*™ and B(t,s) fulfilling
(5.2.1)-(5.2.3) the relation

1
A(t) z(0) +/0 B(t,s)d[z(s)]=0 on [0,1]
holds for all x € G} if and only if

A(t)=0o0n [0,1] and B(t,s)=0 on [0,1] x[0,1].
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5.3. Functions of the class .»"*" and the Bray Theorem

In this section we will study the properties of the class #™*" of n x n—matrix valued functions

which will play a crucial role in our investigations of equations of the form (5.1.1).

5.3.1. Notation. For K : [0,1] x [0,1] — R™ "™ such that K(¢,.) € BV™*" for any ¢ € [0, 1]
we denote by My the mapping of [0, 1] into BV"™*™ defined by

(5.3.1) My : te0,1] — My (t) = K(t,.) € BY™™.

5.3.2. Definition. We say that a matrix-valued function K : [0,1] x [0,1] — R"*" belongs
to the class ™ ™ if it satisfies the following hypotheses:

(Hy) K(t,.) € BV™" for any t € [0,1];
(Hy)(i) for any ¢ € [0,1) there exists a function K,” = Mg (t+) € BY™*" such that

lim [|Mg (1) — K/ |lev =0,

T—t+
(Hp)(ii) for any ¢ € (0, 1] there exists a function K, = Mg (t—) € BV™*" such that

lim |9 (1) — Ky ||sy = 0.

T—t—

5.3.3. Definition. We say that a matrix-valued function K : [0,1] x [0,1] — R"*" belongs
to the class ¢ ["" if K € ™ ™ and the mapping My : [0,1] — BV"™*" given by (5.3.1) is
left-continuous on (0, 1), i.e.

lim [|[K(7,.) — K(t,.)||lsy =0

T—t—

holds for any ¢ € (0, 1).

5.3.4. Remark. Let a matrix-valued function K : [0,1] x [0, 1] — R™*" be such that K(¢,.) €
BV™ ™ for any ¢ € [0, 1] and let the mapping Mg : [0,1] — BV"™*" be defined by (5.3.1). We
say that Mg is regulated on [0,1] if the condition (Hz) from Definition 5.3.2 is satisfied.

Obviously, (Hsg) is satisfied if and only if the following assertions are true:
(Hy)(i')  for any ¢ € [0,1) and any £ > 0 there exists § > 0 such that ¢+ ¢ < 1 and
K (72,.) — K(11,.)||pv <& forall 7,7 € (t,t+9),

(Hg)(ii')  for any t € (0,1] and any € > 0 there exists 0 > 0 such that ¢ —§ > 0 and
|K(12,.) — K(71,.)|lgy <e forall 7,7 € (t—0,t).
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The following assertion due to Schwabik (cf. [Schw92a, Theorem 4]) has been already

mentioned in the introduction to this chapter.

5.3.5. Theorem. .Z is a linear compact mapping of G} into G" if and only if there exist
n X n—matriz valued functions A € G™*™ and B : [0,1] x [0,1] — R"*™ such that B € ¢™*"
and £ is given by (5.1.2). Furthermore, £ is a linear compact mapping of G} into G} if and
only if there exist n X n—matriz valued functions A € G*™ and B : [0,1] x [0,1] — R"*"
such that B € X ™" and & is given by (5.1.2).

Let us summarize some of the other properties of functions of the class J#™*",

5.3.6. Lemma. If K € """ then K(.,s) € G"*" for any s € [0,1].

Proof. Let t € [0,1) and € > 0 be given. By (Hg)(i') (cf. Remark 5.3.4) there exists § > 0 such
that ¢ +¢6 <1 and

|K(12,.) — K(71,.)|lgv <e forall 7,79 € (¢t,t+0).
Consequently, if s € [0,1] and 71,75 € (¢, + 0), then
|K(T273) _K(Tla3)|

< |K(72,0) = K(71,0)| + [K (72, 8) — K(71,8) — K(72,0) 4 [K(71,0)]
< ||K(7'2,.) - K(Tl,.)HBV <eE.

This implies that K(.,s) possesses a limit lim, ¢ K(7,s) = K(t+,s) € R" for any ¢t € [0,1)
and any s € [0,1]. Analogously, K(.,s) possesses a limit lim, ,;_ K(7,s) = K(t—,s) € R" for
any ¢t € (0,1] and any s € [0, 1]. O

5.3.7. Lemma. If K € #"*" then

w:= sup ||K(t,.)||py < oo.
te(0,1]

Proof follows directly from Definition 5.3.2 by means of the Vitali Covering Theorem (cf. also
Remark 5.3.4). m

5.3.8. Lemma. If K € #"*" and My is given by (5.3.1), then

(5.3.2) Mk (t+) = K(t+,.) e BV™*™  for all t€]0,1)
and

(5.3.3) M (t—) = K(t—,.) € BV™™  for all t € (0,1].
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Proof. Let t € [0,1) be given. By (Hz)(ii) there exists H € BV™*" such that
Tim K (r,) ~ Hllsy =0,
i.e. H=9Mg(t+). In particular, in virtue of Lemma 5.3.6 we have
K(t+,s) = lim K(7,s) = H(s) forall se€[0,1]

T+

wherefrom the relation (5.3.2) immediately follows. Analogously we can prove that the relation
(5.3.3) is true, as well. O

As a direct consequence of Lemma 5.3.8 we have the following
5.3.9. Corollary. If K € "™ then the relations

lim ||K(7,.) — K(t+,.)||lzy =0 for all t€]0,1)

T+
and

ILI{I7I|K(T, ) —K(t—, )|y =0 forall te(0,1]
are true.

5.3.10. Lemma. Let K € # ™ ™. Then for any © € G" the integrals

1
(5.3.4) / K(t,s)dz(s)], te[0,1],
0
1
(5.3.5) / K(t+,5)diz(s)], t€0,1)
0
and
1
(5.3.6) /0 K(t—,s) diz(s)], t¢€ (0,1]
exist and the relations
1 1
(5.3.7) Tli>r§1+ A K(1,s) d[:zc(s)]:/0 K (t+,s)d[z(s)] for te€]0,1)
and
1 1
(5.3.8) Tligl_ K(r,s)d[z(s)] = / K(t—,s)d[z(s)] for te€(0,1]
0 0
are true.

Proof. All the integrals (5.3.4) - (5.3.6) have values in R" according to Theorem 2.3.8. The
relations (5.3.7) and (5.3.8) follow by Theorem 2.3.7 and by Corollary 5.3.9. O
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5.3.11. Corollary. Let K € #"*". Then the function

1
— [ Kt dists)
0

is for any x € G defined and regulated on [0, 1].
Moreover, if K € 2 [*", then h is left-continuous on (0,1).

5.3.12. Lemma. Let K € """, Then the function

1
W) = [ o) ik (s, 1)
0
is for any y € BV™ defined on [0, 1] and has a bounded variation on [0, 1].

Proof. a) The existence of the integrals h(t), ¢ € [0, 1], follows by Theorem 2.3.8.
b) To prove that h € BV™, let us first assume that n = 1, k € ™™ and

d={to,t1,...,tm} € D[0,1].

Then for all z; € R, i = 1,2,...,m such that |z;| < 1 we have by Theorem 2.3.8 and Lemma
5.3.7

\Z ti1)] @) = ‘/ Z(k(s,ti)—k(s,ti,l)))]mi
=1
sznyHW(sgp \; (s,t) = (s, i) i)
|:vl|<1
< 2lylls (|1[|1p] (3 htovt) = st 1))

< 2|lyllgv sup varpk(s,.) = 2|lyllzy 2 < oco.
s€[0,1]

In particular, if we put
zi = sgnlh(t;) — h(ti-1)]
for ¢ =1,2,...,m we obtain that the inequality

= |h(ti) = h(ti—1)| < 25¢|lyllsv
=1

holds for any division d = {tg, t1,...,tm} € D[0,1] of the interval [0,1] and any y € BV, i.e.

vargh < 2 |ly|lsv < oo for any y € BV.
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c¢) In the general case of n € N, n > 1, we have for any j = 1,2,...,n, any y € BV" and
any t € [0,1]

S
h;(t) = Z/o yi(s) dslki j(s,1)]-
i—1

Consequently, by the second part of the proof of this lemma the inequalities

n
vargh; < 2 (Z “yi“]BV) 7 =2|lyllsy 5
i=1

are true. It follows easily that h € BV" for any y € BV™. O

5.3.13. Theorem. (Bray Theorem) If K € #™*", then for any © € G" and any y € BV"

the relation

530 [woal [ kel = [ ([ voas) di
18 true.

Proof. a) Both the iterated integrals occurring in (5.3.9) exist by Corollary 5.3.11, Lemma
5.3.12 and by Theorem 2.3.8.

b) Let us first assumen = 1,k € #™*" and y € BV. Let f € G be a finite step function, i.e.,
there is a division {#o, 1, ..., ¢} of the interval [0, 1] such that f on [0, 1]is a linear combination

of the functions
{X[tr,l}a r=0,1,...,m, X(tj,1]> J=0,1,....,m— 1}
To show that the relation
1 1 1 1
(5.3.10) |l [ ke asen) = [ ([ v aike) dso)
0 0 0 0

is true for any finite step function f on [0, 1], it is sufficient to show that (5.3.10) is true for

any function from the set

{X[T’l}, T €0, 1]} U {X(U,l], o €0, 1)}

If f = xp0,1), i-e. f(t) =1 on [0,1], then obviously both sides of (5.3.10) equal 0. Furthermore,
let 7 € (0,1] and f = x(71- Then by Proposition 2.3.3,

1
/0 k(t, ) dLf ()] = k(t, 7),
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i.e.

/Oly(t) dt[/olk(t,s) d[f(s)]} = /Oly(t) dy[k(t, 7)].

On the other hand, by Proposition 2.3.3 we have

/01 (/Oly(t) dt[k(t,s)]) d[f(s)] = /Oly(t)dt[k(t, ),

as well.
Analogously we would prove that (5.3.10) holds also for f = x(4,1, 0 € [0,1). Now, ifz € G,
let {x,}>°, be a sequence of finite step functions on [0, 1] such that z, tends to z uniformly on

[0,1] as 7 — oo. By the previous part of the proof, we have

[l [ res el = [ ([ oo ade o) dies o)

for any 7 € N. According to Corollary 2.3.10 it follows that

s ([ ([ o adsteon) ateeon) = [ [ o0 i, 0) atato)

On the other hand, by Lemma 5.3.7 and by Theorem 2.3.8 we have for any » € N and any
t € [0,1]

1 1 1
[ ktts) iz o) = [ es) o] = | [ ke afar () = (o)

<2k ey lzr — 2l < 25 [lzy — x|

and consequently

lim ( /0 k(e s) dla()]) = /0 ke, ) da(s)]

r—00

uniformly with respect to ¢ € [0, 1]. Thus, making use of Corollary 2.3.10 once more, we obtain
that the relation
1

lim [ y(t) dt[/olk(t, 5) d[xr(s)]} = /Oly(t) dt[/olk(t,s) d[w(S)]]

r—00 0

is true. It follows immediately that the relation (5.3.10) is true for any y € BV and any f € G.

c¢) The proof can be extended to the general case n € N, n > 1, similarly as it was done at
the end of the proof of Lemma 5.3.12. U

5.3.14. Remark. For the proof of the Bray Theorem in the case of the interior integral see
[Ho75, Theorem II.1.1].
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5.3.15. Lemma. Assume K € # ™" and

Hits) = K(t,s+)  for te€][0,1] and s€][0,1),
)= K(t,1-)  for t€]0,1] and s=1.

Then H € 2 ™*". Moreover, if K € #[*", then H € 7", as well.

Proof. Analogously to the proofs of Lemma 5.3.12 and of Theorem 5.3.13 it is sufficient to
show that the assertion of the lemma is true in the scalar case n = 1.
Let n =1, k € 2¢™*" and

ht.s) k(t,s+) for t€[0,1] and s€]0,1),
78 =
k(t,1-)  for te€[0,1] and s=1.

a) Let d = {s¢, $1,...,8m} be an arbitrary division of the interval [0, 1] (d € D|0, 1]). Then

m

S(h,d) = _ |(t. 5;) = hlt, 5j-1)]
j=1
m—1
= Z |k(t7 Sj+) - k(ta 3j71+)| + |k(t7 1_) - k(ta 5m71+)|-
j=1

Let 6 > 0 be such that s, 1+ <1 — 4§ and let us denote

(5311) oo =0, O'j:Sj_l—l-(S for 7=12,....m,omy1 =1—96, o2 =1.
Then
(5.3.12) ds = {00,010, ..., 0mis} € D[0,1]

and according to (Hs), for any ¢ > 0 sufficiently small we have

m—1
S(k,ds) = [k(t,8) — k(t,0)] + Y |k(t, 55+ 8) — k(t, 51 +9)|
7j=1

= |k(t,1 = 0) — k(t, sm_1 + 0)| + |k(t,1) — k(t,1 — §)| < varik(t,.) < oco.
Thus
oo > lim S(k,ds) = S(h,d) + |AFk(t,0)| + |AS k(t, 1)
0—0+
and consequently the inequality
S(h,d) < varbk(t,.) — |ASk(t,0)| - |A7k(t, 1))
holds for any division d € DJ[0, 1]. Hence

h(t, sy = |k(t,04)| + varjh(t,.)
< |k(t,0)] + |AFK(t,0)] + vargk(t,.) — [ATk(t,0)] — |AFK(t, 1)] < ||k(t, )]y,
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i.e., h fulfils (Hy).

b) Let ¢ € [0,1) and € > 0 be given. According to (H3)(i’) there is a dy > 0 such that
t+ dp <1 and

1k (72,.) — k(1,.)lBvY <€
holds for any couple 11,75 € (t,t + dp). In particular,
(5.3.13) S(k(ro,.) — k(m1,.),A) <e

for any division A € D[0,1] and any couple 71,72 € (¢,t + dy). Now, let an arbitrary division
d = {s0,51,--.,8m} € D[0,1] be given and let § > 0 be such that § < §y and s,,,—1 +6 <1 —4.
Let us define a division ds = {0¢,01,...,0m} € D[0,1] as in (5.3.11) and (5.3.12). Making use
of (5.3.13) we obtain

S(h(TQa ) - h(Tla ')a d)
= |k(72,s1+) — k(71,51+) — k(72,0+) + k(71,0+)]
m—1
+ ) k72, s5+) — k(71, 854) — k(2,85 14) + k(r1, 85-1+)]
71=2
+ |k(12,1=) — k(71,1=) — k(72, Sm—1+) + k(T1, Sm—1+)]

m
= ali%i (; |k(T2,0541) — k(T1,0541) — k(T2,05) + k(Tlan)|>

= 6£rgl+ (S(k(r2,.) — k(71,.),d5))
— A3 (k(2,0) = k(71,0)| = [Ag (k(72,1) = k(m, 1))] <e.
This means that for any couple 71,7 € (¢,t 4+ §) we have
1B (72,.) = h(71, sy <e,
i.e., h fulfils (Hy)(i’). Similarly we could show that A fulfils also (Hy)(ii). Thus h € #1*1

c) Let My : t € [0,1] — k(t,.) € BV be left-continuous on (0,1) and let ¢ > 0 be given.
Then there is a dg > 0 such that ¢t — dg > 0 and

(5.3.14) S(k(t,.) — k(r,.),A) <e

holds for any 7 € (¢t — dg,t) and any A € D[0, 1]. Let an arbitrary division
d={so,s1,...,sm} € D[0,1]

be given and let

ds = {00,01,...,0m+2} € D[0, 1]
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be given for ¢ € (0, min{dp, 1757"“1}) by (5.3.11) and (5.3.12). Then making use of (5.3.14) we

obtain similarly as in part b) of this proof
S(h(ta ')_h(Ta ')a d)

m
=agi(§;wmqﬁn—kvmﬁn—kuuﬁ+kwmw0
]:

= lim (S(k(t,) — k(r,.), ds)
— |AF (K (t,0) = K(r,0) = [A7 (k(t, 1) = K(r, )] < e,

wherefrom the desired relation

lim ||h(t,.) — h(7,.)|ly =0

T—t—

easily follows. O

5.3.16. Remark. Analogously we could show that if K € #™*" and if

H(t,5) K(t,0+4) for te]0,1] and s=0,
78 =
K(t,s—) for te0,1] and se€(0,1],

then H € ¢ ™*™. Moreover, if K € ¢ ["", then H € ¢ ["", as well.

5.3.17. Lemma. Let K € # ™" and let

Hits) = K(t+,s) for t€]0,1) and s € [0,1],
)= K(l—,s) for t=1 and s € [0,1]

and

G(t.s) K(0+,s)  for t=0 and s € [0,1],
78 =

K(t—,s)  for te(0,1] and s € [0,1].
Then H € ™" and G € o }*".

Proof. We shall prove that under the assumptions of the lemma, H € 2#™*". The proof of the
latter relation would be quite similar.

Let t < 1 and let d € D|0, 1] be an arbitrary division of [0,1]. Then for any § € (0,1 — ¢t)
we have by Lemma 5.3.7

S(K(t+46,.),d) <varjK(t+46,.) < s < co.
Letting § — 04+ we immediately obtain that the inequality

S(H(t,.),d) < 3 < o0
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is true for any d € DJ0, 1]. It means that
varjH (t,.) < s < oo.

Now, let an arbitrary € > 0 be given. By (Hs)(i’) there is a § > 0 such that

£
|K(r2,.) — K(71,.)||pv < 3

holds whenever t < 71 < 75 < t 4 d. It means that for all ¢1,t, € (¢, + g) and any 7 € (0, %)

we have
€

|K(ta+7,.) — K(t1 +7,.)|lsy < 5

In particular, for any division d € DJ0, 1] we have

K(tz +7.0) = K(t+7,0)| <5 and S(K(tz+7,.) = K(ti+7,.),d) <

N ™

wherefrom we get that the relation
|H (ts,.) = H(t1, )|sv <e

is true whenever t < t; < t9 < t+ %.
Analogously we would prove that if ¢ > 0, then for any € > 0 there is a § > 0 such that

[H (t2,.) — H(t1,.)|lsv <e

is true whenever t — % <t <ty <t O

5.3.18. Lemma. Let K € """ t1,s1 € [0,1) and t2,s2 € (0,1]. Then all the limits

K(t1+,s1+) = lim K(r,0), K(ti+,s2—)= lim K(r,0),
(T,O’)—)(tl,é:’l) (7—70—)_>(t1752)
T>t1,0>81 T>11,0<82

K(ty—,s1+) = lim K(r,0), K(tog—,s0—) = lim K(r,0)
(7—70—)_>(t2751) (7—70—)_>(t2752)
T<t2,0>51 T<l2,0<52

exist in R™*™,
Proof. We will restrict ourselves to proving the existence of the limits
K(t1+,81+) € R"™"™ for t1,81 € [0, ].)

The modifications of the proofs in the other cases are obvious.
Let t; € [0,1) and s € [0,1) be given. By Lemma 5.3.15 there exists M € R™*"™ such that

lim K(ti+,0) = lim ( lim K(T,O‘)) =M.

o—s+ o—s+ \7—=t1+
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Furthermore, since in virtue of Corollary 5.3.9 we have lim,_,;, 4 [|[K(7,.) — K(t1+,.)|| = 0, i.e.
lignJrK(T,o) = K(t;+,0) uniformly with respect to o € [0, 1],
T—l1

it follows that

lim K(r,0) =M.
(7—70')_)(751751) D
T>t1,0>81

5.3.19. Lemma. Assume K € ¢ ", s € (0,1] and t € [0,1). Then

lim K(r,7—) = Tlg{lJrK(T, 7+) = K(t+,t+),

T—t+

lim K(r—,7) = lim K(7+,7) = K(t+,t+),
T—>t+ T+

713?, K(r,7—) = 713?, K(r,7+) = K(s—,s—)

and

lim K(r—,7) = lim K(7+,7) = K(s—,s—).

T—5— T—5—

Proof. We will restrict ourselves to the proof of the relations

lim K(r,7—) = K(t+,t+), t€][0,1).

T+
The proofs of the other assertions of the lemma would be quite analogous. By Lemma 5.3.18
there exists § € (0,1 — ¢) such that

|K(1,0) — K(t+,t+)| < %

holds whenever ¢t < 7 < t+ § and t < 0 < t + 0. Furthermore, for any 7 € (¢,t + §) we can

choose a o, € (t,7) such that
K (r,7=) = K(r,07)| < 5
is true. Thus for any 7 € (¢,t + §) we have

|K(1,7—) — K(t+,t+)| < |K(1,7—) — K(7,0.)| + |K(7,0,) — K(t+,t+)| < e. O

5.3.20. Remark. Notice that by [STV, Corollaries 1.6.15 and 1.6.16] the set SBV™*" of n x
n—matrix valued functions of strongly bounded variation on [0, 1] x [0, 1] (cf. 1.2.5) is a subset
of ™",

On the other hand, the functions of the form

K(t,s) = F(t)G(s), (t,s)€[0,1] x[0,1],

where F' € G"*" and G € BY™ " provide the simplest examples of the kernels which satisfy
the assumptions of this paper, but do not belong in general to SBY™*™.
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5.4. Fredholm-Stieltjes integral equations in G’

In this section we will consider linear integral equations of the form

1
(5.4.1) z(t) — A(t) z(0) —/0 B(t,s) d[z(s)] = f(t), te€]0,1],
where

AeGY"™ and Beu "

5.4.1. Remark. Let us recall that the operator . given by (5.1.2) is the general form of
a linear compact operator on the space G} (cf. Theorem 5.3.5). The equation (5.4.1) may be

also written as the operator equation
(5.4.2) x— Lz =f.
5.4.2. Remark. It is also known (cf. Theorem 2.4.8) that the dual space (G})* to G} is

isomorphic to the space BV "™ x R™, while for a given couple (y,7y) € BV"™ x R" the corresponding

linear bounded functional on G7 is given by
1

(5.43) 2 €Yo (o (1) =17 2(0) + [ 47(s) dlals)] € R
0

The compactness of the operator ¢ immediately implies that the following Fredholm al-

ternative type assertions 5.4.3-5.4.5 are true.

5.4.3. Proposition. Let A € GI*" and B € ¢ ["". Then the equation (5.4.1) possesses
a unique solution x € G7 for any f € G} if and only if the corresponding homogeneous

equation r — Lx =0, i.e.

1
:Jc(t)—A(t)x(O)—/O B(t, ) dlz(s)] = 0, te€0,1],

possesses only the trivial solution.

5.4.4. Proposition. Let A € G}*", B € 7" and f € G}. Then the equation (5.4.1)

possesses a solution in G if and only if

1
(5.4.4) 11O+ [y ) =0
holds for any solution (y,7y) € BV™ x R™ of the operator equation
(¥,7) = £ (y,7) =0 € BV" x R"

adjoint to (5.4.1).
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5.4.5. Proposition. Let A € G}*" and B € 2 [*". Then the relations
dim A/ (I -¢) =dim /(I -¢") < o0

hold for the dimensions of the null spaces /(1 —%) and N (1 —£7) corresponding to the op-

erator £ and its adjoint £*, respectively.

Making use of the above mentioned explicit representation (5.4.3) of the dual space to G}

and of the Bray Theorem we can derive the explicit form of the adjoint operator .£* to .Z.

5.4.6. Theorem. Let A € G}*" and B € #[*". Then the adjoint operator £* to the oper-
ator & from (5.4.2) is given by

L% (y,7) €BV" x R" = (£1(y,7), Z5(y,7)) € BV" x R",

where

(Ai”’{(y,v))(t)ZBT(Oﬂt)“rJr/0 ds[B"(s,t)] y(s) for te[0,1]

and
1
L3(y) = AT(0) v + /0 a[A7(5)] y(5).
Proof. Given z € G}, y € BV"™ and v € R", we have by (5.4.3) and by Theorem 5.3.13
1
(a2, =" (A0 20)+ [ B0.0) dla(0)
1

1

+ [ o aans0 + [ B o)

0 0

= (7T A(0) +/01yT(s) d[A(s)]) 2(0)
+/01 (fyTB(O,t)-l-/OlyT(s) 4,[B(s,)]) dl(t)]

1
— (Z5(57) " 2(0) + /0 (25 7)" () diz(2)]

= (:E, (gi(ya’}/)v"%s(ya'}/))%

wherefrom the proof of the theorem immediately follows. O

Proposition 5.4.4 and Theorem 5.4.6 immediately yield the following assertion:

5.4.7. Theorem. Let A € G}"", B € " and f € G} . Then the equation (5.4.1) possesses
a solution z € G} if and only if (5.4.4) holds for any solution (y,y) € BV™ x R" of the system

t

)= B70.07 = [ A [B7(5.0)
1

v—A"(0)y —/0 d[AT(s)] y(s) =0.

y(s) =0, te]l0,1],
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5.4.8. Remark. Let us notice that in virtue of Corollary 5.3.9, for any solution z € G™ of
(5.4.1) on [0, 1] we have

z(t+) = A(t+) =(0) + /1 B(t+,s)d[z(s)] + f(t+) forall te][0,1),
0
1

z(t—) = A(t—) z(0) +/0 B(t—,s)d[z(s)] + f(t—) forall ¢e€ (0,1].

In particular, if A € GP*™, B € #]*" and f € G}, then any solution z of (5.4.1) on [0, 1] is

left-continuous on (0,1), i.e. z € G.

5.4.9. Example. Let us consider a linear Stieltjes integral equation

1
(5.4.5) ﬂn—é(umuma@:fm,temy

with P € 7" and f € G}. Such equations with kernels P of strongly bounded variation on
[0,1] x [0,1] (cf. Remark 5.3.20) were treated in [STV].
Let t € [0,1] and « € G} be given. Let us put

P(t,s+ for s<1,
Qo) =4 DY)
P(t,1-) for s=1
and

Z(t,s) = P(t,s) — Q(t,s) for (t,s)€][0,1] x[0,1].

Then

Z(t,5) —AJP(t,s) for s<1,
78 = —
A5 P(t,1) for s=

Since Q(t,.) and Z(t,.) € BV™*"

lim P(t,o+) = P(t,s+) for se€][0,1)
o—8+
and

lim P(t,o+) = P(t,s—) for s€(0,1],

o—S—

it is easy to verify that
Z(t,s—) =0 forall s€[0,1) and Z(t,s+)=0 forall se€(0,1].

Since Z(t,.) € BY™*" this implies that there is an at most countable set W C [0, 1] of points
in [0, 1] such that Z(t,s) = 0 holds for any s € [0,1] \ W. Making use of Proposition 2.3.13 we

obtain

1
A<umamﬂg:zmnan—zmmam
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This implies that the relation

1 1
/0 ds[P(t, s)] z(s) :/0 ds[Q(t, s)] z(s) + AF P(t,0) 2(0) + A P(t,1) z(1)

is true. Furthermore, according to the integration-by-parts formula (cf. Theorem 2.3.15) we

have
/0 A4,[P(t, 5)] 2(s)
= Q1) (1) - Q / Q(t, ) da(s)]
+ [P(t,04+) — P(¢,0)] x( 1) — P(t,1-)] =(1)
1
= P(t.1)a(1) = P(1.0)2(0) = [ Q(t.5) dla(s)]
1
[P(t,1) (t,0)] z(0) +/0 (P(t,1) — Q(t,s)) dz(s)]
L P@t,1) - P(t,s+), s<1
P(t1) = P(10)]2(0) + [ { O } dla(s)
Hence
t 1
/0 ds[P(t,s)] z(s) = C(t) z(0) + i D(t,s) d[z(s)],
where
C(t) = 1+P(t,1) — P(£,0)
and

D(t.s) = P(t,1) = P(t,s+) for s€][0,1),
TN P =Pt 1=)  for s—=1

Obviously, under our assumptions we have C' € G*™ and D € #["" (cf. Lemma 5.3.15).
Thus, if P € #7*" and f € G}, then the given equation (5.4.5) may be transformed to an
equation of the form (5.4.1) with coefficients A, B and f fulfilling the assumptions of Theorem
5.4.7.

5.5. The resolvent couple for the Fredholm-Stieltjes integral

equation

In this section we consider the special case when the equation (5.4.1) possesses a unique solution
z € G} for any f € G . This means that in addition to A € GI"*", B € "™ we assume that

(5.5.1) dim A (I—%) =0
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(cf. Proposition 5.4.3).

Under these assumptions the Bounded Inverse Theorem [Sche73, Section II1.4.1] implies
that the linear bounded operator [ —.% : G} — G" possesses a bounded inverse (I—)7! :
G} — G7%. Furthermore, as

1-2)!'=1+(1-2)"'2,
it follows immediately that the inverse operator (I —)~! may be expressed in the form
(5.5.2) I-2)"' =141,

where I" is a linear compact operator (I € K(G%,G%)). By Theorem 5.3.5 there exist functions
UeGp*", Vet such that I' is given by

1
(5.5.3) Ir: feG}; - U(@) f(0) +/ V(t,s)d[f(s)]
0
The following assertion now follows from Lemma 5.2.1 and Theorem 5.3.5.

5.5.1. Theorem. Assume A € G}*", B € ™" and (5.5.1). Then there exists a unique
couple of functions U € G}*", V. € "™ such that for any f € G} the corresponding
solution x € G} to (5.4.1) is given by

1
(5.5.4) o) = O+ VO 10 + [ Vies)alfe)l e
5.5.2. Theorem. Let the assumptions of Theorem 5.5.1 be satisfied. Then the functions U,
V' given by Theorem 5.5.1 satisfy the equations
1
(5.5.5) U(t) — A(t)U(0) — / B(t,7) d[U(1)] = A(t), t €10,1],
0
1
(5.5.6) V(t,s) — A(t) V(0,s) — / B(t,7)d.[V(r,s)] = B(t,s), t,se]l0,1].
0

Proof. Let I' be a linear compact operator defined by (5.5.2). Inserting (5.5.2) into (5.4.1) we

obtain that under our assumptions I" has to satisfy the relation
(5.5.7) rf—o'fy=xf forall feGj].

Inserting (5.5.3) into (5.5.7) and making use of the Bray Theorem (cf. Theorem 5.3.13) we

obtain furthermore that

1
@m—AwU®—AlWﬁNWMDﬂ®
1 1
+/0 (V(t, s)—A(t)V(0,s) — /0 B(t, 1) dT[V(T,S)]) d[f(s)]
1
zAmﬂ®+ABwﬂﬂﬂM
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has to be true for any f € G}, wherefrom by Lemma 5.2.1 the assertion of the theorem follows

immediately. O

5.5.3. Definition. We say that a couple of functions U € G}*™, V € """ is a resolvent
couple for the equation (5.4.1) if for any f € G} the unique solution z € G} of (5.4.1) is
given by (5.5.3).

5.6. Volterra-Stieltjes integral equations in G}

It is natural to expect that the linear operator equation (5.4.2) could possess a unique solution

for any f € G} if the operator .2 is causal .

5.6.1. Definition. An operator .2 € £(G}) is said to be causal if

(5.6.1) (£z)(0) =0 forany =z € G},
and for a given t € (0,1)
(5.6.2) (Zz)(t) =0 whenever z € G} and z(7) =0 on [0,%].

5.6.2. Lemma. Let A € G}*" and B € #["". Then the operator & € L(G}) given by
(5.1.2) is causal if and only if

(5.6.3) A(0) =0 and B(t,s)=0 forall te€l0,1) and se€l[t1].

Proof. a) If (5.6.3) is satisfied, then

1 t
/0 B(t, 5) d[z(s)] = /0 B(t, 5) dz(s)]

holds for any z € G} and any ¢ € [0, 1] whence the causality of ¥ immediately follows.

b) On the other hand, let us assume that ¢ is causal. Then by (5.6.1) the relation

1
A(0) z(0) +/ B(0,s) d[z(s)] =0
0
has to be satisfied for any 2 € G} . By Lemma 5.6.2 this means that the relations
A(0)=0 and B(0,s) =0 forall se€][0,1]

have to be satisfied as well. Furthermore, if ¢t € (0,1), then (5.6.2) is true if and only if

1
/ B(t,s)d[z(s)] =0 forall ze€ Gf}.
t
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An obvious modification of Lemma 5.6.2 implies that this may hold only if

B(t,s) =0 forall se€lt1],
wherefrom the assertion of the lemma immediately follows. O
5.6.3. Remark. Let us notice that the condition (5.6.3) does not necessarily imply that

B(1,1) = 0. On the other hand, it is easy to verify that the operator . € L(G}) given
by (5.1.2) fulfils somewhat stronger causality properties (5.6.1) and

(Zz)(t) =0 forall ¢te€(0,1] and z € G} such that z(7) =0on [0,¢)
if and only if
A(0) =0 and B(t,s) =0 whenever 0 <t <s<1.

In fact, if z(7) = 0 on [0,1), then
(Zz)(1) =B(1,1)z(1) =0
holds for any z(1) € R" if and only if B(1,1) =0.
5.6.4. Remark. As noticed in the proof of Lemma 5.6.2, if the assumptions of Lemma 5.6.2

and the conditions (5.6.3) are satisfied, then the Fredholm-Stieltjes equation (5.4.1) reduces to
the Volterra-Stieltjes equation

t
(5.6.4) x(t)—A(t)m(O)—/O B(t,s) dlz(s)] = f(t), te][o,1].

To show that the equation (5.6.4) possesses a unique solution z € G} for each f € G}, it is by

Proposition 5.4.4 sufficient to show that the corresponding homogeneous equation
t
(5.6.5) z(t) = A(t) 2(0) —|—/ B(t,s)d[z(s)], te€]0,1]
0

possesses only the trivial solution z = 0.
Let z € G} be an arbitrary solution of (5.6.5) on [0, 1]. Then evidently z(0) = 0. Further-
more, since by (5.6.3) B(0+,s) = 0 whenever s > 0, we have by Lemma 5.3.10

t 1

z(0+) = tglglJr ; B(t,s)d[z(s)] = tgrorﬁr i B(t,s) d[z(s)]
= /1 B(0+,s)d[z(s)] = B(0+,0) ATz(0) = B(0+,0) z(0+),
0

1.e.

[L—B(0+,0)] z(0+) = 0.
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Thus we have z(0+) = 0 whenever
det[I—B(0+,0)] # 0.

Analogously, if we assume that z(7) = 0 holds on [0, ¢] for a given ¢ € (0, 1), then
1
o(t+) = [ Blt+s) dla()] = B+, 0 a(t),
t

and thus necessarily z(t+) = 0 whenever det (I—B (t+,t)) # 0. Finally, if we assume that
z(7) =0 on [0,1), then the equation (5.6.5) reduces to

[[—B(1,1)] (1) = z(1).

This indicates that it is possible to expect that the equation (5.6.5) will possess only the

trivial solution z = 0 on [0, 1] if the relations
(5.6.6) detI—-B(1,1)] #0 and det[I-B(t+,t)] #0 forall ¢e€][0,1)

are satisfied, or in other words, if [ —B(1,1) and I —B(¢+,t) are invertible matrices.

5.6.5. Theorem. Assume A € G}*", B € % 7"" and (5.6.3). Then the equation (5.6.4) has
a unique solution for any f € G} if and only if the relations (5.6.6) are satisfied.

Proof. a) Let us assume that the relations (5.6.6) are satisfied and let € G} be a solution of
(5.6.5). We have z(0+) = z(0) = 0 and as in Remark 5.6.4 we get

/tB(O—i—, s5) d[z(s)] = B(0+,0) ATz(0) =0 forall ¢€]0,1].
0

Consequently, the equation (5.6.5) can be rewritten as

t
o(t) = [ (Blts) = BO.5) dio)
0
In virtue of Theorem 2.3.8, this yields that the inequality

z(t)] < 2[1B(t,.) — B(0+,.)|lsv ( Sel[l()pt} |z(s)])

is true for any ¢ € [0,1]. Furthermore, by Corollary 5.3.9 there is § > 0 such that
1
|B(t,.) — B(0+,.)||sv < 1 whenever ¢ € (0, J]
and hence also

1
sup [z(s)| <5 sup |z(s)],
t€[0,d] t€[0,0]
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which yields
z(t)=0 for te]0,d].
Now, let us put
t*=sup{d €[0,1]: z(t) =0 on [0,d]}.

We know that t* € (0,1] and z(¢) = 0 on [0, ¢*). Since z is left-continuous on (0, 1) (cf. Remark
5.4.8), it follows that if ¢* < 1, then z(t*) = z(t*—) = 0, as well.
Now, if we had ¢t* < 1, then taking into account the hypothesis (5.6.3) and Lemma 5.3.10

we would obtain
t 1
ot +) = lim [ B0 da(s) :/0 B(t'+, 5) d[z(s)]

= B(t"+,t") z(t*+)
and consequently
[I—B(t"+,t")] z(t"+) = 0.

Hence, according to (5.6.6) we would have z(t*+) = 0. By an argument analogous to that used
above for 0 in the place of t*, we can get that there exists § > 0 such that z(¢) = 0 on [0, t* + 4],
which contradicts the definition of ¢*. Moreover, as () = 0 on [0, 1), we have z(1—) = 0 and

the equation (5.6.5) reduces to
I-B(1,1)]z(1) =0

and, in virtue of (5.6.6), we have z(1) = 0, i.e. z(t) = 0 on [0,1]. By Proposition 5.4.3 this
implies that (5.6.4) has a unique solution for any f € G}.
b) Let us assume that the set

Sp = {t €1[0,1) : det [T-B(t+,t)] = 0}
is nonempty. Let us denote
t* = inf Sp.

Then t* is not a point of accumulation of Sg. In fact, if this were not the case, then there would
exist a sequence {#;}7°, of points in Sp such that ¢, > ¢* for any £ € N and limy,_,o ), = t*.
Since in virtue of (5.6.3) we have for any o > ¢*

lim B(r,0) =0,

T—t*+
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it follows by Lemma 5.3.18 that

B(t"+,t*+) = lim B(r,0) = lim ( lim B(r,0)) =0
(1,0)—=(t",t") oot Tt
T>t* ,o>t*

and consequently
0= klim det(I —B(tgp+,tx)) = det(I—-B(t*+,t"+)) = det(I) =1,
— 00

a contradiction.
In particular, t* € Sp and det(I —B(t*+,t*)) = 0. Hence there is a d € R™ such that there
is no ¢ € R" such that

[[—B(t*+,t")]c = d.

Now, let us put

0 for ¢ <t*,
t) = =
®) { d for ¢ > t*.

By the first part of the proof, for any possible solution z € G} of the equation (5.6.4) on [0, 1]
we have z(t) = 0 on [0,t*) and thus

z(t*) = lim z(¢) =0.

t—t*—

By an argument analogous to that used above we can further deduce that the limit z(¢*+) of

any possible solution x of (5.6.4) has to verify the relation
=B+, )] =(t"+) = f(t"+) = d,

which contradicts the definition of d. Thus, Sp = () and this completes the proof of the theorem.
O

5.6.6. Corollary. Under the assumptions of Theorem 5.6.5, the homogeneous equation (5.6.5)

possesses only the trivial solution x =0 if and only if the relations (5.6.6) are satisfied.

Proof. The sufficiency of (5.6.6) was proved in part a) of the proof of Theorem 5.6.5. The

necessity follows from Proposition 5.4.3 and Theorem 5.6.5. U

Similarly, the proof of the following assertion is an easy consequence of Theorems 5.5.1 and
5.5.2 and Corollary 5.6.6.
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5.6.7. Corollary. Let the assumptions of Theorem 5.6.5 together with (5.6.6) be satisfied.
Then there exists a resolvent couple U € G}*", V € A " for the equation (5.6.4). The

functions U and V' satisfy in addition the relations

(5.6.7) U0)=0 and V(t,s)=0 for s€]0,1),t€0,s],
(5.6.8) / B(t, 1) (1)] = A(t) for te€]0,1],
and
t
(5.6.9) V(ts) — /0 B(t,7) d,[V(r,8)] = B(t,s) for ts¢€[0,1].

Proof. By Theorems 5.5.1 and 5.5.2 and Corollary 5.6.6 there exists a resolvent couple U €
G, Ve " for the equation (5.6.4) and the functions U,V satisfy (5.5.5) and (5.5.6).
Furthermore, as in virtue of (5.6.3) we have A(0) = 0, it follows easily from (5.5.5) that
U(0) = 0 holds. Consequently, the relation (5.5.5) reduces to (5.6.8).

Furthermore, let s € (0,1). Since by (5.6.3) we have B(t,s) = 0 whenever ¢ < s, it follows
that the function V'(., s) fulfils the relation

Vit,s) = A(t) V(0,s) + /01 B(t,7)d;[V(r,s)] forall te]0,s].

By an argument analogous to that used in the first part of the proof of Theorem 5.6.5 we can
deduce that V(¢,s) = 0 for any ¢ € [0, s|. Finally, as by (5.6.3) we have B(0,s) = 0 for any
s € [0, 1], it follows from (5.5.6) that V' (0,s) =0 on [0, 1], as well. Consequently, (5.6.7) holds.
Hence the relation (5.5.6) reduces to (5.6.9). O

5.6.8. Remark. It is easy to verify that under the assumption of Corollary 5.6.7 the resolvent
couple (U,V) of (5.6.4) satisfies in addition to the relations (5.6.7)-(5.6.9) also the following

relations

V(t,1)=0o0n [0,1) and V(1,1)=[I-B(1,1)] ' B(1,1).

To show that the results of this section cover also the Volterra analogue of the equation

mentioned in Example 5.4.9 the following three lemmas are essential.

5.6.9. Lemma. Let K € """ and t € [0,1). Then

(5.6.10) for any € >0 there exists § € (0,1 —t) such that varif K(ty,.) <ce
holds whenever 0 <t <t; <ty <t+4d<1.
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Proof (due to I. Vrko¢). Let ¢ € [0,1) be given and let us assume that there is y > 0 and
sequences {¢1} and {2} of points in (¢,1] such that

t<tpy <tpy <tp <tp <1 holds for any k€N,
2
lim ¢} = lim ¢ =¢ and var' K(th,.) > 2.
k—o00 k—o00 b
On the other hand, by (Hg)(ii) there is ky € N such that
k
varg (K(t5,.) — K(t3°,.)) <.

This means that in the case that (5.6.10) does not hold we obtain

k
varg K(th,.) > Z vari? K(the )

k>ko
tk tk k
>3 [varé K (t5,.) — varys (K (t5,.) — K (15", _))] >3 g =co
k>ko k>ko

This being impossible in virtue of the assumption (Hy), it follows that the assertion (5.6.10) is

true and this completes the proof of the lemma. O

Analogously we could prove the following assertion.

5.6.10. Lemma. Let K € # """ and t € (0,1]. Then for any € > 0 there exists a § € (0,t)
such that varifK(tz, .) < & holds whenever 0 <t —0 <t <ty <t.

5.6.11. Lemma. Let K € # """ and let K* be given by

sy eea={ 0T 0TSO e
Then K* € ™ ™. Moreover, if K € 2" and

(5.6.12) K(t,t—) = K(t,t) forall te€ (0,1),

then K& € 2 7"", as well.

Proof. Let t € (0,1] and € > 0. By our assumption and by Lemma 5.6.9 there is § € (0,¢) such
that

9
||K(t2, ) — K(tl, .)HBV < 5 and V&I‘i?K(tg, ) <

N ™

whenever 0 <t —§ < t; <ty <t. Now, let t1,2 € [0, 1] be such that ¢t —§ < t; <ty < t. Then
by (5.6.11) we have

K (tq,s) — K(t1,s) for 0<s<ty,
K"%(ty,8) — K%(t1,8) = K(t2,s) — K(t1,t1) for t; <s <ty,
K(tQ,tQ) — K(tl,tl) for t2 S S
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and it is easy to see that this implies that

1K 2 (t2,.) — K°(t1,.)IBv
< |K(t2,0) — K (t1,0)| + varg (K (t2,.) — K (t1,.))
+ var? (K (ta,.) — K(t1,1))
< |K(ts,.) — K(t1,.)||lsv + vari?K(ts,.) <€

holds for any couple ¢1,t2 € [0, 1] such that ¢ — 0 < ¢; < to < t. Analogously we would show
that for any € > 0 there exists a § € (0,¢) such that

K5 (t, ) = K2 (t, )lBv <e

holds for any couple ¢1,t2 € [0,1] such that t < t; < to < t + 0, wherefrom the relation
K% € ™" follows.
Furthermore, if K* € " and (5.6.12) holds, then we have
lim ||K2(t,.) — K%(7,.)|lgv < lim ||K(t,.) — K(7,.)||sy + lim var’K(t,.) =0
T—t— T—t—

T—t—

for any ¢ € [0, 1]. O

5.6.12. Remark. It follows from Lemmas 5.3.18 and 5.3.19 that, for any K € 2#[*" and any
z € G, the function

z(t):/o 4K (L s)]2(s), te0,1],

is left-continuous on (0, 1) if and only if (5.6.12) holds.

5.6.13. Example. Let us consider the linear Volterra-Stieltjes integral equation

t
(5.6.13) z(t) —/0 ds[K (t,s)]z(s) = f(t), te]0,1]

with K € ¢ 7" fulfilling the relation (5.6.12) and f € G7.
Let us define the function K : [0,1] x [0,1] — R™ " again by (5.6.11). Then by Lemma
5.6.11 we have K* € #]*". Obviously,

[ adkale = [ are e

holds for any z € G". Let ¢t € [0,1] and € G} be given. Analogously to Example 5.4.9 we
could show that then

1 1
/ A, (K2 (8, 5)]2(s) = A(t) 2(0) + / B(t, ) djz(s)),
0 0
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where

At) =T+K"(t,1) — K*(t,0) for te[0,1]

and
B(t.s) K%(t,1) — K%(t,s+) for te[0,1] and se€][0,1),
yS) =
K4(t,1) — K4(t,1-)  for te€]0,1] and s=1.

It is easy to verify that A € GI*" and B € " (cf. Lemma 5.3.15 and Lemma 5.6.11) and

A(t) =1+K(t,t) — K(t,0) for t¢e€]0,1]

and
K(t,t) — K(t,s+) if 0<s<t<1,
K(t,t) — K(t,t) if 0<t<s<],
B(t,s) = .
K(t,t)— K(t,t) if 0<t<s=1,
K(1,1) - K(1,1-) if t=s=1.

In particular, we have
A(0)=0 and B(t,s) =0 whenever 0<t<s<1 and t<1.
Furthermore, for an arbitrary ¢ € [0,1) we have

B(t+,t) = lim (K(r,7) — K(7,t+)) = K(t+,t+) — K(t+,t+) =0

T— i+

(cf. Lemma 5.3.18). It means that under the above assumptions the Volterra-Stieltjes integral
equation (5.6.13) can be converted to the causal integral equation of the form (5.6.4) whose
coefficients A and B satisfy the assumptions of Corollary 5.6.7 if we assume in addition that

the relation
det(I—(K(1,1) — K(1,1-)) #0

is satisfied.
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