ON SYSTEMS OF LINEAR ALGEBRAIC
EQUATIONS IN THE COLOMBEAU ALGEBRA
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Abstract. From the fact that the unique solution of a homogeneous linear algebraic system is the
trivial one we can obtain the existence of a solution of the nonhomogeneous system. Coefficients of the
systems considered are elements of the Colombeau algebra R of generalized real numbers. It is worth
mentioning that the algebra R is not a field.
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1. INTRODUCTION

We shall consider the systems of linear equations

a1+ a12T2+ e + A1mITm — b1,

21T1+  A22T2+ ceo + aomTm = b,
(L.1)

an1T1t  Gp2T2t ...+ GpmTm = b,
where a;; (1 =1,2,...,n,j=1,2,...,m), b; (i =1,2,...,n) and z; (j = 1,2,...,m) are elements
of the Colombeau algebra R of generalized real numbers. The coefficients a;;, t = 1,2,...,n,
j=12....m, and b;, ¢ = 1,2,...,n, are given, while x1,xs,...,x,, are to be found. The

multiplication, the summation and the equality of two elements from R are meant in the Colombeau
algebra sense. After extending these operations in a natural way to matrices and vectors with
entries from R we can rewrite the system (1.1) in the equivalent matrix form

(1.2) Az =b.

It is well-known that R is a commutative algebra with the unit element and it is also well-known
(cf. [4, pp. 6-7] or [3, Section 37]) that most of the theory known for determinants of matrices
of real or complex numbers are applicable to determinants with elements in commutative rings
with the unit element. In particular, if X is a commutative ring with the unit element, X" is the
space of column n-vectors with entries from X, A is an n X m-matrix whose columns are elements
of X" and b € X", then the determinant det(A) of A is defined in such a way that the following
assertions are true:
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1.1. Proposition. Ifdet(A) possesses an inverse element (det(A))~! in X, then the given nonho-
mogeneous system (1.1) has a unique solution x for any right-hand side and this solution is given

by
z; = det(A;)(det(A) ™, i=1,2,...,m,
where A; stands for the matrix obtained from A by replacing the i-th column by the column b.

(For the proof see [4, p.6].) O

1.2. Proposition. If the homogeneous system
(1.3) Az =0

possesses a nontrivial solution, then det(A) is not invertible in X.
(For the proof see [4, Proposition 1.1.2].) O

1.3. Proposition. The system (1.3) possesses a nonzero solution if and only if there is a nonzero
element \ of X such that Adet(A) =0 (i.e. det(A) is a divisor of the zero element 0 in X).

(For the proof see [3, Corollary of Theorem 51].) O

The aim of this paper is to prove some additional theorems on existence and uniqueness of
solutions of the system (1.2). In particular, from the fact that the unique solution of the system
(1.3) is the trivial one we obtain the existence and uniqueness of solutions of the system (1.2). The
results of this paper will be applied in the investigation of boundary value problems for generalized
differential equations in the Colombeau algebra (see [2]).

2. ALGEBRA OF GENERALIZED NUMBERS

Let us recall here some basic facts concerning the Colombeau algebra of generalized numbers
which are needed later on. For more details see e.g. [1].

As usual, we denote the space of real numbers by R, while N stands for the set of natural
numbers (N = {1,2,...}).

Let D(R) be the set of all C* functions R — R with a compact support. For a given ¢ € N we
denote by 7, the set of all functions ¢ € D(R) such that the relations

/ p(t)dt =1, and / tfo(t)dt =0 forany 1<k<gq
hold. We have
(1.4) Ay 2 Ayy1 forany ¢€N and ﬂ g = 0.

g=1
For given ¢ € D(R) and € > 0, ¢, is defined by
p:(t) = 29(%).

Now, we denote by & the set of all mappings from @ into R. Obviously, when equipped with
naturally defined operations, &y is a commutative algebra over the field R of real numbers and the
mapping ¢ € & — 1 € R is its unit element. In particular, the product R; - R of the elements
Ry and R, of & is given by

Ry -Ry: p € — Ri(p)Ra(p) €R.
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Furthermore, we denote by &y the set of all moderate elements of & defined by

(1.5) &u={Re&: I(NeN) V(pe€dy)I(c>0,u >0)
V(€ (0,p0)) |R(pe)| <ece M}

Clearly &) is a linear subspace and a subalgebra of &.
By I' we denote the set of all increasing mappings a : N — R* such that

Jim ofg) = oo

and we define an ideal 7 of &y by

(1.6) TJ={Re&: I(NeNacl)V(g>N,pc )
(¢> 0,10 >0) V(e € (0, po))
| R(pe)| < ce®@=N}

The factor algebra
R =

NEs

is called the algebra of generalized numbers (cf. [1, Sec.2.1]). For a given z € R we denote by
R, its representative (R, € &y) and write usually z = [R,] (z = R, + 7 ). Obviously, R is
a commutative algebra with the unit element 1 = [R;], where Ry (¢) = 1 for any ¢ € &4, and the
zero element 0 = [Ry], where Ry(¢) = 0 for any ¢ € . Let us recall that for given z,y € R we
have

zy =[Ry - Ryl= Ry - Ry + 7.
Furthermore, it is worth mentioning that R possesses nonzero divisors of the zero element. In fact,

let a = [R,] € R and a* = [R,-] € R be given by

1 if ¢ € ahp_1 \ Fh for some k€N,
0, otherwise

2.1) Ralp) = {
and

0 if p € hyp_1\ b, for some k€N,
(22) Rav () = {

1 otherwise.

Obviously R, - Ry €  and Ry« - Ry € 9, i.e. aa* = a*a = 0, while both a and a* are nonzero.
It follows immediately that R is not a field. In fact, let @ and a* € R be given respectively by (2.1)
and (2.2) and let z € R be such that az = 1. Then 0 = (a*a)z = a*(az) = a* would hold, while
a* # 0 according to the definition (2.2).

On the other hand, the algebra R possesses the following helpful property.

2.1. Proposition. Ifa € R is not invertible, then a is a divisor of the zero element 0 of R.
For the proof of Proposition 2.1 the following lemma is helpful

2.2. Lemma. Let us assume that

(2.3) 3(g" €N) V(p € Ag-) I(dg, > 0) I (ng+,p > 0)
V(S € (O,Wq*,w)) |Ra(90€)| > dq*,cp e? .
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Then the element a = [R,] € R is invertible in R.

Proof. Let the assumptions of the lemma be satisfied. Let us put

o i ¢=1¢. forsome ¢ € - and e € (0,1 ,0),
1 otherwise.

We shall show that then
R, -R,- — Ry € 9,

i.e.
ANeNael)V(g> N, € &) 3(c>0,n7>0)

V(e €(0,n) |Ra('¢}s)Ra* () =11 < ce®D-N,

Indeed, let us put NV = ¢* and let a be an arbitrary element of I'. Then for any ¢ > N and any
Y € @7, we have ¢ € @-. By the assumptions of the lemma there is an 74+ , > 0 such that

Ra("/’e)Ra* (1/15) =1 for any €€ (0)7711*,@11)'

Thus, if we put

c=g., and n=ngy,
we complete the proof of the lemma. |

Proof of Proposition 2.1. Let us assume that (2.3) does not hold, i.e.

(2.4) V(meN) 3™ e A,) V(e>0,n7>0)
I(e € (0,n)) |Ra(<p£.m])| < %sm.

As N,2, @, is empty (cf. (1.4)), for any m € N there exists r,,, € NU {0} such that

‘P[m] € Dintrm \ Dmtrn+1-

Obviously, for any m € N there is an 7, € NU {0} such that 0 <7, <r,, and

Qp[m]’ Qp[m+1]’ o ,(p[m-i-m] € Fiir. \ Dopiro i1,
while

(p[m+m+1] € derTm \ 42{m+7“m+1-
Let us put
(2.5) Pl = pIm+mml - for m e N

Clearly, since according to our definition

ATl £ plml - for any m e N,
we have

P £ M for any m e N
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Furthermore, (2.4) implies that
V(imeNc>0,17€(0,1) I(Bm € (0,n))
(2.6 [Ba (052 < £ (Bm)™" "
(Let us notice that without any loss of generality we can assume that the relations

Pl = plmH1] — . = plmATm] = gy lm]

hold as well.)
Now, let us define a sequence {m,}7°, by

1 if £=1,
my =
Me—1 +Tm, ,+1 if £€Nand > 2.

Clearly, myy1 > my holds for any £ € N and

hm mp = 00.
l— o0

Furthermore, for any ¢ € N we have
(p[me] - w[m4+1] - = Qp[mﬁ-m] - Qp[mz]’
P € Ay \ Gty 11 C Do, \ Dinptr, 415

‘P[me+m+l] ¢ dm£+7‘ml \dme+rmg+1
and in virtue of (2.6) the sequence {1)[™¢1}2°  possesses the following property:

(2.7) v(teN,c>0.m¢€(0,1)) 3(Bm, € (0,m)
)] < & (8

Let usput c=2 and = % and let {8, }72, be the corresponding sequence from (2.7). Let us
define a mapping Ry : </ — R as follows:

1 if o= z/;[’jjf] and

[Ra (w50 < 5 (B )™

for some £ € N,

(2.8) Ry: pe€ e >0 Ry(p:) =

0 otherwise.
We claim that
(2.9) R\ & 7.
Indeed, if Ry € Z then

(2.10) I(NeNael)V(g>N,p € o,) 3(¢7>0)

V(€ (0,7) |Ra(e:)] < ce(D-N,
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Let arbitrary fixed N € N and a € T be given such that (2.10) holds. Without any loss of generality
we may assume that

(2.11) a(N) >N
is true as well. Let £5 € N be such that
(2.12) mg+Tm, > N forany (€N, > .
Then for any ¢ € N such that ¢ > ¢y we have
(2.13) 3@ > 2,7, € (0,3)) V(e € (0,7,))
[BA((™),5, )| < ()T

mye
Now, let {n;}7>, be an arbitrary decreasing sequence in (0, 1) such that
(2.14) lim »; =0.
k—o00
According to (2.7) we have

(2.15) V(e Nk eN) 3B e (0,m))
[Baw D] < & (B)"™

gyl T e
In particular, the relations (2.14) and (2.15) imply that

(2.16) lim g% =0 forany £e€N, £>f, fixed.

k—o0

Thus, if we put

(k]
e for k,leN
/Bmg

€kt =
we obtain

Bx (i), )] = B @l

By
<& ()" < (B

According to the definition (2.8) this means that for all ¢ = 1/1%1‘;], k € N and ¢ € N such that
> {y we have

(2.17) Ba(pend) = Ba((50))., ) = R ) =1

On the other hand, (2.13) yields
|R>\ ((pfk,e)| <t (ﬁ%)a(mﬁm)d\r for all k,¢ € N such that ¢ > ¢,.
Consequently, as by (2.11) and (2.12) we have a(m¢ + T,,,) > N and thus by (2.16)

lim _z7(fk]) "0 =0

m )
k—o0 ¢
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we obtain that for any ¢ > ¢y there is a kg such that
|R>\(<,05k’e)| <1 for any k > ko,

which contradicts (2.17). This proves the relation (2.9).

Now, we will prove that the relation
(2.18) Ry R, €7

is true as well. To this purpose let us define a mapping a* : N — RT = (0, 00) as follows:

1 -1
—<1+q ) if 1<q<mso,
2 mo
*(q) = —my)(Mmer1 —m .
a*(q) my_y 4 QM) —me) e ¢ < mess
mey1 — My
and ¢ > 2.
Since obviously
af(my) =a*(1)=%1 and o (my)=my_y for £=2,3,...,

it is easy to verify that a* € I'. Furthermore, according to the definition (2.8) we have for any
p €
Ra(pe) if o=y and

|Ra (52 )] < & (eBm,) ™ T

for some £ € N,

R(¢:)Ra(p:) =

0 otherwise.

Let arbitrary N,q € N be given such that ¢ > N, then there is a unique ¢ € N such that ¢ €
NN (myg, me41]. Since B, < 1, it follows that for all ¢ € o7, and € € (0,1) we have

|R)\ (@E)Ra ((,05)| < gMetTmy < gMe-1 < o (@)=N

(Let us recall that 7, C 27,, , in such a case.) Consequently, if we choose N € N arbitrarily (e.g.
N =1) then for all ¢ € N such that ¢ > N, any ¢ € <7, and any € € (0,1) we get

|R>\ (‘PE)RU, (@8) | S ga*(q)—N,
ie. (2.18) is true. O
2.3. Vectors and matrices of generalized numbers. Let us put

R'=Rx---xR.

n times

The elements of R will be considered as column n-vectors, i.e. 1 X n-matrices of generalized
numbers. For a given n X m-matrix A of generalized numbers, its entries will be denoted by a;;
(A = (aiy) = (aij) ,_ .) Given an n X m-matrix A of generalized numbers and an m X k-matrix

i 1,....,n
Jj=1,....m
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B of generalized numbers, their product AB is the n x k-matrix of generalized numbers defined in

the natural way and the transpose of A is denoted as usual by AT

Obviously, if A = (ai;),_, , is a given matrix of generalized numbers, then
j=1,.m

= (21,22,...,2m)" €R"
is a solution of the system (1.2) if and only if it satisfies the system of relations

Ru, Ry, + Ry Ryy +- -+ Ray,, Rey, —Rp, €9, i=1,2,...,n.

Aim

For a given ¢ € N, the symbol N, denotes the subset {1,2,...,q} of N. For a given subset M
of N, we will denote by v(M) the number of its elements. Let A = (a;;) be an n x m-matrix
(n,m > 1) of generalized numbers and let UC N,, and VC N, be given such that »(U) <n -1
and v(V) < m — 1. Then the symbol Ay v stands for the matrix obtained from the matrix A by
deleting the rows with the indices ¢ € 4l and the columns with the indices j €V. If U= {i} and
V= {j}, then we write

AU,V = Ai’j.

We say that the minor det(Ay v) of the matrix A is of the k-th order if & > 0 and n — v(U) =
m — v(V) = k. For a given 7 € N such that 1 < r < min(n,m), the symbol A" stands for

the submatrix (a;;) of the matrix A = (a;;) . Let an n x n-matrix A and a couple

i=1,...,r i=1,...,n

J=1,...,r j=1,....,m
t,5 € N, of indices be given. Then we define the cofactor D; ; of a;; in A by
D; ;= (—1)"7 det(4; ;).

The n x (m + 1)-matrix obtained when we attach a column b € R™ to the columns of a given
n X m-matrix A of generalized numbers will be denoted by (A4, b).

If A has not only zero elements, then the highest order r of nonzero minors is called the rank
of A and will be denoted by rank (A). If A is the zero matrix, we put rank (4) = 0.

3. MAIN RESULTS

Before formulating the main results of the paper let us give several simple examples indicating
that under our assumptions the situation is even in the case m = n = 1 more complicated than in
the classical case.

Let a € R and b € R be given and let us consider the equations

(3.1 ar =b
and
(3.2) ar = 0.

a) If a is given by (2.1), then a # 0 and as mentioned above there exists a nonzero generalized
number a* € R (cf. (2.2)) such that aa* = a*a = 0. This shows that the homogeneous equation
(3.2) with a # 0 may in general possess nonzero solutions.

b) Furthermore, it was also mentioned above that if a is given by (2.1), then a is noninvertible, i.e.
the equation (3.2) possesses for b = 1 no solutions, though a is nonzero. Let us notice that in
this case we have

rank (A) = rank (A,b) = 1.

c) Let a be given by (2.1) and let b = a. Then (A,b) = (a,a), rank (4) = rank(A4,b) =landz =1
is evidently a solution to the equation (3.1) (i.e. az = a).

Our main results are the following theorems.
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Theorem 3.1. Let m = n and let the zero vector be the unique solution of the system (1.3) in
R". Then the system (1.2) has exactly one solution x in R" for any b € K"

Theorem 3.2. Let us assume that rank(A) = rank(A,b) = r > 1 and that there are subsets U
and V of the set Nyin (n,m) such that v(U) = v(V) = r and det(Ay,v) is invertible in R. Then the
system (1.2) has at least one solution z € K.

Theorem 3.3. Let us assume that the system (1.2) has a solution = € R™. Then

(3.3) rank(A4) = rank(A4,b).

4. PROOFS

Proof of Theorem 3.1. Let m = n and let z =0 € R" be the only solution of the homogeneous
system (1.3).

Let us assume that det(A) is not invertible in R. Then by Proposition 2.1, det(A) is a divisor of
the zero element in R and hence by Proposition 1.3 the system (1.3) possesses a nonzero solution.
This being contradictory to our assumptions, it follows immediately that under the assumptions
of the theorem det(A) has to be invertible in R. The proof of Theorem 3.1 is now easily completed
by making use of Proposition 1.1. |
4.2. Proof of Theorem 3.2. Without any loss of generality we may assume that det(A()) # 0
and det(A() is invertible in R. Furthermore, let us assume that 7 < m. The modification of the
proof in the case r = m is obvious.

Let an arbitrary vector A = (A;, A2, ..., Am_r)T € K" be given. Let us denote

b; = b; — > auA, for i=12,...,n
k=r+1

and _ o _
b= (b1>b2)"')b'r')T‘

By Proposition 1.1 there exists the unique solution y = (y1,%2,...,¥,) to the system

and this solution is given by
yj = det(A)(det(AT)) L, j=1,2,...,m,

where for a given j = 1,2, ..., r, the symbol AS-T) denotes the matrix obtained from the matrix A

by replacing the j-th column by the vector b Ifr = n, then z = y is a solution of the given system
(1.2) and the proof of the assertion of the theorem is obvious, of course. If r < n then analogously

to the classical case (when a;;,b; € R) forany i =r+1,r+2,...,n and any A € R™ " we obtain
(4.1) (" aijy; — bi) det(A™)
j=1

= Z Qjj det(A;r)) - l;vl det(A(T)) = — det(AT’i, I;),

j=1
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where the (r + 1) x (r + 1)-matrix (A™, bi) is given by

ail ai2 o Qrp lll

a1 G2 ... Q2 b

ri 74\ _ .
(A", b)) = :
Gr1  Qr2 ... Qpp llf

a1 Qi ... Gy b

It is easy to verify that if we denote by (A", b?) the (r 4+ 1) x (r + 1)-matrix given by

ai; a2 ... Qip b1

az1 QA22 ... Q2p b2
(AL b)) = | N

art  Gp2 ... Gpp by

ai1 QG ... Qi b

then the following relation is true:
det(A™,bi) = det(A™, bi).
By the assumption of the theorem we have
det(A™,bi) = 0,
of course. Consequently, since det(A()) is assumed to be invertible, it follows easily from the
relation (4.1) that the relations
ainyi + apys + - +apy. =b;, i=1,2...,n
are true. Thus, if we set
zi=y; for i=1,2,...,r and z; =X, for i=r+1,7+2,...,n,
then the vector x = (21, x2,...,2,)7 is the desired solution to the given system (1.2). O

Proof of Theorem 3.3. Let us assume that the system (1.2) possesses a solution z =
(r1,20,...,20)T € R™. Let us put again r = rank(A). If » = m or r = 0, then the proof of
the theorem is obvious. Let us assume 0 < r < m. Furthermore, without any loss of generality we

can assume that
det(AM) #£0

holds.
Obviously we have
(4.2) rank(A,b) > r.
Let us denote y = (z1,%2...,2,)T and b = (by,bs,...,b,)T. Then the relation
- _ m
Ay =b=0b—( Z AijTj)i=1,...,r
j=r+1
is true. Analogously to the proof of Theorem 3.2 we could show that for any i =r+1,r+2,...,m

the determinant of the matrix (A", b?) vanishes. Consequently, we have rank(4,b) < r wherefrom
with respect to (4.2) our assertion immediately follows. O
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