
Approximate counting in bounded arithmetic

Emil Jeřábek∗

Institute of Mathematics, AS CR

jerabek@math.cas.cz

August 10, 2007

Abstract

We develop approximate counting of sets definable by Boolean circuits in bounded
arithmetic using the dual weak pigeonhole principle (dWPHP(PV)), as a generalization
of results from [15]. We discuss applications to formalization of randomized complexity
classes (such as BPP , APP , MA, AM) in PV1 + dWPHP(PV).

Introduction

One of the most important aspects of bounded arithmetic is its close connection to computa-
tional complexity. There is a correspondence between arithmetical theories, and complexity
classes: Buss’ theories Si2 and T i2 [6] correspond to levels of the polynomial-time hierarchy,
and various second-order theories were constructed for weak classes such as TC0; Cook [11]
presents a uniform way of constructing “minimal theories” associated to complexity classes
below P . Consequently, fundamental problems from complexity theory are tied to similar
questions about the arithmetical theories; for instance, the hierarchy of Buss’ theories col-
lapses if and only if bounded arithmetic proves the collapse of the polynomial hierarchy.

Our main motivation for studying approximate counting is the problem whether we can
associate theories to randomized complexity classes, like BPP or AM . The problem is a loose
research program rather than an exact question. On one hand, the concept of correspondence
between theories and complexity classes does not admit a general definition; the way in
which T 1

2 corresponds to PNP is rather different from the correspondence of U1 to NC. On
the other hand, many probabilistic classes like BPP are “semantic classes”, which means
that attempts to characterize them as provably total functions of some kind in a recursively
axiomatized theory are bound to failure. Nevertheless, we will try to provide evidence that
PV1 + dWPHP(PV) (i.e., PV1 extended by the dual (surjective) weak pigeonhole principle
for poly-time computable functions) is the “right” theory for reasoning about randomized
algorithms.

∗The research was done while the author was visiting the Department of Computer Science of the University

of Toronto. Supported by NSERC Discovery grant, grant IAA1019401 of GA AV ČR, and grant 1M0545 of

MŠMT ČR.

1

The connection of dWPHP(PV) to probabilistic computation was first noticed by A.
Wilkie, who proved that Σb

1-consequences of S1
2 + dWPHP(PV) are witnessed by TFRP -

functions, and in particular, predicates provably ∆b
1 in S1

2 + dWPHP(PV) are in ZPP (the
result was published in Kraj́ıček [18]). Jeřábek [15] considered the converse problem of for-
malizing probabilistic algorithms in S1

2 +dWPHP(PV), and introduced a way to define FRP -
functions in S1

2 +dWPHP(PV) which covered at least the witnessing functions from Wilkie’s
theorem; however, the method used was seemingly ad hoc, and it was not clear how it could
be generalized to other complexity classes like BPP .

In this paper, we will show that the dual weak pigeonhole principle is strong enough to
provide a general method of approximating probabilities. More precisely, if X is a subset
of an interval [0, a) definable by a PV -formula, we can estimate Prx<a(x ∈ X) within a
polynomially small error in PV1 + dWPHP(PV), and events of higher complexity can be
dealt with by appropriate relativization. This allows us to treat various randomized classes like
BPP , APP , AM , in a uniform and intuitive way—in fact, once we have a reasonable notion
of (approximate) probability, the usual definitions of these classes can be formalized almost
literally. As we have already mentioned, provably total functions are not an appropriate
standard for establishing correspondence of theories to probabilistic complexity classes: for
semantic classes there is no hope, and as we will see, for syntactic classes the problem is
either meaningless or trivial (with the notable exception of APP). Instead, we will show that
PV1 + dWPHP(PV) proves basic properties of the relevant probabilistic algorithms, such as
amplification of success, or simulation of randomness by nonuniformity.

Estimating probabilities in uniform distributions is only a fancy name for approximate
counting of bounded sets. Approximate counting has other applications besides randomized
algorithms; most importantly, counting arguments are often used to prove various combinato-
rial theorems. We will provide basic counting tools like the inclusion-exclusion principle, but
the overall utility of our methods in this area seems rather limited. Proofs of combinatorial
statements such as the Ramsey theorem or the tournament principle typically rely on count-
ing of sparse sets, which is impossible in our setup. We can only approximate the size of a set
X ⊆ [0, 2n) within a polynomial fraction of 2n, whereas here we would need to approximate
it within a polynomial fraction of |X|.

The paper is organized as follows. In section 1 we provide elementary background on basic
arithmetic, and fix notational conventions. In section 2 we introduce approximate counting of
sets defined by circuits in PV1+dWPHP(PV), and formalize a toolbox of counting principles.
In section 3 we discuss in detail the development of several randomized complexity classes
(FRP , BPP , APP , MA, and promise variants) in PV1 + dWPHP(PV). In section 4 we
indicate how to relativize our approach, and we discuss the class AM .

1 Preliminaries

We assume some degree of familiarity with first-order bounded arithmetic, however the basic
definitions are summarized below. More background can be found in [18, 8, 13].

Buss’ Si2 and T i2 [6] are first-order theories with equality in the language L = 〈0, S,+, ·,≤,

2

#, |x|,
⌊
x
2

⌋
〉, where the function |x| is intended to designate dlog2(x+1)e (the number of digits

in the binary representation of x), and x # y is 2|x|·|y|. Bounded quantifiers are expressions
of the form

∃x ≤ t . . . := ∃x (x ≤ t ∧ . . .),
∀x ≤ t . . . := ∀x (x ≤ t→ . . .),

where t is a term without an occurrence of x. A bounded quantifier is sharply bounded,
if t has the form |s| for some term s. A formula ϕ is sharply bounded, if all quantifiers
in ϕ are sharply bounded. The hierarchy of Σb

i - and Πb
i -formulas is defined inductively:

Σb
0 = Πb

0 is the set of sharply bounded formulas, Σb
i+1 is the closure of Πb

i under bounded
existential and sharply bounded universal quantifiers, and Πb

i+1 is the closure of Σb
i under

bounded universal and sharply bounded existential quantifiers. Bounded formulas capture
the polynomial-time hierarchy (PH). More precisely, for any i ≥ 1 the class ΣP

i coincides
with sets of natural numbers definable by Σb

i -formulas in N (the standard model of arithmetic),
and dually ΠP

i = Πb
i(N), in particular NP = Σb

1(N).
The theory Si2 consists of a finite list of open axioms denoted by BASIC , and the poly-

nomial induction schema

(Σb
i -PIND) ϕ(0) ∧ ∀x ≤ a (ϕ(

⌊
x
2

⌋
)→ ϕ(x))→ ϕ(a),

where ϕ ∈ Σb
i . The theory T i2 is axiomatized by BASIC and the induction schema

(Σb
i -IND) ϕ(0) ∧ ∀x ≤ a (ϕ(x)→ ϕ(x+ 1))→ ϕ(a).

PV is a purely equational theory introduced by Cook [9]. Its language contains a few
basic function symbols, and it is inductively expanded by symbols for functions defined from
previously introduced functions by composition, and limited recursion on notation. PV is
axiomatized by equations defining all the function symbols, and a derivation rule similar to
open PIND . In the standard model, PV -functions define exactly the class of polynomial-time
computable functions (FP). We will slightly abuse the notation and denote by PV also the
language of PV (the set of all PV -functions).

PV1 (also called QPV) is an extension of PV to first-order logic [19, 7, 10]. It has an
axiomatization by purely universal sentences, and it is conservative over PV . The hierarchy
of Σb

i(PV)- and Πb
i(PV)-formulas is defined similarly to Σb

i and Πb
i , but in the language of

PV . PV1 proves IND and PIND for Σb
0(PV)-formulas.

S1
2(PV) is the combination of S1

2 and PV1: i.e., it has the language of PV , and it is
axiomatized by PV and Σb

1(PV)-PIND . All PV -functions have well-behaved provably total
∆b

1-definitions in S1
2 ; it follows that S1

2(PV) is an extension of S1
2 by definitions, and in

particular, S1
2(PV) is conservative over S1

2 . Thus there is little practical difference between
S1

2 and S1
2(PV), and we will simply identify these two theories. Buss’ witnessing theorem [6]

implies that S1
2 is Σb

1-conservative over PV1, and in fact, we may identify PV1 with ∀Σb
1(S

1
2).

The theories PVi+1 for i > 0, introduced in [19], are defined similarly to PV1, except that
the basic functions of their language include the characteristic functions of all Σb

i -predicates,

3

thus PVi+1-functions correspond to FPΣP
i in the standard model. PVi+1 is a conservative

extension of T i2 (contrary to popular belief, essentially the same also holds for i = 0 [16]), and
S1

2(PVi+1) is a conservative extension of Si+1
2 . Si+1

2 is Σb
i+1-conservative over PVi+1 and T i2

by Buss’ witnessing theorem.
All these theories can be relativized. We consider the language L(α) = L∪{α}, where α is

a new predicate, and define Σb
i(α) and Πb

i(α) in the same way as Σb
i and Πb

i , but extended to
the new language. The theories Si2(α) and T i2(α) are axiomatized by BASIC and Σb

i(α)-PIND
resp. Σb

i(α)-IND , with no other axioms about α. PV (α) and PVi(α) can be defined similarly
(the characteristic function of α is allowed to appear in functions constructed by limited
recursion on notation). PV (α)-functions correspond to polynomial-time algorithms with an
oracle. We write ϕα and fα when we want to stress the dependence of an L(α)-formula or
PV (α)-function on α; in that case, ϕψ or fψ denotes the result of substitution of a formula
ψ for α. We may generalize L(α) by allowing an arbitrary set of new predicates and function
symbols instead of α; in the case of functions, we have to include axioms enforcing an explicit
polynomial bound on the length of the output of the function.

For any function f we define the formula

dPHPx
y(f) := ∃v < y ∀u < xf(u) 6= v,

where f may involve other parameters not explicitly shown. The dual (or surjective) weak
pigeonhole principle for f , written as dWPHP(f), is the universal closure of the formula

x > 0→ dPHPx|y|
x(|y|+1)(f),

and if Γ is a set of functions, dWPHP(Γ) denotes the schema {dWPHP(f) | f ∈ Γ}. We
will mostly work with dWPHP(PV), i.e., the dual weak pigeonhole principle for poly-time
functions. dWPHP(PV) is over S1

2 equivalent to the more usual schema

x > 1→ dPHPx
x2(f),

but it is not clear whether this reduction also works over PV1. dWPHP(PV) is provable in
T 2

2 [23, 18, 21], but dWPHP(α) is not provable in S2
2(α) [24]. The schema dWPHP(PV) is

finitely axiomatizable: PV1 proves that any PV -function is computable by a poly-size circuit
on any bounded domain, thus dWPHP(PV) is equivalent to its instance dWPHP(eval), where
eval(C, x) is a two-place PV -function which evaluates a circuit C on an input x.

We will often work with bounded definable sets, which are collections of numbers of the
form

X = {x < a | ϕ(x)},

where ϕ is a formula. Bounded sets are not genuine objects in our arithmetical theories, but
a figure of speech: x ∈ X is an abbreviation for x < a ∧ ϕ(x). When used in a context
which asks for a set, a number a is assumed to represent the integer interval [0, a); thus, for
example, X ⊆ a means that all elements of X are less than a. We will use simple set-theoretic
operations, whose meaning should be generally clear from the context; for example, if X ⊆ a

4

and Y ⊆ b, we may define

X × Y := {bx+ y | x ∈ X, y ∈ Y } ⊆ ab,
X ∪̇ Y := X ∪ {y + a | y ∈ Y } ⊆ a+ b.

The sets we will encounter most often will be defined by Boolean circuits: a circuit C : 2n → 2
defines the set {x < 2n | C(x) = 1}. (Here again, 2n denotes the interval [0, 2n), which may
be identified with the set of binary strings of length n; thus C is a circuit with n Boolean
input variables.)

We will use the shorthand notation

x ∈ Log↔ ∃y x = |y|,
x ∈ LogLog↔ ∃y x = ||y||.

If f is a function of two variables, f(a, •) denotes the function of one variable which results
from f by fixing its first argument to a. The set of natural numbers will be denoted by ω (in
the metatheory).

We will also work with rational numbers in PV , which are assumed to be represented
by pairs of integers in the natural way. The expression x−1 ∈ Log is a shorthand notation
meaning that x is a positive rational number, whose inverse is bounded from above by a
natural number n ∈ Log.

Many of our results take place inside formal theories like PV1 + dWPHP(PV). If T
is a theory, a parenthesized expression “in T” after the heading of a definition or theorem
indicates that the definition is introduced in T , or that the theorem is formulated and proved
inside T . However, we will slightly abuse this convention for reasons of compactness: when
we write e.g. “for every PV -function f . . . ” in a formalized context, it is assumed that the
quantification over PV -functions takes place in the metatheory, and only parameters of the
function are quantified inside T . Formulas, definable sets, and other non-first-order objects
are treated similarly. Expressions like “a pair of PV -functions 〈f, g〉” also fit in this category;
inside T , no actual pairing operation is involved.

2 Counting

Our definition of approximate counting in bounded arithmetic is based on the following ob-
servation: if X and Y are sets, and there exists a circuit which maps X onto Y , then the
cardinality of Y is at most the cardinality of X. We need to make sure that such a definition
is well-behaved, i.e., that it satisfies common properties we expect from a cardinality function.
In particular, it is conceivable that a large but complicated set X cannot be disentangled by
a polynomial-size circuit and mapped onto an interval [0, s) approaching its size; we must
show that such cases do not happen. The natural way to guarantee sufficient precision of
these counting circuits is to consider a two-sided comparison: if we find a mapping of X onto
[0, s− e), and a mapping of [0, s+ e) onto X, we know that the size of X is s within error e.

It turns out that an extra complication is necessary: rather than mapping X onto Y

directly, we will take several copies of both sets, i.e., map v ×X onto v × Y for some v > 0.

5

With this modification, we are able to prove in PV1 + dWPHP(PV) that there exists a
pair of counting circuits which estimates the size of X within a polynomially small error
(relative to the size of the ambient interval containing X), for any X defined by a circuit.
We will construct such counting circuits by analysis of the Nisan-Wigderson pseudorandom
generator [22]; formalization of the Nisan-Wigderson generator in S1

2 + dWPHP(PV) was
already considered in [15] for a different goal. We start by overview of the relevant concepts.

Definition 2.1 (in PV1) Let f : 2k → 2 be a truth-table of a Boolean function (f is encoded
as a string of 2k bits, hence k ∈ LogLog). We say that f is (worst-case) ε-hard, written
as Hardε(f), if there does not exist a circuit C of size at most 2εk which computes f . The
function f is average-case ε-hard, written as HardAε (f), if there does not exist a circuit C of
size at most 2εk such that∣∣{u < 2k | C(u) = f(u)}

∣∣ ≥ (
1
2

+ 2−εk
)

2k.

Notice that Hardε(f) and HardAε (f) are Πb
1-formulas.

Lemma 2.2 ([15]) For every constant ε < 1/3 there exists a constant c such that PV1 +
dWPHP(PV) proves: for every k ∈ LogLog such that k ≥ c, there exist average-case ε-hard
functions f : 2k → 2.

Moreover, there exists a PV -function g : 2n−m → 2n such that any f < 2n outside the
range of g is average-case ε-hard, where n = 2k, and m ≥ n1−2ε.

Definition 2.3 ([22]) (in PV1) Let k, `, t,m ∈ Log, k ≤ ` ≤ t. A 〈k, `, t,m〉-design is
a sequence 〈Si〉i<m of subsets Si ⊆ t, such that |Si| = ` and |Si ∩ Sj | ≤ k for all i < j < m.

Lemma 2.4 ([15]) Let 0 < γ < 1. There are constants δ > 0, c > 1, and a PV -function d

such that
PV1 ` d(x) is a 〈γ`, `, c`, 2δ`〉-design, where ` = ||x||.

Definition 2.5 ([22]) (in PV1) Let x < 2t, and X ⊆ t, |X| = `. Let {si}i<` be the increas-
ing enumeration of the set X. Then we put x �X := y, where y < 2` and bit(y, i) = bit(x, si)
for all i < `.

If f : 2` → 2, and S = 〈Si〉i<m is a 〈k, `, t,m〉-design, the Nisan-Wigderson generator is a
function NWf,S : 2t → 2m defined by

bit(NWf,S(x), i) = f(x � Si).

Definition 2.6 (in PV1) We adopt a few conventions on functions computed by circuits. Let
C : 2n → 2m be a circuit, and X and Y definable sets. We say that C computes a function
from X to Y , written as

C : X → Y,

if X ⊆ 2n, Y ⊆ 2m, and C[X] ⊆ Y . We write

C : X ↪→ Y

6

if, in addition, the function computed by C is injective on X.
We write

C : X � Y

if X ⊆ 2n, Y ⊆ 2m, and C[X] ⊇ Y . Notice that this does not imply C : X → Y . An
equivalent condition is C : X ′ → Y and C[X ′] = Y for some X ′ ⊆ X.

(This way of introducing � is mostly a technicality, needed to overcome the annoying
fact that a non-empty set cannot be mapped onto the empty set.)

We are ready for the main theorem of this section, which guarantees the existence of
suitable counting circuits. It is an extension of proposition 4.7 in [15].

Theorem 2.7 (in PV1 +dWPHP(PV)) Let C : 2n → 2 be a Boolean circuit, and ε−1 ∈ Log.
Denote

X := {x < 2n | C(x) = 1}.

There exist s ≤ 2n, v ≤ poly(nε−1|C|), and circuits Gξ,Hξ, ξ = 0, 1, of size poly(nε−1|C|)
such that

G0 : v(s+ ε2n) � v ×X H0 : v ×X ↪→ v(s+ ε2n)

G1 : v × (X ∪̇ ε2n) � vs H1 : vs ↪→ v × (X ∪̇ ε2n)

and such that
Gξ ◦Hξ = id

on their respective domains.

Proof: Let δ and c be the constants from lemma 2.4 for γ := 1/12. Put

` := max
{
4|nε−1|, 12|n|, 1

δ
|n|, 4(||C||+ 1)

}
,

and k := γ`, t := c`, v := 2t. As n ≤ 2δ`, there exists a 〈k, `, t, n〉-design S = 〈S0, . . . , Sn−1〉.
By lemma 2.2, there exists an average-case 1/4-hard Boolean function f : 2` → 2. We define

Y := {x < 2t | C(NWf,S(x)) = 1},
s := 2n−t|Y |.

(We may count |Y | directly, as t ∈ LogLog.)
For any i ≤ n, we define

Mi = {〈~r, x〉 ∈ 2n × 2t | C(f(x � S0), . . . , f(x � Si−1), ri, . . . , rn−1) = 1}.

Notice that M0 = X × 2t, and Mn = 2n × Y . Suppose we find a sequence of circuits Gξ,i,
Hξ,i, where ξ = 0, 1 and i < n, such that

G0,i : Mi+1 ∪̇ (i+ 1)a2n+t−` � Mi ∪̇ ia2n+t−`

H0,i : Mi ∪̇ ia2n+t−` ↪→Mi+1 ∪̇ (i+ 1)a2n+t−`

G1,i : Mi ∪̇ (n− i)a2n+t−` � Mi+1 ∪̇ (n− i− 1)a2n+t−`

H1,i : Mi+1 ∪̇ (n− i− 1)a2n+t−` ↪→Mi ∪̇ (n− i)a2n+t−`

Gξ,i ◦Hξ,i = id

7

where a = 23`/4. Then we can define

G0 = G0,0 ◦G0,1 ◦ · · · ◦G0,n−1 H0 = H0,n−1 ◦H0,n−2 ◦ · · · ◦H0,0

G1 = G1,n−1 ◦G1,n−2 ◦ · · · ◦G1,0 H1 = H1,0 ◦H1,1 ◦ · · · ◦H1,n−1

Notice that vε2n ≥ na2n+t−`, as nε−1 ≤ 2`/4. For any x ∈ X × 2t and y ∈ 2n × Y , we can
show

((G0,0 ◦G0,1 ◦ · · · ◦G0,i) ◦ (H0,i ◦ · · · ◦H0,1 ◦H0,0))(x) = x

((G1,n−1 ◦G1,n−2 ◦ · · · ◦G1,n−i) ◦ (H1,n−i ◦ · · · ◦H1,n−2 ◦H1,n−1))(y) = y

by straightforward induction on i, in particular Gξ ◦Hξ = id, which also implies that Gξ are
surjective, and Hξ are injective.

It thus suffices to construct Gξ,i and Hξ,i. There exists an easily computable bijection
between pairs 〈y, u〉 ∈ 2t−` × 2`, and numbers x ∈ 2t, so that x maps to 〈x � (tr Si), x � Si)〉.
If j < n, y < 2t−`, u < 2`, and x < 2t is such that 〈y, u〉 = 〈x � (t r Si), x � Si)〉, we define
f i,yj (u) = f(x � Sj). Notice that f i,yi (u) = f(u). Then

Mi ≈ 2i ×M ′
i ,

where

M ′
i := {〈ri+1, . . . , rn−1, y, r, u〉 ∈ 2n−i−1 × 2t−` × 2× 2` |

C(f i,y0 (u), . . . , f i,yi−1(u), r, ri+1, . . . , rn−1) = 1},

and A ≈ B means that there exists a bijection g of A onto B such that g and g−1 are
computable by a polynomial-size circuit. In a similar way we have

Mi+1 ≈ 2i ×M ′
i+1,

where

M ′
i+1 := {〈ri+1, . . . , rn−1, y, r, u〉 | C(f i,y0 (u), . . . , f i,yi−1(u), f(u), ri+1, . . .) = 1}.

Fix y < 2t−`, and ri+1, . . . , rn−1 < 2. Define

U~r,y := {〈r, u〉 ∈ 2× 2` | C(f i,y0 (u), . . . , f i,yi−1(u), r, ri+1, . . . , rn−1) = 1}
= {〈r, u〉 ∈ 2× 2` | 〈~r, y, r, u〉 ∈M ′

i},

V ~r,y := {〈r, u〉 ∈ 2× 2` | C(f i,y0 (u), . . . , f i,yi−1(u), f(u), ri+1, . . . , rn−1) = 1}
= {〈r, u〉 ∈ 2× 2` | 〈~r, y, r, u〉 ∈M ′

i+1},

Aη(u) := C(f i,y0 (u), . . . , f i,yi−1(u), η, ri+1, . . . , rn−1),

8

where η < 2. As ` ∈ LogLog, we can directly count the sets U~r,y and V ~r,y; an easy calculation
shows

|V ~r,y| − |U~r,y| = 2
∣∣{u | f(u) ∧A1(u)}

∣∣ + 2
∣∣{u | ¬f(u) ∧A0(u)}

∣∣
−

∣∣{u | A1(u)}
∣∣− ∣∣{u | A0(u)}

∣∣
=

∣∣{u | f(u) ∧A1(u)}
∣∣− ∣∣{u | ¬f(u) ∧A1(u)}

∣∣
+

∣∣{u | ¬f(u) ∧A0(u)}
∣∣− ∣∣{u | f(u) ∧A0(u)}

∣∣
=

∣∣{u | f(u) ∧A1(u)}
∣∣ +

∣∣{u | ¬f(u) ∧ ¬A1(u)}
∣∣

+
∣∣{u | ¬f(u) ∧A0(u)}

∣∣ +
∣∣{u | f(u) ∧ ¬A0(u)}

∣∣− 2`

=
∣∣{u | f(u)↔ A1(u)}

∣∣− ∣∣{u | f(u)↔ A0(u)}
∣∣

On the other hand, for any j 6= i, f i,yj (u) depends only on |Si ∩ Sj | ≤ k variables of u, and is
thus computable by a circuit of size 2k. Therefore, Aη and ¬Aη are computable by circuits
of size at most

1 + |C|+ i2k ≤ |C|+ n2k ≤ 2`/4−1 + 2`/122`/12 ≤ 2`/4.

As f is average-case 1/4-hard, we have∣∣|{u | Aη(u) = f(u)}| − 2`−1
∣∣ ≤ 2`−`/4 = a,

thus ∣∣|V ~r,y| − |U~r,y|∣∣ ≤ 2a.

We may arrange the sets U~r,y and V ~r,y in increasing sequences, match their initial parts, and
pad to get functions

g~r,y0 : U~r,y ∪̇ 2a � V ~r,y h~r,y0 : V ~r,y ↪→ U~r,y ∪̇ 2a

g~r,y1 : V ~r,y ∪̇ 2a � U~r,y h~r,y1 : U~r,y ↪→ V ~r,y ∪̇ 2a

such that g~r,yξ ◦ h
~r,y
ξ = id. As this construction is uniform in ~r and y, we may construct

polynomial-size circuits

G′
0 : M ′

i ∪̇ a2n−i+t−` � M ′
i+1 H ′

0 : M ′
i+1 ↪→M ′

i ∪̇ a2n−i+t−`

G′
1 : M ′

i+1 ∪̇ a2n−i+t−` � M ′
i H ′

1 : M ′
i ↪→M ′

i+1 ∪̇ a2n−i+t−`

and from these we obtain Gξ,i, Hξ,i as required. �

We formally introduce the concept of approximate size comparison, as described in the
introductory paragraph of this section. Notice that the definition applies to a more general
situation than what is permitted by theorem 2.7. The main reason is that we will occasionally
need to express that a set is exponentially small, even though theorem 2.7 cannot provide
counting with exponential precision.

Definition 2.8 (in PV1 + dWPHP(PV)) Let X,Y ⊆ 2n be definable sets, and ε ≤ 1. We
say that the size of X is approximately less than the size of Y with error ε, written as

X �ε Y,

9

if there exists a circuit G, and v 6= 0, such that

G : v × (Y ∪̇ ε2n) � v ×X.

The sets X and Y have approximately the same size with error ε, written as

X ≈ε Y,

if X �ε Y and Y �ε X.
We recall that we identify a number s with the interval [0, s), thus as a special case, X ≈ε s

means that the size of X is equal to s with error ε.

Remark 2.9 In this definition, “error ε” is somewhat a misnomer. The counting is not exact
even if we take ε = 0, there is always some error present due to the fact that only the weak
pigeonhole principle is available. In fact, we will often conveniently use �0 for approximate
size comparisons.

The lemma below summarizes elementary properties of definition 2.8.

Lemma 2.10 (in PV1) Let X,Y,X ′, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2m be definable sets, and
ε, δ ≤ 1.

(i) X �ε Y , ε ≤ δ ⇒ X �δ Y .

(ii) X ⊆ Y ⇒ X �0 Y .

(iii) X �ε Y , Y �δ Z ⇒ X �ε+δ Z.

(iv) If X �ε X ′, Y �δ Y ′, and X ′ and Y ′ are separable by a circuit, then X∪Y �ε+δ X ′∪Y ′.

(v) X �ε X ′, W �δ W ′ ⇒ X ×W �ε+δ+εδ X ′ ×W ′.

Proof: Exercise. �

The next lemma exploits consequences of theorem 2.7.

Lemma 2.11 (in PV1 + dWPHP(PV)) Let X,Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n,
ε, δ, η, ξ ≤ 1, ξ−1 ∈ Log.

(i) There exists s ≤ 2n such that X ≈ξ s.

(ii) s �ε X �δ t ⇒ s ≤ t+ (ε+ δ + ξ)2n.

(iii) X �ξ Y or Y �ξ X.

(iv) X �ε Y ⇒ 2n r Y �ε+ξ 2n rX.

(v) X ≈ε s, Y ≈δ t, X ∩ Y ≈η u ⇒ X ∪ Y ≈ε+δ+η+ξ s+ t− u.

10

Proof: (i) follows from theorem 2.7.
(ii): by transitivity, it suffices to show that s �0 t implies s ≤ t+ ξ2n, which follows from

dWPHP(PV).
(iii) follows from (i), and linearity of ≤.
(iv): let ζ = ξ/11, and choose s, t, s′, t′ such that X ≈ζ s, Y ≈ζ t, 2n r X ≈ζ s′,

2n r Y ≈ζ t′. We have s ≤ t + (ε + 3ζ)2n by (ii). As t + t′ �2ζ 2n by lemma 2.10 (iv), we
have also t′ ≤ 2n − t + 3ζ2n by (ii), and in a similar way, 2n − s ≤ s′ + 3ζ2n. This implies
t′ ≤ s′ + (ε+ 9ζ)2n, thus 2n r Y �ε+11ζ 2n rX.

(v): fix r such that X r Y ≈ξ/2 r. By lemma 2.10 (iv), we have X ≈η+ξ/2 r + u, and
X ∪ Y ≈δ+ξ/2 r + t. The former implies s ≈ε+η+ξ/2 r + u, thus s+ t− u ≈ε+η+ξ/2 r + t, and
s+ t− u ≈ε+δ+η+ξ X ∪ Y . �

The definition of �ε is problematic, if we wish to use it in induction formulas in more
sophisticated arguments. As it stands, it is an unbounded ∃Πb

2-formula; even if we restrict
its usage to the case covered by theorem 2.7, and include the relevant bounds, we cannot
do much better than Σb

2. We can solve this problem by working in a suitable conservative
extension of PV1 + dWPHP(PV), introduced in [15].

Definition 2.12 The theory HARDA is an extension of PV1(α) + dWPHP(PV (α)) by the
axioms

α(x) is a truth-table of a Boolean function in ||x|| variables,

x ≥ c→ HardA1/4(α(x)),

||x|| = ||y|| → α(x) = α(y),

where c is the constant from lemma 2.2.

Theorem 2.13 HARDA is a conservative extension of PV1+dWPHP(PV). More generally,
for any i ≥ 1, HARDA + Si2(α) and HARDA + T i2(α) are conservative extensions of Si2 +
dWPHP(PV) and T i2 + dWPHP(PV), respectively.

Proof: This was shown in [15] with S1
2 as a base theory. It is easy to modify the proof so

that it works over PV1. �

We note that the axiom dWPHP(PV (α)) is redundant in HARDA+S1
2(α); i.e., the existence

of functions hard on average implies dWPHP(PV) over S1
2 [15]. We do not know whether

this also holds over PV1.

Lemma 2.14 There is a PV (α)-function Size such that HARDA proves: if X ⊆ 2n is defin-
able by a circuit C, then

X ≈ε Size(C, 2n, e),

where ε = |e|−1. The “witnessing circuits” Gξ,Hξ from theorem 2.7 are also constructible by
PV (α)-functions.

Proof: By inspection of the proof of theorem 2.7, we see that the only non-uniformity was
in the choice of the hard function f . �

11

We will abuse the notation and write Size(X, ε) instead of Size(C, 2n, e).
The advantage of HARDA is that the complexity of approximate counting drops from Σb

2

to PV (α), which means that we can use approximate counting freely in induction, and we
can count parametric families of sets uniformly. Some of the results below illustrate these
techniques. We begin by showing that the size of the disjoint union of a sequence of sets is
the sum of sizes of the sets.

Proposition 2.15 (Disjoint union) (in PV1 + dWPHP(PV)) Let {Xi | i < m} be subsets
of 2n, defined by a sequence of circuits. Let ε, ξ ≤ 1, ξ−1 ∈ Log, and {si | i < m} a sequence
of numbers such that Xi �ε si for every i < m. Then∑

i<m

Xi �ε+ξ
∑
i<m

si,

where the disjoint sum
∑

i<mXi :=
⋃
i<m(Xi×{i}) ⊆ 2n×m is considered a subset of 2n+|m|.

The same holds for � in place of �.

Proof: We may work in HARDA by theorem 2.13. First, notice that the error in � is relative
to the ambient set size, thus if we reconsider Xi as a subset of 2n ×m, we have Xi �ε/m si.
Put ζ = ξ/(3m+ 1). We will show

Size
(∑
i<k

Xi, ζ
)
≤

∑
i<k

si + (ε/m+ 3ζ)k

by induction on k ≤ m. Assume that the statement is true for k. We have∑
i<k

Xi ≈ζ Size
(∑
i<k

Xi, ζ
)
�δ

∑
i<k

si,

where δ = (ε/m+ 3ζ)k. As Xk �ε/m sk, we obtain

Size
(∑
i≤k

Xi, ζ
)
≈ζ

∑
i≤k

Xi �ε/m+ζ+δ

∑
i≤k

si

by lemma 2.10 (iv), thus

Size
(∑
i≤k

Xi, ζ
)
≤

∑
i≤k

si + (ε/m+ 3ζ)(k + 1)

by lemma 2.11 (ii).
For k = m, we get ∑

i<m

Xi ≈ζ Size
(∑
i<m

Xi, ζ
)
�ε+3mζ

∑
i<m

si. �

12

We can apply proposition 2.15 only to sequences of sets encoded by a number, in particular,
the length of the sequence is in Log. We present a variant which applies to larger families of
sets, whose sizes are uniformly bounded. We can also read it contrapositively as an averaging
argument: if we have a family of at most t sets, such that the size of their union is more than
st, then one of the sets must be larger than st/t = s.

Proposition 2.16 (Averaging) (in PV1 + dWPHP(PV)) Let X ⊆ 2n × 2m and Y ⊆ 2m

be definable by circuits, Y �δ t, and Xy �ε s for every y ∈ Y , where Xy := {x | 〈x, y〉 ∈ X}.
Then

X ∩ (2n × Y) �ε+δ+εδ+ξ st

for any ξ−1 ∈ Log.

Proof: By lemma 2.14, there are PV (α)-functions f, v such that

f(y, •) : v(y)× (Size(Xy, ξ) + ξ2n) � v(y)×Xy.

We may easily arrange v(y) = v to be independent on y, while increasing the error slightly.
Also, if y ∈ Y , we have Size(Xy, ξ) ≤ s+ (ε+ ξ)2n, thus we obtain a function f ′ such that

f ′(y, •) : v × (s+ (ε+ 3ξ)2n) � v ×Xy

for every y ∈ Y . There is a function g and number w such that

g : w × (t+ δ2m) � w × Y,

and suitable composition of g with f ′ gives a function

vw(t+ δ2m)(s+ 3ξ2n) � vw × (X ∩ (2n × Y)).

We have
(t+ δ2m)(s+ 3ξ2n) ≤ st+ (ε+ δ + εδ + 6ξ)2n+m,

thus X ∩ (2n × Y) �ε+δ+εδ+6ξ st. �

The next task is to formalize a suitable version of Chernoff’s bound, which is sine qua non
for development of randomized algorithms. The proof consists of two parts. The number-
theoretic part is a bound on certain sums of binomial coefficients; we reduce it to a special
case which was formalized in [15]. The combinatorial part of Chernoff’s bound relies on the
fact that we can construct counting circuits for a set X and its complement 2n rX so that
the sizes approximately add up to 2n.

Lemma 2.17 There is a constant c such that PV1 proves: for any n > 0, x > 0, y ≤ x, and
δ, ε ∈ [0, 1], such that n ∈ Log,∑

j≤n(y
x
−δ)

(
n

j

)
(y + εx)j(x− y + εx)n−j ≤ c xn4n(cε−δ2).

13

Proof: Put

k :=
⌊
n

y + εx

(1 + 2ε)x

⌋
, i := k −

⌊
n

(y
x
− δ

)⌋
.

We assume k > i ≥ 0, the remaining borderline cases are left as an exercise. The left-hand
side is at most

S :=
∑
j≤k−i

(
n

j

)
(k + 1)j(n− k)n−j

(
x(1 + 2ε)

n

)n

≤ c xn
(

1 +
1
k

)k

(1 + 2ε)n4−i
2/n

by proposition A.5 in [15]. We also have(
1 +

1
k

)k

≤ 4.

Assume for simplicity ε ≤ 1/4, and put ` := b1/(2ε)c. Then

(1 + 2ε)n ≤
(

1 +
1
`

)n

≤
(

1 +
1
`

)`dn/`e
≤ 4dn/`e,

and
n

`
≤ n

1/(2ε)− 1
=

2εn
1− 2ε

≤ 4εn,

thus (1 + 2ε)n ≤ 4 · 44εn.
We have

n
y

x
− k ≤ 1 + n

(
y

x
− y + εx

(1 + 2ε)x

)
= 1 + n

ε(2y − x)
(1 + 2ε)x

≤ 1 + nε,

thus
i ≥ k − n

(y
x
− δ

)
= δn−

(
n
y

x
− k

)
≥ δn− (1 + εn),

and

− i
2

n
≤ −(δn− (1 + εn))2

n
≤ −δ2n+ 2δ(1 + εn) ≤ 2− δ2n+ 2εn.

Putting everything together, we have

S ≤ 44c xn46εn−δ2n. �

Proposition 2.18 (Chernoff’s bound) (in PV1 + dWPHP(PV)) Let X ⊆ 2n be defined
by a circuit, m ∈ Log, 0 ≤ ε, δ, p ≤ 1, and X �δ p2n. Then{

w ∈ (2n)m
∣∣ |{i < m | wi ∈ X}| ≤ m(p− ε)

}
�0 c4m(cδ−ε2)2nm

for some constant c, where w is treated as a sequence of m numbers less that 2n, and wi is
its ith member.

14

Proof: Let ξ = 1/m, and s = Size(X, ξ). There is a v > 0 and functions f, g such that

f : v(s+ ξ2n) � v ×X,
g : v(2n − s+ ξ2n) � v × (2n rX).

We can construct a function h by taking f and g coordinatewise so that

h(I, •) : vm(s+ ξ2n)j(2n − s+ ξ2n)m−j � vm × {w | I = {i < m | wi ∈ X}}

for every I ⊆ m of size j. (The straightforward way of showing the surjectivity of h uses
BBΣb

1 to collect preimages under f or g into a sequence. The choice schema BBΣb
1 is not

available in PV1, but we can avoid it as f and g have coretractions computable by poly-size
circuits by theorem 2.7.) We combine h with enumeration of small subsets of m, and obtain
a function

vm
∑

j≤m(p−ε)

(
m

j

)
(s+ ξ2n)j(2n − s+ ξ2n)m−j �

� vm ×
{
w ∈ (2n)m

∣∣ |{i < m | wi ∈ X}| ≤ m(p− ε)
}
.

Notice that p2n ≤ s+ (δ + 2ξ)2n by lemma 2.11 (ii). We invoke lemma 2.17 with “x” = 2n,
“y” = s+ (δ + 2ξ)2n, and “δ” = 3ξ + δ, which gives∑

j≤m(p−ε)

(
m

j

)
(s+ ξ2n)j(2n − s+ ξ2n)m−j ≤ c2nm4m(3c/m+cδ−ε2) = 64cc2nm4m(cδ−ε2).

�

Another widely used property of counting is the inclusion-exclusion principle, which we
formalize below. Notice that the assumptions on k and m are necessary so that the bounded
sum in the statement of the principle is well-defined; thus it is not an additional restriction
on applicability of the principle.

Proposition 2.19 (Inclusion-exclusion principle) (in PV1 + dWPHP(PV)) Let {Xi |
i < m} be subsets of 2n, defined by a sequence of circuits. Let k ≤ m be such that k ∈ LogLog
and (m/k)k ∈ Log. Assume ⋂

i∈I
Xi ≈εI sI

for every I ⊆ m of size at most k, and define

s =
∑
I⊆m

0<|I|≤k

(−1)|I|+1sI , ε =
∑
I⊆m

0<|I|≤k

εI .

Then ⋃
i<m

Xi �ε+ξ s

15

if k is even, and ⋃
i<m

Xi �ε+ξ s

if k is odd, for any ξ−1 ∈ Log.

Proof: The sums are well-defined, as(
m

≤ k

)
:=

∑
i≤k

(
m

i

)
≤ (4m/k)k ∈ Log

can be shown by easy induction on k, using (1 + 1/k)k ≤ 4. For any i ≤ ` < m, we define

X`
i :=

{
Xi, i < `,⋃m−1
j=` Xj , i = `.

Assume k > 0 is even, the case of odd k is similar. Let η−1 ∈ Log. We will show

Size
(⋃
i<m

Xi, η
)

+ 5η
(

`

≤ k

)
2n ≥

∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η

)

by induction on ` < m. The base case ` = 0 is trivial. Assume that the statement holds for
`− 1. We have

(∗) :=
∑
I⊆`

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`−1
i , η

)
=

∑
I⊆`−1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

Xi, η
)
−

∑
I⊆`−1

0≤|I|<k

(−1)|I|+1 Size
(⋂
i∈I

Xi ∩X`−1
`−1 , η

)
.

By lemma 2.11 (v), we have

Size
(⋂
i∈I

Xi ∩X`−1
`−1 , η

)
= Size

((⋂
i∈I∪{`−1}

X`
i

)
∪

(⋂
i∈I∪{`}

X`
i

)
, η

)
= Size

(⋂
i∈I∪{`−1}

X`
i , η

)
+ Size

(⋂
i∈I∪{`}

X`
i , η

)
− Size

(⋂
i∈I∪{`−1,`}

X`
i , η

)
± 5η2n,

thus

(∗) + 5η
(

`− 1
≤ k − 1

)
2n ≥

∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η

)
+ (−1)k

∑
I⊆`−1

|I|=k−1

Size
(⋂
i∈I∪{`−1,`}

X`
i , η

)

≥
∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η

)
.

16

Using the induction hypothesis, we get

Size
(⋃
i<m

Xi, η
)

+ 5η
((

`− 1
≤ k

)
+

(
`− 1
≤ k − 1

))
2n ≥

∑
I⊆`+1

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

X`
i , η

)
,

and we can easily derive (
`− 1
≤ k

)
+

(
`− 1
≤ k − 1

)
=

(
`

≤ k

)
from

(
`
i+1

)
=

(
`−1
i+1

)
+

(
`−1
i

)
.

We take ` = m− 1. We have∑
I⊆m

0<|I|≤k

(−1)|I|+1 Size
(⋂
i∈I

Xi, η
)

+
(
ε+ 2η

(
m

≤ k

))
2n ≥ s

by lemma 2.11 (ii), thus ⋃
i<m

Xi �ε+ξ s,

where ξ ≤ 7η
(
m
≤k

)
. As

(
m
≤k

)
∈ Log, we can make ξ arbitrarily small by choosing a suitable

η−1 ∈ Log. �

Approximate counting, and estimation of probability with respect to the uniform distribu-
tion are two sides of the same coin, thus we can introduce probabilities in PV1+dWPHP(PV)
as in the following definition. All the results of section 2 can be naturally restated in proba-
bilistic terms, which we leave to reader’s imagination.

Definition 2.20 (in PV1 +dWPHP(PV)) Let X be a definable subset of 2|t|, and 0 ≤ ε, p ≤
1. We define

Prx<t(x ∈ X) �ε p iff X ∩ t �ε pt,

and similarly for �, ≈. If X is defined by a circuit and ε−1 ∈ Log, we put

Prx<t(x ∈ X)ε :=
1
t

Size(X ∩ t, ε).

3 Randomized algorithms

Our main application of approximate counting is in the formalization of probabilistic algo-
rithms in PV1 + dWPHP(PV). We will consider in turn the classes FRP , BPP , APP , MA,
including their promise versions (prBPP , prMA). For each class we present a natural way to
define algorithms from the class in PV1 + dWPHP(PV) (and its extensions), and we prove
in PV1 + dWPHP(PV) basic properties of the class (such as success amplification, or simu-
lation by circuits). We also discuss the problem whether all algorithms from the class can be
defined in PV1 + dWPHP(PV): in general, algorithms from “syntactic classes” (like prBPP
or APP) are always definable, whereas “semantic classes” (like BPP) cannot be shown to be

17

captured by PV1 + dWPHP(PV) (or in fact, any recursively axiomatizable theory), without
nontrivial progress in their derandomization. In the case of semantic classes we pinpoint the
problem by showing that definability of any particular algorithm is equivalent to provability
of a ∀Σb

1-sentence. (We show that the class APP is recursively enumerable, thus it can be
considered a syntactic class even if that is not apparent from its definition.)

3.1 NP search problems

The first class of algorithms we mention are probabilistic solvers to NP search problems.

Definition 3.1 An NP search problem S is given by a poly-time computable relation R(x, y)
such that

R(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p. Any y such that R(x, y) is a solution of S for x, and x is called an
instance of S in this context. The search problem S is total if every instance of S has a
solution.

A deterministic algorithm solves S if it computes a solution for any given solvable instance
of S. A probabilistic algorithm A solves S if

Pr(A(x) is a solution for x) ≥ 1/2

for every solvable instance x. (The constant 1/2 is rather arbitrary.)
The class of NP search problems solvable in probabilistic polynomial time is called FRP .

The class of total search problems from FRP is denoted TFRP .

Notice that we may require without loss of generality that an algorithm solving an NP
search problem rejects all unsolvable instances. The class of randomized poly-time algorithms
which solve NP search problems under this requirement can be defined directly, without any
reference to search problems: a probabilistic algorithm A computes an FRP -function, if for
every input x, either A(x) rejects with probability 1, or accepts and outputs a value with
probability at least 1/2. FRP can thus be thought of as a class of partial multifunctions.
Notice that a language L is in ZPP iff its characteristic function is in FRP , and L ∈ RP iff
it is the domain of an FRP -function, thus FRP generalizes the classes ZPP and RP .

Formalization of FRP in PV1 + dWPHP(PV) was studied in [15]. We can restate the
main definition of [15] in the present notation as follows.

Definition 3.2 (in PV1 + dWPHP(PV)) A β-definable randomized algorithm is given by a
pair of PV -functions 〈A, r〉 such that

∃w < r(~x)A(~x,w) 6= ∗ → Prw<r(~x)(A(~x,w) = ∗) �0 β,

where ∗ is a special symbol signalling a rejecting computation, and 0 < β < 1. If unspecified,
we take β = 1/2.

18

Various properties of FRP were proved in PV1 +dWPHP(PV) in [15]. We will not repeat
these here, but instead we will concentrate on the question of which FRP -algorithms are
definable in PV1 + dWPHP(PV). This is actually two questions: Which FRP -functions are
provably 1/2-definable in PV1 + dWPHP(PV), and which TFRP -functions are provably total
in PV1 + dWPHP(PV). We begin with the latter.

For any NP search problem S, the statement “S is total” is a ∀Σb
1-sentence. Conversely,

for any ∀Σb
1-sentence ϕ, we can construct an NP search problem Sϕ such that ϕ holds iff

S is total, thus description of provably total NP search problems of a theory is equivalent
to characterization of its Σb

1-consequences. Wilkie’s witnessing theorem (see [18]) states that
provably total NP search problems of PV1 + dWPHP(PV) (or S1

2 + dWPHP(PV)) are in
TFRP , and it was shown in [15] that these witnessing TFRP -functions are definable and
provably total in PV1 + dWPHP(PV):

Theorem 3.3 ([15]) Assume S1
2 + dWPHP(PV) ` ∀x∃y ϕ(x, y) with ϕ ∈ Σb

1, and let S
be the corresponding search problem. There exists a probabilistic algorithm A such that PV1

proves

(i) A is 1/2-definable,

(ii) A solves S,

and PV1 + dWPHP(PV) proves that A is total.

It is not clear whether all TFRP -functions are provably total in PV1 + dWPHP(PV), or
in any its r.e. extension for that matter, even if we restrict ourselves to univalued functions
with values in {0, 1}, i.e., ZPP -predicates. On one hand, such a result cannot be shown by
a relativizing technique: it would imply that ZPP has a complete language due to Thapen
[26], and there exist oracles A such that ZPPA has no complete language [5]. On the other
hand, TFRP is widely believed to coincide with FP , in which case all TFRP -functions (but
not necessarily all TFRP -algorithms) are trivially definable in PV1.

We can obtain a more precise characterization of provably total search problems of PV1 +
dWPHP(PV), if we consider “nonintensional” representations instead of particular TFRP -
algorithms.

Definition 3.4 A PV -formula ϕ represents a search problem S, if the following hold (in the
standard model):

(i) if ϕ(x, y), then y is a solution of S for x,

(ii) if x is a solvable instance of S, then ∃y ϕ(x, y).

WPHPWIT is the following NP search problem: given a pair of circuits G : 2n → 22n and
H : 22n → 2n, find an x < 22n such that G(H(x)) 6= x.

Let S and S′ be NP search problems. S is reducible to S′, if there are poly-time functions
f and g such that:

(i) if x is a solvable instance of S, then f(x) is a solvable instance of S′,

19

(ii) if y is a solution of S′ for f(x), then g(x, y) is a solution of S for x.

Theorem 3.5 Let S be an NP search problem. The following are equivalent:

(i) S has a provably total representation in PV1 + dWPHP(PV).

(ii) S is reducible to WPHPWIT.

Proof: (i)→ (ii) follows from Thapen’s proof of Wilkie’s witnessing theorem [27].
(ii) → (i): assume that S is given by a poly-time relation R(x, y), and f and g form a

reduction of S to WPHPWIT . We may easily modify f so that its output f(x) = 〈Gx,Hx〉
consists of a pair of circuits as in definition 3.4, provably in PV1 + dWPHP(PV). Put

ϕ(x, y) = R(x, y) ∨
(
Gx(Hx(y)) 6= y ∧ ¬R(x, g(x, y))

)
.

The second disjunct never holds in the standard model by the definition of reduction, thus ϕ
represents S. PV1+dWPHP(PV) proves ∀x∃y ϕ(x, y), asGx(Hx(y)) 6= y implies ϕ(x, g(x, y))
or ϕ(x, y). �

As noticed in [15], WPHPWIT can also be used as an axiomatic description of Σb
1-theorems

of PV1 + dWPHP(PV), which is again implicit in Thapen’s proof of Wilkie’s witnessing
theorem.

Proposition 3.6 The statement “WPHPWIT is total” axiomatizes ∀Σb
1-consequences of

PV1 + dWPHP(PV) over PV1.

We return to the question which FRP -algorithms (not necessarily total) are definable in a
given theory T . Perhaps surprisingly, this question is essentially equivalent to a ∀Σb

1-sentence,
it thus reduces to the problem of the provably total TFRP -functions discussed above. (The
constants 1/2 and 2/3 below are arbitrary.)

Theorem 3.7 Let A be a FRP-algorithm with error 1/2. There exists a true ∀Σb
1-sentence

ϕ such that PV1 + dWPHP(PV) proves

(i) if ϕ, then A is 2/3-defined,

(ii) if A is 1/2-defined, then ϕ.

Moreover, the (total) NP search problem Sϕ associated with ϕ is in TFRP: there exists a
randomized algorithm B such that PV1 + dWPHP(PV) proves

(iii) if A is 1/2-defined, then B is 1/2-defined, total, and solves Sϕ.

Proof: The idea is to consider the PV (α)-formula

ψα(x, y) =
(
y < r(x) ∧A(x, y) 6= ∗ → Prw<r(x)(A(x,w) = ∗)1/50 ≤ 5/8

)
,

where ∗ is as in definition 3.2. Clearly, HARDA proves

∀x, y ψα(x, y)→ A is 2/3-defined,

A is 1/2-defined → ∀x, y ψα(x, y).

20

We need to eliminate α from the formula. In the proof of theorem 2.7 (resp. lemma 2.14), the
exact choice of the function f is not relevant: the behaviour of Pr(. . .)1/50 is preserved if we
replace α by any average-case 1/4-hard Boolean function f in the right number of variables.
We thus define

ϕ′(x, y, f) =
(
(f : 2`(x) → 2) ∧HardA1/4(f)→ ψf (x, y)

)
,

where `(x) ∈ LogLog is chosen as in theorem 2.7. Then ϕ′ is a Σb
1-formula, and PV1 +

dWPHP(PV) proves

∀x, y, f ϕ′(x, y, f)→ A is 2/3-defined,

A is 1/2-defined → ∀x, y, f ϕ′(x, y, f).

We use a witnessing argument to show that Sϕ is solvable in randomized polynomial
time. Notice that the only non-sharply bounded existential quantifier in ϕ′ is the one from
¬HardA1/4(f). PV1 + dWPHP(PV) proves the Σb

1-formula

(f, g : 2`(x) → 2) ∧ Prfw<r(x)(A(x,w) = ∗)1/50 > 5/8 ∧ Prgw<r(x)(A(x,w) = ∗)1/50 ≤ 9/16

→ ¬HardA1/4(f) ∨ ¬HardA1/4(g).

By Wilkie’s witnessing theorem there exists a probabilistic algorithm h(x, y, f, g) ∈ TFRP
such that

(f, g : 2`(x) → 2) ∧ Prfw<r(x)(A(x,w) = ∗)1/50 > 5/8 ∧ Prgw<r(x)(A(x,w) = ∗)1/50 ≤ 9/16

→Wit¬HardA
1/4(f)(h(x, y, f, g)) ∨Wit¬HardA

1/4(g)(h(x, y, f, g))

holds with high probability. As A has error at most 1/2, the implication

y < r(x) ∧A(x, y) 6= ∗ ∧HardA1/4(g)→ Prgw<r(x)(A(x,w) = ∗)1/50 ≤ 9/16

is true. Let B(x, y, f) be the probabilistic algorithm which generates a random function g,
and applies h(x, y, f, g). As most Boolean functions are average-case 1/4-hard, we have

y < r(x) ∧A(x, y) 6= ∗ ∧ (f : 2`(x) → 2) ∧ Prfw<r(x)(A(x,w) = ∗)1/50 > 5/8

→Wit¬HardA
1/4(f)(B(x, y, f))

with high probability. This construction can be easily formalized in PV1 + dWPHP(PV),
using theorem 3.3 and lemma 2.2. �

3.2 The classes BPP and promise BPP

BPP , introduced by Gill [12], is arguably the most popular randomized complexity class. It
is generally considered a good approximation to the class of problems which are efficiently
solvable in practice.

21

Definition 3.8 A language L is in BPP , if there exists a probabilistic poly-time decision
algorithm A such that for every x,

x ∈ L⇒ Pr(A(x)) ≥ 3/4,

x /∈ L⇒ Pr(A(x)) ≤ 1/4.

A promise problem is a pair L = 〈L+, L−〉 of disjoint languages. An ordinary language L is
identified with the promise problem 〈L, {0, 1}<ω r L〉. A promise problem L is in promise
BPP (L ∈ prBPP for short), if there exists a probabilistic poly-time algorithm A such that
for every x,

x ∈ L+ ⇒ Pr(A(x)) ≥ 3/4,

x ∈ L− ⇒ Pr(A(x)) ≤ 1/4.

Formalizing the definition of prBPP in PV1 + dWPHP(PV) is a straightforward applica-
tion of the approximate counting machinery.

Definition 3.9 (in PV1 + dWPHP(PV)) Let β be a PV -function with values in (0, 1/2),
A a PV -predicate, and r a PV -function. The pair 〈A, r〉 β-defines the prBPP problem
LA,r,β = 〈L+

A,r,β , L
−
A,r,β〉, where

x ∈ L+
A,r,β iff Prw<r(x)(¬A(x,w)) �0 β(x),

x ∈ L−A,r,β iff Prw<r(x)(A(x,w)) �0 β(x).

More generally, if L+, L− are disjoint definable sets, the promise problem L = 〈L+, L−〉 is
β-defined by 〈A, r〉 if L+ ⊆ L+

A,r,β and L− ⊆ L−A,r,β .
The pair 〈A, r〉 β-defines a BPP language if ∀x (x ∈ L+

A,r,β ∨ x ∈ L
−
A,r,β).

If unspecified, we take β = 1/4.

Lemma 3.10 (in PV1 + dWPHP(PV)) Let L be a definable prBPP-problem, and n ∈ Log.
There exists a Boolean circuit C : 2n → 2 such that

x ∈ L+ ⇒ C(x) = 1,

x ∈ L− ⇒ C(x) = 0,

for every x < 2n.

Proof: Work in HARDA. By lemma 2.14, there is a PV (α)-predicate P (x) such that

x ∈ L+ ⇒ P (x),

x ∈ L− ⇒ ¬P (x).

We may compute P on a bounded interval by an oracle-free circuit, as α(x) only depends on
the length of x. �

22

Proposition 3.11 (in PV1+dWPHP(PV)) Let t, s be PV -functions such that t(x), s(x) > 0,
and 1/s(x)+1/|t(x)| ≤ 1/2. Let L = 〈L+, L−〉 be a promise problem. The following are equiv-
alent.

(i) L is a (1/2− 1/|t|)-definable prBPP-problem,

(ii) L is a 1/4-definable prBPP-problem,

(iii) L is a 1/s-definable prBPP-problem.

Proof: The only interesting implication is (i) → (iii). Assume that L is (1/2 − 1/|t|)-
defined by 〈A, r〉. Let c be the constant from proposition 2.18, put m(x) = |t(x)|2|cs(x)|,
r′(x) = r(x)m(x), and

A′(x,w′)↔
(
|{i < m(x) | A(x,wi)}| ≥ m(x)/2

)
,

where w′ < r′(x) is viewed as a sequence 〈wi | i < m(x)〉 of numbers less than r(x). Then L

is 1/s-defined by 〈A′, r′〉 due to Chernoff’s bound (proposition 2.18). �

Notice that prBPP is defined by a purely syntactic condition: in other words, every pair
〈A, r〉 of PV -functions (provably) defines a prBPP -problem.

Corollary 3.12 Every prBPP-algorithm is definable in PV1 + dWPHP(PV).

Definable BPP -languages are essentially “provably total” prBPP -problems. As in the case
of TFRP , we do not know whether all BPP -languages are definable in PV1+dWPHP(PV) or
its r.e. extension; again, relativizing techniques cannot work, as Thapen’s result is applicable
to BPP , and an oracle with respect to which BPP does not have a complete language was
constructed in [14]. We show that the totality of a BPP -algorithm is essentially equivalent
to a ∀Σb

1-sentence, thus the characterization of the BPP -languages definable in a particular
theory can be reduced to the characterization of its provably total TFRP -functions.

Theorem 3.13 Let A be a BPP-algorithm. There exists a true ∀Σb
1-sentence ϕ such that

PV1 + dWPHP(PV) proves

(i) if ϕ, then A 1/3-defines a BPP-language,

(ii) if A 1/4-defines BPP-language, then ϕ.

Moreover, the NP search problem Sϕ associated with ϕ is in TFRP. There is a randomized
algorithm B such that PV1 + dWPHP(PV) proves

(iii) if A 1/4-defines BPP-language, then B is 1/2-defined, total, and solves Sϕ.

Proof: We define

ϕ = ∀x∀f
(
(f : 2`(x) → 2) ∧HardA1/4(f)

→ Prfw<r(x)(A(x,w))1/50 < 7/24 ∨ Prfw<r(x)(¬A(x,w))1/50 < 7/24
)

23

with suitably chosen `(x) ∈ LogLog, and proceed as in the proof of 3.7.
There is a minor complication in the construction of the probabilistic solver to Sϕ: the

algorithm cannot directly decide which of the disjuncts in ϕ should hold, as we do not know
whether BPP = ZPP . The solution is to try both possibilities, and check whether either of
them leads to a correct witness for ¬HardA1/4(f). �

A similar argument can be used to prove that prBPP lies on the second level of the
polynomial hierarchy. The original result (formulated for BPP only) is due to Sipser and
Gács [25], and it was simplified by Lautemann [20]. We follow an alternative proof due to
Nisan and Wigderson [22].

Proposition 3.14 Let A be a PV -predicate, and r a PV -functions. There are Σb
2-formulas

σ+(x), σ−(x) and Πb
2-formulas π+(x), π−(x) such that PV1 + dWPHP(PV) proves

x ∈ L+
A,r,1/4 → π+(x)→ σ+(x)→ x ∈ L+

A,r,1/3,

x ∈ L−A,r,1/4 → π−(x)→ σ−(x)→ x ∈ L−A,r,1/3.

In particular, any definable BPP-language is in Σb
2 ∩Πb

2.

Proof: It suffices to define

π+(x) = ∀f
(
f : 2`(x) → 2 ∧HardA1/4(f)→ Prfw<r(x)(¬A(x,w))1/50 ≤ 7/24

)
,

σ+(x) = ∃f
(
f : 2`(x) → 2 ∧HardA1/4(f) ∧ Prfw<r(x)(¬A(x,w))1/50 ≤ 7/24

)
,

π−(x) = ∀f
(
f : 2`(x) → 2 ∧HardA1/4(f)→ Prfw<r(x)(A(x,w))1/50 ≤ 7/24

)
,

σ−(x) = ∃f
(
f : 2`(x) → 2 ∧HardA1/4(f) ∧ Prfw<r(x)(A(x,w))1/50 ≤ 7/24

)
.

The quantifiers over f are bounded as f ≤ 22`(x)
and `(x) = O(||x||). �

To complete the picture we mention an elegant alternative description of definable BPP -
languages, based on implicit definability in (extensions of) HARDA. The intuition behind
this characterization stems from the well-known result BPP = almost-P (cf. [3, 22]).

Definition 3.15 Let T be a simple extension of PV1 + dWPHP(PV), and T+(α) := T +
HARDA. A PV (α)-predicate Pα(x) is a T+-definable implicitly poly-time predicate, if

T+(α) + T+(β) ` Pα(x)↔ P β(x).

Theorem 3.16 Let T be a simple extension of PV1 + dWPHP(PV).

(i) Every T -provably total BPP-language is in T+ equivalent to a T+-definable implicitly
poly-time predicate.

(ii) Every T+-definable implicitly poly-time predicate is in T+ equivalent to a T -provably
total BPP-language.

24

Proof: (i): let L be a definable BPP -language. By lemma 2.14, there exists a PV (α)-
predicate Pα such that

T+(α) ` Pα(x)↔ x ∈ L.

Then clearly
T+(α), T+(β) ` Pα(x)↔ P β(x).

(ii): assume that
T+(α), T+(β) ` Pα(x)↔ P β(x).

Let c be a constant such that Pα(x) only accesses the value of α(y) for ||y|| ≤ c||x||. Work
in T+(α). Fix x, let f = 〈fi | i ≤ c||x||〉 be a sequence of average-case 1/4-hard functions
fi : 2i → 2, and define

β(y) =

{
f||y||, ||y|| ≤ c||x||,
α(y), otherwise.

Then β defines a (parametric) interpretation of T+(β) in T+(α), and consequently Pα(x)↔
P f (x).

We thus have

T+(α) ` ∀i ≤ c||x||
(
fi : 2i → 2 ∧HardA1/4(fi)

)
→ (Pα(x)↔ P f (x)).

Let A be the formalization of the following randomized algorithm: on input x, generate a
random sequence f = 〈fi | i ≤ c||x||〉 of functions fi : 2i → 2, and output P f (x). By lemma
4.10 in [15], PV1 + dWPHP(PV) proves

Prf
(
¬∀i ≤ c||x|| HardA1/4(fi)

)
�0 1/4,

thus
T+(α) ` Prf

(
A(x, f)↔ ¬Pα(x)

)
�0 1/4.

In particular,
T+(α) ` Prf (A(x, f)) �0 1/4 ∨ Prf (¬A(x, f)) �0 1/4,

i.e., A is a 1/4-defined BPP -algorithm in T+(α), and by theorem 2.13, also in T . If L denotes
the BPP -language defined by A, clearly

T+(α) ` Pα(x)↔ x ∈ L

as required. �

3.3 The class APP

The class APP is a generalization of BPP introduced by Kabanets, Rackoff, and Cook [17].
It comprises a representative class of algorithms which can be derandomized using the current
methods for proving P = BPP (viz. hardness-randomness tradeoffs), and unlike BPP , it is
known to have a complete problem. A unique feature of APP is that it does not consist of
languages (or promise problems), but functions with real values in the interval [0, 1].

25

Definition 3.17 A real-valued function f : ω → [0, 1] is in APP , if there exists a probabilistic
poly-time function g(x, y) with values in [0, 1]Q such that

Pr
(
|f(x)− g(x, 2k)| ≤ 1/k

)
≥ 3/4

for all x and k.

We cannot directly talk about real numbers in bounded arithmetic, we thus have to
formalize APP -algorithms without an explicit reference to the functions which they compute.
The idea is similar to methods used in constructive analysis (cf. [4]).

Definition 3.18 (in PV1 +dWPHP(PV)) Let β(x, y) be a PV -function with rational values
in (0, 1/2). A β-definable APP-algorithm is given by a pair of PV -functions g(x, y, w) and
r(x, y), where r has positive integer values, g has rational values in [0, 1], and

∀x∀k, ` ∈ Log ∃a ∈ [0, 1]
(
Prw<r(x,2k)

(
|g(x, 2k, w)− a| > 1/k

)
�0 β(x, 2k)

∧ Prw<r(x,2`)

(
|g(x, 2`, w)− a| > 1/`

)
�0 β(x, 2`)

)
.

When unspecified, we take β = 1/4.
Let 〈g′, r′〉 be a β′-definable APP -algorithm. We say that 〈g, r〉 and 〈g′, r′〉 compute the

same function if

∀x∀k ∈ Log ∃a ∈ [0, 1]
(
Prw<r(x,2k)

(
|g(x, 2k, w)− a| > 1/k

)
�0 β(x, 2k)

∧ Prw<r′(x,2k)

(
|g′(x, 2k, w)− a| > 1/k

)
�0 β

′(x, 2k)
)
.

Proposition 3.19 (in PV1 + dWPHP(PV)) Let t(x, y) and s(x, y) be PV -functions with
positive integer values. If 〈g, r〉 is a (1/2 − 1/|t|)-definable APP-algorithm, there exists a
1/s-definable APP-algorithm 〈g′, r′〉 which computes the same function as 〈g, r〉.

Proof: Let c be the constant from proposition 2.18, and let m(x, y) := |cs(x, y)||t(x, y)|2 ∈
Log. Put

r′(x, y) = r(x, y)m(x,y),

g′(x, y, w′) = Median(g(x, y, w0), . . . , g(x, y, wm−1)),

where w′ < r′(x, y) is considered as a sequence of m = m(x, y) numbers wi < r(x, y). Fix x,
k ∈ Log, and a ∈ [0, 1] such that

Prw<r
(
|g(x, 2k, w)− a| > 1/k

)
�0 1/2− 1/|t|.

By proposition 2.18 (Chernoff’s bound), we have

Prw′<r′

(∣∣{i < m
∣∣ |g(x, 2k, wi)− a| > 1/k

}∣∣ ≥ m/2)
�0 c4−m/|t|

2 ≤ 1/s.

The median of a set of numbers falls into the interval I = [a − 1/k, a + 1/k] whenever more
than half of the numbers are in I, thus

Prw′<r′
(
|g′(x, 2k, w′)− a| > 1/k

)
�0 1/s. �

26

Definition 3.20 An APP -function f : ω → [0, 1] is representable in a theory T , if there exists
a pair of PV -functions 〈g, r〉 which, provably in T , 1/4-defines an APP -algorithm, and for
any x and k,

Prw<r(x,2k)

(
|g(x, 2k, w)− f(x)| > 1/k

)
≤ 1/4

is true in N.

We want to show that all APP -functions are representable in PV1 + dWPHP(PV). No-
tice that for any reasonable model of computation (such as APP), the class of algorithms
representable in a given recursively axiomatizable theory is recursively enumerable. We thus
need to establish recursive enumerability of APP as a necessary prerequisite (it was left as
an open problem in [17]).

Definition 3.21 Let f, g : ω → [0, 1] be real-valued functions. We say that f is (poly-time
many-one approximately) reducible to g, if there is a poly-time function r such that for every
x and k,

|f(x)− g(r(x, 2k))| ≤ 1/k.

The Circuit Acceptance Probability Problem (CAPP) is the real-valued function fCAPP such
that for every Boolean circuit C : 2n → 2,

fCAPP (C) = Pru<2n(C(u) = 1).

Theorem 3.22 ([17]) A function f is in APP if and only if f is reducible to fCAPP .

Theorem 3.23 The class APP is recursively enumerable. I.e., there exists a recursive se-
quence {Ae | e ∈ ω} such that

• each Ae is a description of an APP-algorithm approximating a function fe,

• for every f ∈ APP, there is an e such that f = fe.

Proof: Let {ge | e ∈ ω} be a recursive enumeration of all clocked poly-time algorithms g(x, y),
such that the output of g(x, y) is a description of a Boolean circuit. Let Cutqp be the cut-off
function

Cutqp(x) := max(p,min(q, x)) =


q, x ≥ q,
x, p ≤ x ≤ q,
p, x ≤ p.

Let Ae(x, 2k) be the algorithm described in figure 1. Clearly, Ae is a probabilistic poly-time
algorithm. Fix e and x, and define

Ci := ge(x, 2i),

ai := Pru(Ci(u) = 1),

bk := Cut10
(
a1 +

k∑
i=2

Cut1/(2i
2)

−1/(2i2)
(ai − ai−1)

)
.

27

input: x, 2k

for i = 1, . . . , k do:
Ci ← ge(x, 2i)
whp, compute ci such that |ci−Pru(Ci(u) = 1)| ≤ 1/(4k2) by random sampling

output Cut10
(
c1 +

k∑
i=2

Cut1/(2i
2)

−1/(2i2)
(ci − ci−1)

)
Figure 1: the APP -algorithm Ae

For any k < `, we have

|b` − bk| ≤
∣∣∣ ∑̀
i=k+1

Cut1/(2i
2)

−1/(2i2)
(ai − ai−1)

∣∣∣ ≤ ∑̀
i=k+1

1
2i2
≤ 1

2

∞∑
i=k+1

1
(i− 1)i

=
1
2k
,

thus the sequence {bk | k ∈ ω} is Cauchy, and converges to a number fe(x) := b ∈ [0, 1] such
that

|b− bk| = lim
`→∞
|b` − bk| ≤

1
2k
.

Fix k, and consider a computation of Ae on input 〈x, 2k〉. For all i = 1, . . . , k, let ci ∈ [0, 1]
be as in figure 1. With high probability, we have

|ci − ai| ≤
1

4k2

for every i. Let

d := Cut10
(
c1 +

k∑
i=2

Cut1/(2i
2)

−1/(2i2)
(ci − ci−1)

)
be the output of the algorithm. Addition, subtraction, and the cut-off function are 1-Lipschitz,
thus

|d− bk| ≤ |c1 − a1|+
k∑
i=2

|(ci − ci−1)− (ai − ai−1)|

≤ |c1 − a1|+
k∑
i=2

(
|ci − ai|+ |ci−1 − ai−1|

)
≤ (2k − 1)

1
4k2
≤ 1

2k
,

and
|d− b| ≤ |d− bk|+ |bk − b| ≤

1
k
.

This means that Ae is an APP -algorithm for fe.
Let f be an arbitrary APP -function. By APP -completeness of CAPP, there is a poly-time

function g such that for any x and k, C := g(x, 2k) is a Boolean circuit satisfying

|f(x)− Pru(C(u) = 1)| ≤ 1
k
.

28

Choose e such that
ge(x, 2k) = g(x, 24(k+1)2).

Fix x, and define the sequences Ci, ai, and bi as above. We have

|ai − ai−1| ≤
1

4(i+ 1)2
+

1
4i2
≤ 1

2i2
,

thus

bk = Cut10
(
a1 +

k∑
i=2

(ai − ai−1)
)

= Cut10(ak) = ak,

which means
fe(x) = lim

k→∞
bk = lim

k→∞
ak = f(x).

As x was arbitrary, fe = f . �

Lemma 3.24 CAPP is representable in PV1 + dWPHP(PV).

Proof: Let 〈g, r〉 be the formalization of the following algorithm: given C and 2k, choose a
random Boolean function f in a suitable number of variables, and output Prfu(C(u) = 1)1/(3k).

Fix C : 2n → 2, k < ` ∈ Log, and let ξ = 1/(3`), Pru(C(u) = 1) ≈ξ a. As PV1 +
dWPHP(PV) proves

Prf (¬HardA1/4(f)) �0 1/4

(lemma 2.2), we have

Prf
(
|g(C, 2k, f)− a| > 1/(3k) + ξ + ξ

)
�0 1/4

and
Prf

(
|g(C, 2`, f)− a| > 1/(3`) + ξ + ξ

)
�0 1/4

by lemma 2.11 (ii). �

We remark that the combinatorial core of theorem 3.22 can also be formalized in PV1 +
dWPHP(PV) with no difficulty. However, we do not know how to sensibly formulate the
statement of theorem 3.22 in PV1+dWPHP(PV), due to absence of real numbers in bounded
arithmetic.

Theorem 3.25 Every APP-function f is representable in PV1 + dWPHP(PV).

Proof: The basic idea is to partially formalize theorem 3.23 in PV1 + dWPHP(PV).
As in theorem 3.23, choose a PV -function h(x, y) such that for every x and k we have

|f(x)− Pru(C(u) = 1)| ≤ 1/(8k2),

where C = h(x, 2k). Let 〈gCAPP , rCAPP 〉 be the representation of CAPP from lemma 3.24,
amplified by proposition 3.19 so that the error on input 〈C, 2k〉 is at most 1/k. We may assume
that rCAPP (x, 2k) is always a power of 2. Define g(x, 2k, w) as in figure 2, and let r(x, 2k) be
a power of 2 large enough to accommodate all calls to gCAPP inside g. The functions 〈g, r〉

29

input: x, 2k, w
for i = 1, . . . , k do:
Ci ← h(x, 2i)
ci ← gCAPP

(
Ci, 21/(8k2),

(
w mod rCAPP (Ci, 21/(8k2))

))
output Cut10

(
c1 +

k∑
i=2

Cut1/(2i
2)

−1/(2i2)
(ci − ci−1)

)
Figure 2: the function g, formalizing Ae

represent f by the proof of theorem 3.23, it remains to prove in PV1 + dWPHP(PV) that
〈g, r〉 is a 1/4-defined APP -algorithm.

Work in HARDA. Fix x, and k < ` ∈ Log. Define

Ci := h(x, 2i),

ai := Pru(Ci(u) = 1)1/(10`2),

a := Cut10
(
a1 +

∑̀
i=2

Cut1/(2i
2)

−1/(2i2)
(ai − ai−1)

)
,

a′ := Cut10
(
a1 +

k∑
i=2

Cut1/(2i
2)

−1/(2i2)
(ai − ai−1)

)
for every i ≤ `. Consider first the computation of d := g(x, 2`, w) on a random input w, and
let ci be as in figure 2. For every i ≤ ` and suitably chosen small ξ, we have

|ci − ai| ≤
1

8`2
+

1
10`2

+ ξ ≤ 1
4`2

with probability at least 1− 1/(8`2), thus

∀i ≤ ` |ci − ai| ≤ 1/(4`2)

with probability 1− `/(8`2)− ξ ≥ 3/4 by proposition 2.15. When this happens, we have

|d− a| ≤ |c1 − a1|+
∑̀
i=2

(
|ci − ai|+ |ci−1 − ai−1|

)
≤ 2`− 1

4`2
<

1
2`

as in theorem 3.23, thus

Prw
(
|g(x, 2`, w)− a| > 1/`

)
�0 1/4.

Now consider the computation of d′ := g(x, 2k, w). We have

|d′ − a′| < 1
2k

with probability at least 3/4 by the same reasoning as above. Moreover,

|a′ − a| ≤
∑̀
i=k+1

∣∣Cut1/(2i
2)

−1/(2i2)
(ai − ai−1)

∣∣ ≤ ∑̀
i=k+1

1
2(i− 1)i

=
1
2

(
1
k
− 1
`

)
,

30

where the last equality follows by induction on `. Consequently

|g(x, 2k, w)− a| ≤ 1
2k

+
1
2k
− 1

2`
<

1
k

holds with probability at least 3/4. �

3.4 The classes MA and promise MA

Babai [1] (cf. [2]) introduced a hierarchy of complexity classes based on public-coin random-
ized interactive proof systems, Arthur-Merlin games. The game is played by the omniscient
but untrustworthy wizard Merlin, and king Arthur, who may flip coins, but otherwise his
computational power is polynomially limited. The players exchange messages in turn, and
the goal for Merlin is to convince mistrustful Arthur to accept the input string. MA is the
lowest level of the hierarchy, where the game is restricted to one round, with Merlin playing
first.

Definition 3.26 A promise problem L is in promise MA (prMA for short), if there exists a
probabilistic poly-time algorithm A(x, y) such that

A(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p, and

x ∈ L+ ⇒ ∃y Pr(A(x, y)) ≥ 3/4,

x ∈ L− ⇒ ∀y Pr(A(x, y)) ≤ 1/4.

A language is in MA if the corresponding promise problem is in prMA.

Definition 3.27 (in PV1 + dWPHP(PV)) Let β be a PV -function with values in (0, 1/2),
A a PV -predicate, and q, r PV -functions. The triple 〈A, q, r〉 β-defines a prMA-problem
L = 〈L+, L−〉 if L+ ⊇ L+∃

A,q,r,β and L− ⊇ L−∀A,q,r,β , where

x ∈ L+∃
A,q,r,β iff ∃y ≤ q(x) Prw<r(x)(¬A(x, y, w)) �0 β(x),

x ∈ L−∀A,q,r,β iff ∀y ≤ q(x) Prw<r(x)(A(x, y, w)) �0 β(x).

〈A, r, s〉 β-defines an MA-language, if ∀x (x ∈ L+∃
A,r,s,β ∨ x ∈ L

−∀
A,r,s,β). If unspecified, we take

β = 1/4.

Corollary 3.28 (in PV1 + dWPHP(PV)) Let t and s be as in proposition 3.11, and let
L = 〈L+, L−〉 be a promise problem. The following are equivalent.

(i) L is a (1/2− 1/|t|)-definable prMA-problem,

(ii) L is a 1/4-definable prMA-problem,

(iii) L is a 1/s-definable prMA-problem.

Moreover, every definable prMA-problem is in (the natural formalization of) prNP/poly.

Proof: This follows from proposition 3.11 and lemma 3.10, as the definable prMA-problems
are just existentially quantified definable prBPP -problems. �

31

Trivially, every prMA-problem is representable in PV1+dWPHP(PV). For MA-languages,
we again have a reduction to a Σb

1-problem.

Proposition 3.29 Let A be an MA-algorithm. There exists a true ∀Σb
1-sentence ϕ such that

PV1 + dWPHP(PV) proves

(i) if ϕ, then A 1/3-defines an MA-language,

(ii) if A 1/4-defines an MA-language, then ϕ.

Proof: We may take the formula

ϕ = ∀x∀f ∀y ∃z
(
¬HardA1/4(f) ∨ Prfw(A(x, y, w))1/50 ≤ 7/24

∨ Prfw(¬A(x, z, w))1/50 ≤ 7/24
)

as in theorem 3.13. �

We do not know whether the NP search problem associated with ϕ is solvable in proba-
bilistic polynomial time. It holds at least for languages from NPBPP ⊆ MA.

Proposition 3.30 Let A, q and r be PV -functions. There are Σb
2-formulas σ+(x), σ−(x) and

Πb
2-formulas π+(x), π−(x) such that PV1 + dWPHP(PV) proves

x ∈ L+∃
A,q,r,1/4 → π+(x)→ σ+(x)→ x ∈ L+∃

A,q,r,1/3,

x ∈ L−∀A,q,r,1/4 → π−(x)→ σ−(x)→ x ∈ L−∀A,q,r,1/3.

In particular, any definable MA-language is in Σb
2 ∩Πb

2.

Proof: Similar to proposition 3.14. The extra quantifiers do no harm:

π+(x) = ∀f
(
¬HardA1/4(f) ∨ ∃y ≤ q(x) Prfw<r(x)(¬A(x, y, w))1/50 ≤ 7/24

)
,

σ+(x) = ∃f ∃y ≤ q(x)
(
HardA1/4(f) ∧ Prfw<r(x)(¬A(x, y, w))1/50 ≤ 7/24

)
,

π−(x) = ∀f ∀y ≤ q(x)
(
¬HardA1/4(f) ∨ Prfw<r(x)(A(x, y, w))1/50 ≤ 7/24

)
,

σ−(x) = ∃f
(
HardA1/4(f) ∧ ∀y ≤ q(x) Prfw<r(x)(A(x, y, w))1/50 ≤ 7/24

)
,

where f is bounded as in proposition 3.14. �

4 Relativization and AM

The content of section 2 can be relativized in a straightforward way: we work with PV (R)
instead of PV , where R is a new predicate, and we replace circuits with oracle circuits. The
relativized version of theorem 2.7 then provides approximate counting of sets defined by oracle
circuits in PV1(R) + dWPHP(PV (R)). The other results relativize in a similar way.

In particular, counting of sets higher in the polynomial hierarchy may be achieved by
substitution of Σb

i -predicates for R. Namely, approximate counting of PΣb
i -definable sets (or

32

more generally, sets defined by circuits with Σb
i oracles) is possible in T i2 + dWPHP(FPΣb

i) ⊆
T i+2

2 . Relativization of section 3 provides the formalization of FRPΣb
i , prBPPΣb

i , APPΣb
i ,

and prMAΣb
i in T i2 + dWPHP(FPΣb

i).
Approximate counting of NP sets also permits formalization of Babai’s class AM [1],

which is defined by one-round Arthur-Merlin games where Arthur plays first.

Definition 4.1 A promise problem L is in promise AM (prAM for short), if there exists a
probabilistic poly-time algorithm A(x, y) such that

A(x, y)⇒ |y| ≤ p(|x|)

for some polynomial p, and

x ∈ L+ ⇒ Pr(∃y A(x, y)) ≥ 3/4,

x ∈ L− ⇒ Pr(∃y A(x, y)) ≤ 1/4.

A language is in AM if the corresponding promise problem is in prAM .

Definition 4.2 (in T 1
2 + dWPHP(FPΣb

1)) Let β be a PV -function with values in (0, 1/2). A
pair 〈ϕ, r〉, where ϕ(x,w) is a Σb

1-formula, and r is a PV -function, β-defines a prAM problem
L = 〈L+, L−〉 if L+ ⊇ L+

ϕ,r,β and L− ⊇ L−ϕ,r,β, where

x ∈ L+
ϕ,r,β iff Prw<r(x)(¬ϕ(x,w)) �1

0 β(x),

x ∈ L−ϕ,r,β iff Prw<r(x)(ϕ(x,w)) �1
0 β(x),

and �iε denotes �ε relativized with a Σb
i -complete oracle. The pair 〈ϕ, r〉 β-defines an AM-

language, if ∀x (x ∈ L+
ϕ,r,β ∨ x ∈ L

+
ϕ,r,β).

If unspecified, we take β = 1/4.

Proposition 4.3 (in T 1
2 + dWPHP(FPΣb

1)) Let t and s be as in proposition 3.11, and let
L = 〈L+, L−〉 be a promise problem. The following are equivalent:

(i) L is a (1/2− 1/|t|)-definable prAM-problem,

(ii) L is a 1/4-definable prAM-problem,

(iii) L is a 1/s-definable prAM-problem.

Proof: As prAM ⊆ prBPPNP , the result follows from relativization of proposition 3.11,
observing that the formula ϕ′(x,w) defined by∣∣{i < m(x) | ϕ(x,wi)}

∣∣ ≥ m(x)/2

is Σb
1, as it is equivalent to

∃I ⊆ m(x)
(
|I| ≥ m(x)/2 ∧ ∀i ∈ I ϕ(x,wi)

)
. �

33

Babai’s Collapse Theorem [1] states that AM coincides with the class of languages rec-
ognized by an Arthur-Merlin protocol with a bounded number of rounds. It is not clear how
to define general Arthur-Merlin games in bounded arithmetic; the next theorem shows that
prMAM = prAM , which implies that any class obtained by a constant number of applications
of the ∃ and BP operators to prP is contained in prAM .

Theorem 4.4 (in T 1
2 +dWPHP(FPΣb

1)) Let L = 〈L+, L−〉 be a 1/4-definable prAM-problem,
and q a PV -function. Define a promise problem L∃ = 〈L+∃, L−∀〉 by

x ∈ L+∃ iff ∃y < q(x) 〈x, y〉 ∈ L+,

x ∈ L−∀ iff ∀y < q(x) 〈x, y〉 ∈ L−.

Then L∃ is a 1/4-definable prAM-problem.
In particular, every definable prMA-problem is a definable prAM-problem.

Proof: By proposition 4.3, there exists a 1/(4q(x))-definition 〈ϕ, r〉 of L. Define

ϕ′(x,w) iff ∃y < q(x)ϕ(x, y, w).

Then 〈ϕ′, r〉 is a 1/4-definition of L∃: if x ∈ L+∃, there exists a y < q(x) such that
Prw(¬ϕ(x, y, w)) �1

0 1/(4q(x)), and a fortiori

Prw(¬∃y < q(x)ϕ(x, y, w)) �1
0 1/(4q(x)) ≤ 1/4.

Assume x ∈ L−∀. Then Prw(ϕ(x, y, w)) �1
0 1/(4q(x)) for every y < q(x), and we would like

to argue that
Prw(∃y < q(x)ϕ(x, y, w)) �1

0 1/4.

We cannot do it directly (say, by application of proposition 2.19), as q(x) /∈ Log in general,
but we can explore the fact that the proof of proposition 4.3 is sufficiently uniform.

We work in the relativized version of HARDA, which we denote HARDA(Σb
1). Let 〈ψ, s〉

be a 1/6-definition of L, and we assume that 〈ϕ, r〉 was constructed from 〈ψ, s〉 as in proposi-
tion 4.3. Keep x fixed. By the relativization of lemma 2.14 there exist v and FPα,Σb

1-functions
f, g, h such that

f(y) < 1/6,

g(y, •) : v(1/50 + f(y))s(x) � v × {w < s(x) | ψ(x, y, w)},
h(y, •) : v(1/50 + 1− f(y))s(x) � v × {w < s(x) | ¬ψ(x, y, w)}

for all y < q(x). By the proof of proposition 4.3 and the relativization of proposition 2.18
there exists a v′ and an FPα,Σb

1-function g′ such that

g′(y, •) : v′(r(x)/(4q(x))) � v′ × {w < r(x) | ϕ(x, y, w)}

for all y < q(x). We define g′′(u) = g′(u mod q(x),
⌊
u
q(x)

⌋
), and observe that

g′′ : v′(r(x)/4) � v′ × {w < r(x) | ∃y < q(x)ϕ(x, y, w)},

thus
Prw(∃y < q(x)ϕ(x, y, w)) �1

0 1/4. �

34

Proposition 4.5 (in T 1
2 +dWPHP(FPΣb

1)) 1/4-definable prAM-problems are in prNP/poly.
I.e., if L = 〈L+, L−〉 is a 1/4-definable prAM-problem, and n ∈ Log, then there exists a poly-
size nondeterministic circuit C : 2n → 2 such that

x ∈ L+ ⇒ C(x) = 1,

x ∈ L− ⇒ C(x) = 0

for every x < 2n.

Proof: Let 〈ϕ, r〉 be a 1/4-definition of L. Using twice the relativized version of lemma 3.10,
there exists a circuit D : 2n → {0, 1, ∗} with an NP -oracle such that

x ∈ L+
ϕ,r,1/4 → D(x) = 1→ x ∈ L+

ϕ,r,1/3,

x ∈ L−ϕ,r,1/4 → D(x) = 0→ x ∈ L−ϕ,r,1/3.

for every x < 2n. Let 〈ψ, s〉 be a 2−2n-definition of Lϕ,r,1/3, available by proposition 4.3. For
simplicity, we may assume that s(x) = s is constant for all x < 2n. Then

Prw<s
(
(D(x) = 1 ∧ ¬ψ(x,w)) ∨ (D(x) = 0 ∧ ψ(x,w))

)
�1

0 2−2n

for every x < 2n. Using the uniformity of the proof of propositions 4.3 and 2.18, we obtain

Prw
(
∃x < 2n (D(x) = 1 ∧ ¬ψ(x,w)) ∨ (D(x) = 0 ∧ ψ(x,w))

)
�1

0 1/2

by the same reasoning as in theorem 4.4. By dWPHP(FPΣb
1) there exists w < s such that

D(x) = 1→ ψ(x,w),

D(x) = 0→ ¬ψ(x,w)

for every x < 2n, and then it suffices to define C(x)↔ ψ(x,w). �

As AM ⊆ BPPNP , the relativized version of proposition 3.14 implies that every definable
AM -predicate is in Σb

3 ∩ Πb
3. We will formalize the stronger result AM ⊆ coRPNP [1] ⊆ Πb

2

from [1]. The proof is based on [20].

Theorem 4.6 (in T 1
2 +dWPHP(FPΣb

1)) Let L = 〈L+, L−〉 be a 1/4-definable prAM-problem.
There exists a Σb

1-formula ϕ(x, y) and a PV -function r(x) such that for every x,

x ∈ L+ ⇒ ∀y ≤ r(x)ϕ(x, y),

x ∈ L− ⇒ Pry≤r(x)(ϕ(x, y)) �1
0 1/2.

Proof: In proposition 4.3, the number of random bits increases polynomially in the number
of iterations, but the probability of error decreases exponentially. Thus there exists 〈ψ, s〉
which is a 1/(4|s(x)|)-definition of L. We may assume s(x) is a power of two. We define

r(x) := s(x)|s(x)|,

ϕ(x, y)↔ ∃w < s(x)∀i < |s(x)|ψ(x,w ⊕ yi),

35

where y is decomposed as a sequence of |s(x)| numbers yi < s(x), and ⊕ is bitwise XOR.
Let x ∈ L+, and fix y < r(x). We have Prw<s(x)(¬ψ(x,w)) �1

0 1/(4|s(x)|), and • ⊕ yi is a
poly-time computable involution on 2|s(x)|, thus

Prw(¬ψ(x,w ⊕ yi)) �1
0

1
4|s(x)|

for every i < |s(x)|. We obtain

Prw(∃i < |s(x)| ¬ψ(x,w ⊕ yi)) �1
1/4

1
4

from relativization of proposition 2.19, thus ϕ(x, y) by dWPHP(FPΣb
1).

Let x ∈ L−, and write s = s(x). We have Prw(ψ(x,w)) �1
0 1/(4|s|) ≤ 1/4, thus there

exists a circuit C1 with an NP oracle such that

C1 : v(s/4) � v × {u < s | ψ(x, u)}

for some v > 0. As w ⊕ • is a poly-time involution, we have a circuit C2 such that for any
w < s(x),

C2(w, •) : v(s/4) � v × {u < s | ψ(x,w ⊕ u)}.

We apply |s| copies of C2 in parallel to obtain a circuit C3 such that

C3(w, •) : v|s|(s/4)|s| � v|s| × {y < s|s| | ∀i < |s|ψ(x,w ⊕ yi)},

and rearranging the domain yields a circuit C4 such that

C4 : v|s|(s/4)|s|s � v|s| × {y < s|s| | ∃w < s∀i < |s|ψ(x,w ⊕ yi)},

thus
Pry(ϕ(x, y)) �1

0

s

4|s|
≤ 1

2
. �

References

[1] László Babai, Trading group theory for randomness, in: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, 1985, pp. 421–429.

[2] László Babai and Shlomo Moran, Arthur-Merlin games: a randomized proof system, and
a hierarchy of complexity classes, Journal of Computer and System Sciences 36 (1988),
no. 2, pp. 254–276.

[3] Charles H. Bennett and John Gill, Relative to a random oracle A, PA 6= NPA 6= co-NPA

with probability 1, SIAM Journal on Computing 10 (1981), no. 1, pp. 96–113.

[4] Errett Bishop and Douglas S. Bridges, Constructive analysis, Grundlehren der mathe-
matischen Wissenschaften vol. 279, Springer, 1985.

36

[5] Daniel P. Bovet, Pierluigi Crescenzi, and Riccardo Silvestri, A uniform approach to define
complexity classes, Theoretical Computer Science 104 (1992), no. 2, pp. 263–283.

[6] Samuel R. Buss, Bounded arithmetic, Bibliopolis, Naples, 1986.

[7] , Relating the bounded arithmetic and polynomial time hierarchies, Annals of
Pure and Applied Logic 75 (1995), no. 1–2, pp. 67–77.

[8] , First-order proof theory of arithmetic, in: Handbook of Proof Theory (S. R.
Buss, ed.), Studies in Logic and the Foundations of Mathematics vol. 137, Elsevier,
Amsterdam, 1998, pp. 79–147.

[9] Stephen A. Cook, Feasibly constructive proofs and the propositional calculus, in: Pro-
ceedings of the 7th Annual ACM Symposium on Theory of Computing, 1975, pp. 83–97.

[10] , Relating the provable collapse of P to NC1 and the power of logical theories,
in: Proof Complexity and Feasible Arithmetics (P. Beame and S. R. Buss, eds.), DIMACS
Series in Discrete Mathematics and Theoretical Computer Science vol. 39, American
Mathematical Society, 1998, pp. 73–92.

[11] , Theories for complexity classes and their propositional translations, in:
Complexity of computations and proofs (J. Kraj́ıček, ed.), Quaderni di Matematica
vol. 13, Seconda Universita di Napoli, 2004, pp. 175–227.

[12] John Gill, Computational complexity of probabilistic Turing machines, SIAM Journal on
Computing 6 (1977), no. 4, pp. 675–695.

[13] Petr Hájek and Pavel Pudlák, Metamathematics of first-order arithmetic, Perspectives
in Mathematical Logic, Springer, 1993, second edition 1998.

[14] Juris Hartmanis and Lane A. Hemachandra, Complexity classes without machines: on
complete languages for UP, Theoretical Computer Science 58 (1988), pp. 129–142.

[15] Emil Jeřábek, Dual weak pigeonhole principle, Boolean complexity, and derandomization,
Annals of Pure and Applied Logic 129 (2004), pp. 1–37.

[16] , The strength of sharply bounded induction, Mathematical Logic Quarterly
52 (2006), no. 6, pp. 613–624.

[17] Valentine Kabanets, Charles Rackoff, and Stephen A. Cook, Efficiently approximable real-
valued functions, Technical Report TR00-034, Electronic Colloquium on Computational
Complexity, 2000.

[18] Jan Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, Encyclo-
pedia of Mathematics and Its Applications vol. 60, Cambridge University Press, 1995.

[19] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti, Bounded arithmetic and the polynomial
hierarchy, Annals of Pure and Applied Logic 52 (1991), no. 1–2, pp. 143–153.

37

[20] Clemens Lautemann, BPP and the polynomial hierarchy, Information Processing Letters
17 (1983), no. 4, pp. 215–217.

[21] Alexis Maciel, Toniann Pitassi, and Alan R. Woods, A new proof of the weak pigeonhole
principle, Journal of Computer and System Sciences 64 (2002), no. 4, pp. 843–872.

[22] Noam Nisan and Avi Wigderson, Hardness vs. randomness, Journal of Computer and
System Sciences 49 (1994), no. 2, pp. 149–167.

[23] Jeff B. Paris, Alex J. Wilkie, and Alan R. Woods, Provability of the pigeonhole principle
and the existence of infinitely many primes, Journal of Symbolic Logic 53 (1988), no. 4,
pp. 1235–1244.

[24] Søren M. Riis, Making infinite structures finite in models of second order bounded arith-
metic, in: Arithmetic, Proof Theory, and Computational Complexity (P. Clote and
J. Kraj́ıček, eds.), Oxford Logic Guides vol. 23, Oxford University Press, 1993, pp. 289–
319.

[25] Michael Sipser, A complexity theoretic approach to randomness, in: Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 1983, pp. 330–335.

[26] Neil Thapen, The weak pigeonhole principle in models of bounded arithmetic, Ph.D.
thesis, Oxford University, 2002.

[27] , Structures interpretable in models of bounded arithmetic, Annals of Pure
and Applied Logic 136 (2005), no. 3, pp. 247–266.

38

