Admissible rules of Łukasiewicz logic

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Derivable and admissible rules

Consider a propositional logic L, defined by a finitary consequence relation \vdash_L closed under substitution. A rule

$$\varrho = \frac{\varphi_1, \dots, \varphi_k}{\psi}$$

is

- derivable in L, if $\varphi_1, \ldots, \varphi_k \vdash_L \psi$,
- admissible in *L*, if the set of theorems of *L* is closed under ϱ : for every substitution σ , if *L* proves all $\sigma \varphi_i$, then it proves $\sigma \psi$. (We write $\varphi_1, \ldots, \varphi_k \succ_L \psi$.)

Typical non-classical logics admit some nonderivable rules.

Properties of admissible rules

Questions about admissibility:

- decidability
- semantic characterization
- description of a basis

...

Well-understood for some superintuitionistic and modal logics (IPC, KC, LC; K4, S4, GL, S4.3, ...).

Almost nothing is known for other nonclassical logics.

Fuzzy logics

Multivalued logics using a linearly ordered algebra of truth values

The three fundamental continuous t-norm logics are:

- Gödel–Dummett logic (LC): superintuitionistic;
 structurally complete (admissible = derivable)
- Product logic (Π): also structurally complete (Cintula & Metcalfe '09)
- ▶ Łukasiewicz logic (Ł): not structurally complete
 ⇒ nontrivial admissibility problem

Łukasiewicz logic

Connectives: \rightarrow , \neg , \cdot , \oplus , \wedge , \lor , \perp , \top (not all needed as basic) Semantics: $[0,1]_{\mathbf{L}} = \langle [0,1], \{1\}, \rightarrow, \neg, \cdot, \oplus, \min, \max, 0, 1 \rangle$, where

- $x \to y = \min\{1, 1 x + y\}$
- $\neg x = 1 x$
- $x \cdot y = \max\{0, x + y 1\}$
- $x \oplus y = \min\{1, x + y\}$

 $[0,1]_{\mathbb{Q}}$ suffices instead of [0,1]. More generally, \boldsymbol{k} is valid in any *MV*-algebra.

Calculus: Modus Ponens + finitely many axiom schemata

Algebraization

 \pounds is algebraizable, its equivalent algebraic semantics is the variety of *MV*-algebras.

propositional formula = term rule = quasi-identity derivable = valid in all *MV*-algebras admissible = valid in free *MV*-algebras

Multiple-conclusion rules

Multiple-conclusion rule: Γ / Δ , where Γ and Δ are finite sets of formulas.

 Γ / Δ is admissible ($\Gamma \vdash \Delta$) iff for every substitution σ : if $\vdash \sigma \varphi$ for all $\varphi \in \Gamma$, then $\vdash \sigma \psi$ for some $\psi \in \Delta$.

Example: disjunction property = $\frac{p \lor q}{p,q}$

Algebraization: multiple-conclusion rule = clause (disjunction of identities and their negations)

I.o.w., we want to describe the universal theory of free *MV*-algebras.

Free *MV*-algebra F_n over *n* generators, *n* finite:

- The algebra of formulas in n variables modulo
 Ł-provable equivalence (Lindenbaum–Tarski algebra)
- Explicit description by McNaughton: the algebra of all continuous piecewise linear functions

 $f\colon [0,1]^n \to [0,1]$

with integer coefficients, with operations defined pointwise (i.e., as a subalgebra of $[0,1]^{[0,1]^n}_{\mathbf{k}}$)

k-tuples of elements of F_n : piecewise linear functions $f: [0,1]^n \rightarrow [0,1]^k$

1-reducibility

Theorem: $\Gamma \vdash_{\mathcal{L}} \Delta$ iff $F_1 \models \Gamma / \Delta$

(All free MV-algebras except F_0 have the same universal theory.)

Proof idea: Let $f: [0,1]^n \to [0,1]^k$ be a valuation in F_n such that $\Gamma(f) = 1$, $\psi(f) \neq 1$ for all $\psi \in \Delta$. Fix $x_{\psi} \in [0,1]^n$ such that $\psi(f(x_{\psi})) < 1$, and connect them by a suitable piecewise linear curve.

Recall: valuation to *m* variables in F_1 = continuous piecewise linear $f: [0,1]_{\mathbb{Q}} \rightarrow [0,1]_{\mathbb{Q}}^m$ with integer coefficients

Validity of a formula under f only depends on rng(f) \Rightarrow Question: which piecewise linear curves can be reparametrized to have integer coefficients?

Observation: Let

$$f(t) = a + tb, \quad t \in [t_i, t_{i+1}],$$

where $a, b \in \mathbb{Z}^m$. Then the integer point *a* lies on the line connecting the points $f(t_i)$, $f(t_{i+1})$. This is independent of parametrization.

If $X \subseteq \mathbb{Q}^m$, let A(X) be its affine hull (in \mathbb{Q}^m) X is anchored if $A(X) \cap \mathbb{Z}^m \neq \emptyset$ Lemma: X is anchored iff

$$\forall u \in \mathbb{Z}^m \, \forall a \in \mathbb{Q} \, [\forall x \in X \, (u^\mathsf{T} x = a) \Rightarrow a \in \mathbb{Z}].$$

(Whenever *X* is contained in a hyperplane defined by an affine function with integer linear coefficients, its constant coefficients must be integer too.)

Lemma: Given $x_0, \ldots, x_k \in \mathbb{Q}^m$, it is decidable whether $\{x_0, \ldots, x_k\}$ is anchored.

Reparametrization (cont'd)

Lemma: If $x_0, \ldots, x_k \in \mathbb{Q}^m$, TFAE:

- There exist rationals $t_0 < \cdots < t_k$ such that $L(t_0, x_0; \ldots; t_k, x_k)$ has integer coefficients.
- $\{x_i, x_{i+1}\}$ is anchored for each i < k.

Simplification of counterexamples

Goal: Given a counterexample $L(t_0, x_0; ...; t_k, x_k)$ for Γ / Δ in F_1 , simplify it so that its parameters (e.g., k) are bounded $\{x \in [0,1]_{\mathbb{Q}}^m \mid \bigwedge \Gamma(x) = 1\}$ is a finite union $\bigcup_{u < r} C_u$ of polytopes. Idea: If $\operatorname{rng}(L(t_i, x_i; ...; t_j, x_j)) \subseteq C_u$, replace $L(t_i, x_i; t_{i+1}, x_{i+1}; ...; t_j, x_j)$ with $L(t_i, x_i; t_j, x_j)$

Trouble: $\{x_i, x_j\}$ needn't be anchored: $L(t_i, \frac{1}{2}; t_{i+1}, 0; t_{i+2}, \frac{1}{2})$

Logic Colloquium 2009, Sofia

Simplification of counterexamples (cont'd)

What cannot be done in one step can be done in two steps: Lemma: If $C \subseteq \mathbb{Q}^m$ is convex and anchored, and $x, y \in \mathbb{Q}^m$, there exists $w \in C$ such that $\{x, w\}$ and $\{w, y\}$ are anchored.

Main results

Theorem: Admissibility in Ł is decidable. Moreover:

- Admissibility in Ł, and the universal theory of free MV-algebras, are in PSPACE.
- We have explicit bounds on counterexamples for inadmissible rules in F₁.
- Every formula has a finite admissibly saturated approximation in Ł.
- We have an explicit basis of Ł-admissible rules. There is no finite basis.

Admissibly saturated formulas

A formula φ is admissibly saturated if $\varphi \triangleright \Delta \Rightarrow \exists \psi \in \Delta \varphi \vdash \psi$. An admissibly saturated approximation of φ is a finite set Π_{φ} of a.s. formulas such that $\varphi \succ \Pi_{\varphi}$, and $\pi \vdash \varphi$ for each $\pi \in \Pi_{\varphi}$.

Example: Projective formulas are a.s.

Theorem:

- $\varphi \in F_m$ is a.s. in \Bbbk iff $\{x \in [0,1]^m \mid \varphi(x) = 1\}$
 - is connected,
 - hits $\{0,1\}^m$, and
 - is a finite union of anchored polytopes.
- In Ł, every formula has an a.s. approximation.

Single-conclusion basis

Theorem: $RCC_3 + \{NA_p \mid p \text{ is a prime}\}$ is an independent basis of single-conclusion k-admissible rules.

Multiple-conclusion basis

Theorem: $WDP + CC_3 + \{NA_p \mid p \text{ is a prime}\}$ is an independent basis of multiple-conclusion \pounds -admissible rules.

$$WDP = \frac{p \lor \neg p}{p, \neg p}$$
$$CC_n = \frac{\neg (q \lor \neg q)^n}{p \lor \neg q}$$

Thank you for attention!

References

P. Cintula, G. Metcalfe, *Structural completeness in fuzzy logics*, Notre Dame Journal of Formal Logic 50 (2009), 153–182.

E. Jeřábek, *Admissible rules of Łukasiewicz logic*, submitted, 2009.

_____, *Bases of admissible rules of Łukasiewicz logic*, submitted, 2009.

R. McNaughton, *A theorem about infinite-valued sentential logic*, Journal of Symbolic Logic 16 (1951), 1–13.

V. V. Rybakov, *Admissibility of logical inference rules*, Elsevier, 1997.