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Abstract

We investigate the substitution Frege (SF) proof system and its relationship to ex-
tended Frege (EF') in the context of modal and superintuitionistic (si) propositional logics.
We show that EF is p-equivalent to tree-like SF, and we develop a “normal form” for SF-
proofs. We establish connections between SF for a logic L, and EF for certain bimodal
expansions of L.

We then turn attention to specific families of modal and si logics. We prove p-
equivalence of EF and SF' for all extensions of KB, all tabular logics, all logics of finite
depth and width, and typical examples of logics of finite width and infinite depth. In
most cases, we actually show an equivalence with the usual EF system for classical logic
with respect to a naturally defined translation.

On the other hand, we establish exponential speed-up of SF over EF' for all modal and
si logics of infinite branching, extending recent lower bounds by P. Hrubes. We develop
a model-theoretical characterization of maximal logics of infinite branching to prove this
result.
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(DON’T PANIC. Sections 4, 5, and 6 are mostly independent of each other.)

1 Introduction

The main motivation behind propositional proof complexity theory comes from its connections
to fundamental open problems in computational complexity theory: by Cook and Reckhow [8],
there exists a polynomially bounded proof system for the classical propositional logic (CPC)
if and only if NP = coNP. The bulk of proof complexity therefore concerns itself with proof
systems for CPC. From this perspective, proof complexity of non-classical logics can be
useful by providing broader context to proof complexity questions, which helps to isolate
the most intrinsic properties of various proof systems and to develop suitable methods for
studying their complexity, as well as by providing variants of notoriously hard problems in
classical proof complexity (such as lower bounds for Frege and similar systems) which are
potentially easier to solve: non-classical logics are often more complex than CPC (e.g.,
PSPACE-complete), thus lower bounds on non-classical proof systems can be thought of as
approximations to weaker (hence hopefully more tractable) problems (e.g., PSPACE # NP)
than in the classical case. Anyway, apart from these auxiliary purposes, we believe that proof
complexity of non-classical logics is also quite interesting as a subject in its own right: non-
classical logics often exhibit features which are either absent or trivialized in the degenerate



case of classical logic (such as the disjunction property), and many of these can be recast as
proof complexity problems.

Non-classical proof complexity typically deals with Frege systems and equivalent systems
like sequent calculi or natural deduction: see e.g. Buss and Mints [5], Buss and Pudlék [6],
Ferrari et al. [9], Mints and Kojevnikov [16], Jefabek [14], Hrubes [10, 11]. (Though sometimes
the number of lines is taken as the basic complexity measure instead of size, which amounts
to working with extended Frege in disguise.) In contrast, we will study another two types
of proof systems which naturally appear in a non-classical version: extended Frege (EF)
systems, which allow introduction of abbreviations for formulas in a proof, and substitution
Frege (SF) systems, which admit substitution to be used directly as a rule of inference. In
classical logic these two proof systems happen to be polynomially equivalent, but as we will
see the situation is much more complicated in non-classical logics. Indeed, the main problem
we study in this paper is to find in which modal and superintuitionistic logics the EF and SF
systems are equivalent, in which logics they are not equivalent, and why is it so. We will learn
other useful properties of SF' and EF along the way. Notably, we will see that behaviour of
logics with respect to issues in proof complexity is deeply connected with their model-theoretic
properties, in particular with parameters such as width, depth, and branching. Moreover,
many of our proof manipulations can be interpreted as formalizations of constructive proof-
theoretic versions of standard model-theoretic arguments in EF'.

The paper is organized as follows. We start with extensive preliminaries (Section 2). In
Section 3 we mostly deal with easy general properties of FF and SF where the choice of
logic makes little or no difference (e.g., equivalence of tree-like and dag-like Frege, or feasible
deduction theorem). We also show that Frege or extended Frege systems for CPC and IPC
are p-equivalent wrt monotone sequents (Theorem 3.9), which improves a result of Atserias et
al. [2]. Apart from that, the results worth mentioning are the p-equivalence of EF with tree-
like SF (Theorem 3.12), and most importantly Theorem 3.15, which shows that SF-proofs

¢

can be brought to a “normal form” consisting of an EF-subproof followed (more or less) by
substitutions of propositional constants arranged in a specific pattern. We also show a linear
lower bound on the height of K-F-proofs, which implies that tree-like Frege (and SF') systems
can be exponentially sensitive to the choice of their rules (Corollary 3.23).

In Section 4 we show that going from EF to SF corresponds to strengthening the logic
by (conservatively) adding a new modal operator which can “see backwards”. More exactly,
we prove that SF for a logic L is p-simulated by EF for a so-called weak tense expansion
of L (Theorem 4.7); for transitive logics (including all superintuitionistic), we obtain a nicer
result: L-SF' is p-equivalent to EF for the expansion of L by a universal modality (Theorem
4.12). As a corollary, EF and SF are p-equivalent in extensions of KB.

In Section 5 we construct p-simulations of SF' in EF for several classes of logics. We
consider tabular modal and si logics (Theorem 5.10, e.g.: Smetanich logic SmL), logics
of finite depth and width (Theorem 5.20, e.g.: S5), and some logics of finite width and
infinite depth: K4BW;}, and its variants (Theorem 5.25, e.g.: S4.3), Gédel-Dummett logic
LC (Theorem 5.26), and with respect to restricted classes of formulas (based on an ad hoc
complexity measure), all cofinal subframe logics of finite width (Corollary 5.23). The proofs



use a detour via classical logic: given a logic L, we consider a poly-time translation of L-
formulas to classical propositional formulas (essentially, model checking of suitable Kripke
L-frames), and we show how to transform an L-SF-proof of a formula to a CPC-SF =
CPC-EF-proof of its translation, and transform a CPC-EF-proof of the translation to an
L-EF-proof of the original formula. This implies a result interesting on its own, namely that
the EF systems for CPC and L are for all practical purposes (lower bounds, for instance)
equivalent.

We complement these results in Section 6 by showing exponential speed-up of SF' over
EF for all modal and si logics of infinite branching (Theorem 6.37). We use (variants of)
tautologies introduced by Hrubes [10, 11], who proved an exponential lower bound on (number
of lines in Frege proofs, hence size of) extended Frege proofs for K, IPC, and some other
modal logics. We verify that the tautologies have poly-time constructible SF-proofs, and we
extend the exponential FF lower bound to all logics of infinite branching by reducing it to
four special cases, and using the method of propositional valuations from [14] to prove the
lower bound for these four cases (in particular, we obtain a simplified proof of the original
Hrubes’s results). The reduction (Lemmas 6.30, 6.33) is more generally applicable, it gives
e.g. a simulation of Jankov’s (De Morgan) logic KC in IPC wrt negation-free formulas. The
model-theoretic part of the reduction (Theorem 6.21) is also of independent interest, it shows
that every logic of infinite branching is valid in a frame of a particular shape (thus in a
sense, describes the maximal logics of infinite branching). In Section 7 we mention some open
problems related to our work.
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2 Preliminaries

2.1 Modal and superintuitionistic logics

Throughout the paper, we work with (normal mono-) modal and superintuitionistic logics.
Generally speaking, we rely on Chagrov and Zakharyaschev [7] as the canonical source for
the theory of such logics (the reader may also consult Blackburn et al. [3]). Nevertheless, as
the paper is primarily targeted on proof complexity audience rather than modal logicians, we
tried to keep the definitions below as self-contained as possible.

Propositional modal formulas are built from propositional variables (atoms), a fixed com-
plete set of Boolean connectives (say, —, A, V, L), and an additional unary connective denoted
by O. (The formula Oy does not necessarily mean “necessarily ¢”; depending on the logic,
it could as well mean “g is obligatory”, “p is provable”, “p will always hold”, etc.) We will



usually denote propositional variables by lower-case Latin letters p, ¢, ..., and formulas by
lower-case Greek letters ¢, v, ... (though we will also use capital Latin letters). We will
write Oip, D, ©p, 0%, and OS" for ~O-p, p AOg, pV Op, O---Op (with n boxes), and
Ni<n OF¢ respectively. The modal degree of a formula o, written as md(y), is the maximal
number of nested O in ¢. A set L of modal formulas is called a normal modal logic (nml) if
it contains all classical propositional tautologies, the Kripke axiom

(K) O(p = ¢) — (B — OY),

and it is closed under substitution, the detachment (modus ponens) rule

(MP) e, =YY,

and the necessitation rule

(Nec) e Op.

The smallest nml is called K. If L is a logic, and X a formula or a set of formulas, then
LpX

is the smallest nml which includes L and X. A logic which can be written as K& X for some
finite set X is called finitely axiomatizable. A formula ¢ is provable in a nml L from a set
of assumptions X (written as X b ¢), if ¢ is in the closure of L U X under MP and Nec.
Formulas ¢ such that @ 1 ¢ (i.e., ¢ € L) are called L-tautologies. Some modal axioms are
listed in Table 1, and some of the most common nml are given in Table 2. (The names of the
logics are mostly standard, whereas naming of azioms varies wildly in the literature.) We
stress that these are but a few examples; the lattice of normal modal logics has the cardinality
of continuum, a quite complex structure of which only several corners are understood, and it
does not admit any classification by a transparent list of axioms.

Intuitionistic formulas are generated from propositional variables by means of the connec-
tives —, A, V, and L. (The choice matters: unlike classical logic, the connectives are not inter-
definable in the intuitionistic logic.) Negation is defined as the abbreviation ¢ = (p — L).
A set of intuitionistic formulas is called a superintuitionistic (si) logic, if it is closed under
substitution and MP, and contains the axioms

(o= W —x) = (¢ =) = (¢ = X)),
o — (¥ — ),
L=,
1 — (P2 = p1 A p2),
©1Ap2— @i (i=1,2),
i — 1V P2 (i=1,2),
(p1 = ) = ((p2 = P) = (1 V 2 — P)).



symbol | axiom Kripke frame condition

T Op —p reflexive

4 Op — O0p transitive

B p— OO symmetric

D OT serial (Vzx1 # )

GL O(0Op — p) — Op transitive, R~! well-founded
Grz | O(O(p — Op) — p) — Op | (R~ id)~! well-founded?

5 Op — OO Euclidean (z Ry,z =y R 2)

1 OOp — ©Op Vo Iy € 21 (yT = {y})!

2 OBp — OOp directed (y,z € 2T =y || 2)

3 O(Op — ¢) VO(Hg — p) | connected

(y,z€xl=yRzVy=2VzRy)
Tra, | OSkp — Okt k-transitive
k
Altg \/D(/\pj —>pi> Ve |zl < k
i=0  j<i
BDy, | see below depth at most kf
k
BW; \/ a (/\ Op; — pi> width at most
i=0  j#i

BBy | see Remark 6.11 branching at most k'

T This frame condition is only valid for transitive frames.

¥ This frame condition is only valid for finite frames.

Table 1: Assorted modal axioms

name axiomatization name axiomatization
T KoT D KaéeD
K4 Koa4 D4 K4éD
S4 KaaT D45 D4&5
GL, K4W Ko GL=K4¢ GL K4.1 K4 .1
K4Grz K4 & Grz K4.2 K4 .2
Grz, S4Grz | T Grz =S4 @ Grz || K4.3 K43 .3
KB K®B S4.1 S46¢ .1
KTB ToB S4.2 S4¢ .2
K5 Kab S4.3 S4@ .3
K45 K45 GL.3 GL& .3
K4B K49 B K4BD,; | K4 ¢ BD,,
S5 Teb5=K4eBeD || KeBW, | K4 © BW,
K4BB,; | K4 ¢ BB,

Table 2: Popular (or otherwise important) normal modal logics




name | axiomatization Kripke frame condition
CPC | IPC+pV—p=IPCH+—-—p—0p discrete
=IPC+((p—q) —p)—p
KC IPC+ —pV-—p directed
LC IPC+(p—q)V(¢g—Dp) connected
KP IPC+ (—p—qVr) = (-p—q)V(-p—r)|8
SmL | IPC + (=¢ = p) — (((p = ¢) = p) = p) Vo |zf| <2
k
Al IPC—{—\/(/\pj Hpi) v 21| < k
i=0 j<i
BD; | see below depth at most k
k
BW, | IPC + \/ ( A pj — pi> width at most k
i=0 j#£i
k
T IPC + /\ ((pz — \/pj) — \/pj> — \/pi branching at most &
i=0 j#i j i

¥ This frame condition is only valid for finite frames.

Syzeaxt=>Twecat(w<y,zAVucwl (ul|yVu| 2)

Table 3: Some superintuitionistic logics

The smallest si logic is called the intuitionistic logic, and we will denoted it IPC. The smallest
si logic which contains a logic L, and a formula or a set of formulas X, is denoted L + X.
Some si logics are listed in Table 3. Every consistent si logic is contained in the classical logic
(CPC); for this reason the si logics are also called intermediate logics.

An intuitionistic formula ¢ is essentially negative if every occurrence of a variable in ¢ is
in a scope of some —. An essentially negative formula is called negative if every occurrence
of V in ¢ is in a scope of some — as well. Formulas built from variables, A, V, L, and T are
called monotone.

A (modal) Kripke frame is a pair (W, R), where R is a binary relation on the set W (called
the accessibility relation). A valuation (or assignment) in W is a relation |- between elements
of W, and propositional variables. We can extend any assignment to all modal formulas by
evaluating the Boolean connectives locally, and putting

zlFDOp iff Vy(x Ry= 1yl ).

The triple (W, R,I) is called a Kripke model.

An intuitionistic Kripke frame is a Kripke frame (X, <) such that < is a partial order (i.e.,
a transitive, reflexive and antisymmetric relation). Intuitionistic valuations I in intuitionistic
frames are required to satisfy the persistence condition

r<yANzxzlFp=ylp,



and they are extended to all intuitionistic formulas by

zlFeAY iff zlFpAxlEa,
zlFeVvy iff zlFepVal-y,
zlkp—y iff Yy>zx(ylke=yl-),
L.

Let I be a valuation in a modal or intuitionistic Kripke frame W = (W, R). If = IF ¢, we
say that the formula ¢ is satisfied by IF in z, otherwise it is refuted. A formula ¢ is valid in
the frame W, if it is satisfied by every valuation in every point of W. The set of all formulas
valid in a frame W is always a normal modal (resp., superintuitionistic) logic, which we call
the logic of W, and denote L(W). If L C L(W), we say that W is an L-frame, and we write
WEL.

If (W, R) is a frame, and X C W, we define

X1:=R[X]|={y; Iz € Xz Ry},

X1:= X UXT,
X| =R YX|={y; 3z € Xy Rz},
XT:=XUX]|.

We also write 21 := {z}1, etc. If W' C W, the frame (W', RN (W' x W’)) is called a
subframe of (W, R). If additionally W' C W', it is a generated subframe, which we write as
W' C-W. Formulas valid in W are also valid in all its generated subframes. Another frame
operations which preserve validity are disjoint unions (defined in the obvious way), and p-
morphic images: if (W, R) and (W', R) are frames, a mapping f: W — W' is a p-morphism
(aka bounded morphism, reduction, pseudo-epimorphism) if it is surjective, and satisfies the

conditions

(i) z Ry = f(z) R f(y),
(ii) if f(z) R' u, there exists y such that Ry and f(y) = u

for every z,y € W, u € W'.

A point x € W is reflerive if © R x, otherwise it is irreflexive. Points x and y are
compatible (written z || y), if 2T Nyl # 2.

Let R™ be the n-fold composition of R with itself (where R° =id), and let R* = J,,,, R"
be the reflexive and transitive closure of R. The frame W is k-transitive, if R* = (RUid)*, or
equivalently, RFT! C U, <x B". (Usual transitivity is somewhat stronger than 1-transitivity.)
A point 7 € W is a root of W, if W = R*[r]. A frame with at least one root is called rooted.

Let (W, R) be a transitive Kripke frame. The accessibility relation induces a preorder
< = RUid, an equivalence relation ~ = <N <=1 and a strict order < = R~ R™! = <~ ~.
The equivalence classes of ~ are called clusters. A cluster is proper if it contains at least
two points, otherwise it is simple. Notice that every proper cluster is reflexive. A point or
cluster is final if it is <-maximal. Final points are also called leaves. The quotient structure



oW = (W, R)/~ is an antisymmetric transitive frame, called the skeleton of W. The depth of
W is the maximal size of a finite <-chain in W if it exists, and oo otherwise. If W is rooted,
its width is similarly defined as the maximal size of a finite <-antichain in W, or oo if there is
no maximum. In general, the width of W is defined as the supremum of widths of its rooted
generated subframes. Notice that oW has the same depth and width as W. A point y is an
immediate successor of x, if x < y, and there does not exist any z such that r < z <y. f W
is finite and antisymmetric, then the branching of W is the maximal number of immediate
successors of any point in W. If W is not antisymmetric (but still finite and transitive), we
define its branching as the branching of pW.
An axiom or logic L characterizes a frame condition (i.e., a class of frames) C, if

WeC if WEL

for every Kripke frame W. The characteristic frame conditions of some modal and si axioms
are given in Tables 1 and 3. A logic L is complete wrt a class of frames C, if

pel iff YW(WeC=WE ).

L is strongly complete wrt C, if moreover every L-consistent set of formulas is satisfiable in a
point of a model based on a frame from C. L is Kripke complete, if it is complete wrt some
class C. Notice that L is Kripke complete iff it is complete wrt the class of Kripke frames it
characterizes. L has the finite model property, if it is complete wrt a class of finite frames.
All logics in Tables 2 and 3 have the finite model property. Notice that the frame conditions
of many of these logics can be simplified on finite frames: e.g., a transitive finite frame is
converse well-founded iff it is irreflexive (i.e., a strict partial order).

There exist Kripke incomplete modal and si logics, and many Kripke complete logics (e.g.,
GL, Grz, Tj) are not strongly complete, thus a more general semantics is needed. A (modal)
general frame is a triple (W, R, V), where (W, R) is a Kripke frame, and V is a family of
subsets of W which is closed under Boolean operations (complement, binary intersection),
and under the operation

OA:={zeW;VYyeW(@Ry=yc A=W~ (W A)].

We can identify a Kripke frame (W, R) with the general frame (W, R, P(W)).

An intuitionistic general frame is a triple (W, < V), where (W, <) is an intuitionistic
Kripke frame, and V is a family of upper subsets of W which contains &, and is closed under
(binary) intersection, union, and the operation

A—-B={zeW,VyeW (x<yhyecA=yeB)} =W~ (AN B)|.
A valuation IF is admissible in a (modal or intuitionistic) general frame (W, R, V), if
{zreW;zlkpleV

for every formula ¢, or equivalently, for every propositional variable. A formula ¢ is valid in
(W, R, V) if it holds under every admissible valuation. A frame is refined if

VAeV(reAsycA)=z=y,
VAeV(reOA=yc A =zRy



for every x,y € W (which is equivalent to
VAeV(reA=yecA) =<y

in the intuitionistic case). A frame is compact if every subset of V' (or VU{W ~\ A; A € V} in
the intuitionistic case) with the finite intersection property (fip) has a nonempty intersection.
A refined compact frame is called descriptive. (Kripke frames are refined, but infinite Kripke
frames are never descriptive. All finite refined frames are Kripke.)

Every normal modal or si logic is strongly complete wrt a class of descriptive frames.

A frame (W', R, V') is a subframe of (W, R, V), if (W' R’) is a subframe of (W, R), and
V' C V (which implies W' € V). A generated subframe of (W, R, V) is a frame (W' R, V')
such that (W', R') is a generated subframe of (W, R), and V' = {ANW’; A € V'}. Notice that
unlike the Kripke case, a generated subframe is not necessarily a subframe. A p-morphism
f: (W,R, V)Y — (W' R V') is a Kripke p-morphism f: (W, R) — (W' R’) such that

AcV = A eV

for every A C W'.

A modal logic L is reflexive, transitive, or k-transitive if all refined L-frames have the same
property; this is equivalent to L O T, L O K4, and L > Tra, respectively. All si logics are
also considered transitive. Logics which are k-transitive for some k (including all si logics)
are called weakly transitive.

Let L be a transitive logic, and k € w. L has depth k (width k), if all refined L-frames
have depth (width, resp.) at most k. If L has depth (width) k& for some k, then it has finite
(or: bounded) depth (width, resp.). L has width k if and only if it proves the axiom BWj
given in Tables 1, 3. L has bounded depth iff it proves the axiom BDy, which is defined by

BDg := 1,
BDgy1 :=pg V D(Dpk — BDk)

in the modal case; the intuitionistic version is obtained by deleting all boxes. Segerberg’s
theorem [17] states that every logic of finite depth has the finite model property.

The si logic Ty, is defined as the set of formulas valid in all finite frames of branching at
most k; it can be axiomatized as in Table 3. (The letter T stands for “tree”, as the logic is
complete wrt finite k-ary trees.) We say that a si logic L has branching k if L O Ty, and
all such logics are said to have finite (or bounded) branching. The bounded branching logics
T;, are usually defined only in the si case, however we will find it useful to study also the
corresponding modal logics. We thus introduce K4BBy, as the logic of all finite (transitive)
frames of branching at most k, and we call extensions of K4BBj the logics of branching k.
As we will show in Lemma 6.10, the logics K4BBy, are finitely axiomatizable, which justifies
the appearance of an “axiom” BBy in Table 1.

We have to define logics of branching & in the indirect way as above, because the concept
of finite branching is not well-behaved (or even well-defined) for infinite frames. For example,
the full infinite binary tree of height w appears to have branching 2, but its (si) logic is just
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IPC, which has infinite branching. Cf. also Remark 6.11. Nevertheless, if L is complete wrt a
class C of finite transitive frames, then L has branching & iff all frames in C have branching at
most k, as expected. Branching is related to width: logics of width k also have branching k,
and all logics of finite depth and finite branching have finite width. Also, cofinal subframe
logics of branching k& have width k.

A modal or si logic is tabular, if there exists a finite Kripke frame F' such that L = L(F).
A modal logic is tabular iff it proves Alt; A Trai for some k. A si logic is tabular iff it proves
some Alty iff it has finite depth and finite width. A logic has the finite modal property iff it
is an intersection of a family of tabular logics.

A transitive logic L is called a subframe (sf) logic, if it is complete wrt a class of general
frames closed under subframes. More generally, L is a cofinal subframe (csf) logic, if it is
complete wrt a class of general frames closed under cofinal subframes, where a subframe
(W' R', V') of a transitive frame (W, R, V) is called cofinal if W1 C W']. An important
feature of csf logics, proved by Zakharyaschev [18], is that all of them have the finite model
property. Most of the standard modal and si logics are csf (e.g., all transitive logics in Tables
2, 3, save K4BBy, Ty, and KP, are csf). A si logic is csf if and only if it can be axiomatized
over IPC by V-free formulas.

Let 9, ¢, and 7 be pairwise disjoint sequences of variables, and L a modal or si logic. An
interpolant of an L-tautology

a(p,q) — B, T)

is a formula (or circuit) I(p) such that L proves

a(p, q) — 1(p),
1(p) — B(p, 7).

The class of normal modal logics can be generalized in various ways, we will occasionally
need the following.

A quasi-normal modal logic is a set of modal formulas extending K, which is closed under
substitution and modus ponens (but not necessarily under necessitation). Every normal
modal logic is quasi-normal. The smallest quasi-normal logic which contains a logic L and a
formula ¢ will be denoted by

L+

to distinguish it from the normal closure L@ . If W is a general frame, and z is a distinguished
point of W, then the set of formulas valid in = under every admissible valuation is a quasi-
normal logic, which we will denote by Lgn (W, z). If W is a rooted frame, we will implicitly
assume that the distinguished point is a root of W, and write just Lg, ().

A (normal) polymodal logic is a logic in a language with several modal operators O,
..., Og, each of them obeying the Kripke axiom and the necessitation rule. The semantics
of polymodal logics can be developed similarly to the monomodal case, using k accessibility
relations Ry, ..., Ri. As a special case, polymodal logics with two boxes are called bimodal.

We will only target on superintuitionistic and normal monomodal logics (which we will
call just “modal logics”), the other will be used for auxiliary purposes.

11



2.2 Propositional proof systems

We will need the following basic concepts from propositional proof complexity. More back-
ground can be found in Krajicek [15].

Let L (a “logic”) be a set of strings (“formulas”) in a finite alphabet. A proof system for
L is a polynomial-time function P such that rng(P) = L (Cook, Reckhow [8]). A P-proof of
a formula ¢ is any 7 such that P(7) = ¢.

A proof system P; p-simulates a proof system P, written as P» <, Py, if there exists a
poly-time function f such that P, = Pjof. We will use this definition even when P; and P; are
proof systems for different logics L1, Lo; notice however that P, <, P; implies Ly C L. (To
avoid confusion, we will not apply the term “simulation” to yet more general interpretations
which also involve translation of formulas.) Proof systems P} and P» (necessarily for the
same logic) are p-equivalent, written as P; =, P, if P} <, P, and P» <, P;. We introduce a
restricted variant of p-simulation as follows: if I' is a set of formulas, then P; p-simulates P
wrt ', written as P» <, 1 P, if there exists a poly-time function f such that P(7w) = Py(f (7))
whenever Py(m) € T

If P is a proof system for L, and ¢ is an L-tautology, we define the basic complexity
measure

sp(yp) = min{|r|; P(7) = ¢},

the minimal size of a P-proof of . A proof system P; simulates Py, written as Py < Py, if
there exists a polynomial p(n) such that

Sp (‘P) < p(3P2 (@))

for every tautology ¢. Notice that P, <, P; implies P» < P.

Let L be a modal or si logic. An inference system P is given by a set of rules of the
form @1,...,0m F g, where ; are formulas. A P-proof of a formula ¢ from a set X of
assumptions is a sequence 7 of formulas 1, ..., @ such that ¢ = ¢, and each ¢; belongs to
X, or is inferred from some of the formulas ¢;, j < 4, by a substitution instance of a P-rule.
The formulas ¢; are called the lines (or steps) of m. We write ¢1,...,¢om Fp ¢ if there exists a
P-proof of ¢ from assumptions {¢1,...,¢mn}. An inference system P is called a Frege system
for L, if

(i) P uses only finitely many rules,
(ii) P is sound: if Fp ¢, then ¢ € L,
(iii) P is strongly complete: if ¢1,...,¢om b @, then p1,...,0m Fp @.
A Frege system P is standard, if
(ii’) P is strongly sound: if ¢1,...,om Fp @, then p1,...,0n FL .

While the study of nonstandard Frege systems is an interesting topic closely related to inves-
tigation of admissible rules of inference (cf. [16, 14]), it is rather tangential to the purpose
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of this paper. We therefore adopt the convention that all Frege systems are assumed to be
standard. An immediate consequence (Lemma 3.1) is that all Frege systems for the same
logic L are p-equivalent. We will thus speak of the Frege system for L, and denote it L-F.
In particular, we may assume that L-F is given by a finite set of axioms (i.e., rules with no
assumptions), and the rules of modus ponens and (in the modal case) necessitation. However,
we will also consider standard Frege systems with more general sets of rules to allow ourselves
more flexibility. Notice that a (standard) Frege system for a logic L exists if and only if L is
finitely axiomatizable. We thus introduce another convention: whenever we speak about proof
systems for a logic L, we tacitly assume L to be finitely axiomatizable.

A substitution Frege proof of ¢ is a sequence of formulas 1, ..., @i = ¢ such that each ¢;
is derived by a Frege rule, or it is obtained from some ¢;, j < 7, by simultaneous substitution
of some formulas for variables. We denote the substitution Frege system for L by L-SF.
Notice that the substitution rule is unsound in the presence of non-tautological assumptions;
we thus only define L-SF-proofs of formulas with no assumptions.

An extended (or extension) Frege proof of ¢ is a sequence of formulas @1, ..., @, = ¢ such
that each ¢; is inferred by a Frege rule, or it is an extension aziom

qi < Vi,

where ¢; (called an extension variable) is a variable which does not occur in 5, in ¢; for
j <, orin ¢. The extended Frege proof system for L is denoted by L-EF.

A circuit is a directed acyclic graph (dag) with one node of out-degree 0, whose nodes are
labelled by variables or connectives of the same arity as the in-degree of the node. (Formulas
can be identified with circuits whose underlying graph is a tree.) Circuits which represent the
same formula are called similar. (Similarity of circuits is recognizable in polynomial time, or
even non-deterministic logarithmic space.) A circuit! Frege proof of  is a sequence of circuits
©1,- ..,k = @ such that each ; is inferred by a Frege rule, or it is similar to some ¢;, j < 1.
We denote the circuit Frege system for L by L-CF. (This treatment of CF follows [12].)
The circuit Frege system is p-equivalent to EF (Proposition 3.3), and we will not usually
distinguish them. We will often find it more convenient to work with CF' in proofs, however
we will formulate theorems using FF', as it is the more standard of the two proof systems.

If P is a Frege, extended Frege, circuit Frege, or substitution Frege proof system, and ¢
a tautology, we denote by kp(p) the minimal number of lines of a P-proof of .

Let P be a Frege, circuit Frege, or substitution Frege system, formulated using axioms,
MP, and Nec. A P-proof is called tree-like, if each formula in the proof is used at most once
as an assumption to a rule. We denote the tree-like version of P by P*.

3 General properties

We begin with a review of simple properties of Frege and similar systems. We will often skip
the proofs where they are identical to the classical case. The first one is an elementary but

'The classical circuit Frege system may be also called P/poly-Frege (or simply P-Frege). This is inappro-
priate for non-classical logics.
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very important observation, originally due to Cook and Reckhow [8].

Lemma 3.1 If L' O L, then any (extended, circuit, substitution) Frege system for L' p-
simulates any (extended, circuit, substitution) Frege system for L. In particular, any two
(extended, circuit, substitution) Frege systems for L are p-equivalent.

Proof: We replace instances of a Frege rule by instances of its fixed derivation in the other
proof system. O

We will use Lemma 3.1 extensively throughout the paper without explicit mention, usually in
the following form: substitution instances of any fixed L-tautology have uniform linear-size
L-F-proofs.

Proposition 3.2 Let L be a modal or si logic, and ¢ an L-tautology. Then

kr-er(e) < kp-r(e) = kr.cr(e) < O(kr-er(p)).

Proof: An L-F-proof of ¢ is also an L- EF-proof and an L- CF-proof. Given an L- EF-proof of
©, we can construct an L-F-proof by substitution of their defining formulas for the extension
variables, and supplying fixed-length derivations of the formulas ¥ < 1 resulting from the
extension axioms. Given an L- CF-proof of ¢, we replace all circuits with equivalent formulas
to obtain an L-F-proof. O

Proposition 3.3 If L is a modal or si logic, then L-EF =, L-CF, and

sp-pr () = O(kr_gr () + lo]?).

Proof: As in the classical logic, see [15, L. 4.5.7], [12]. O

After Proposition 3.3, we generally will not hesitate to confuse EF and CF. Another conse-
quence of 3.2 and 3.3 is that the size of EF-proofs is roughly the same measure as the number
of lines in F-proofs. We could indeed formulate most of our results in terms of lines in Frege
systems, and avoid EF' altogether, but there are at least two good reasons not to do that. For
one, it allows to formulate the results in a stronger form, as the concept of p-simulation does
not make sense for line counting. The second reason is practical: we can usually recognize a
polynomial-size object (EF-proof) instantly, whereas it is not always obvious that a particular
parameter of an exponential-size object (F-proof) is in fact polynomial.

Definition 3.4 Let L be a modal logic, and P a Frege, circuit Frege, or substitution Frege
system for L using axioms, modus ponens, and necessitation. The proof system P_ is defined
similarly to P, except that it does not use the necessitation rule, and it includes extra axioms

of the form
0F(p — ¢) — (OFp — OFy),

and
0Fa

9

where « is (an instance of) an axiom of P, and k € w.

14



Lemma 3.5 Let L be a modal logic, and let P be L-F', L-CF, or L-SF. Then P =, P_.

Proof: 1t is easy to see that the extra axioms of P_ have poly-time constructible proofs
in L-F, thus P_ <, P. Let m: ¢q,...,n = ¢ be a P-proof. We construct the sequence
DS”QDO, DS("_I)gal, .o, Bpp_1,¢n, and complete it to a P_-proof. For example, if ¢; was
"R —
¢i), and a short CPC-F subproof to derive the formulas Dggoj and Dz(gpj — ;) for every

derived in m by modus ponens from ¢; and ¢, = (¢; — ¢;), we use DS(”_j)goj, o=(

¢ < n —i, we use the new axioms and modus ponens to get OYp;, and then derive their
conjunction O=("~9 e, by another CPC-F subproof. O

Proposition 3.6 (Feasible deduction theorem) Let L be a modal or si logic, and let P
be L-F, L-CF, or L-EF. Given a P-derivation 7 of a formula (circuit, in the case of CF)
© using assumptions @, . .., ¢ (which do not contain any extension variables in the case of
EF) as extra azioms, we can construct in polynomial time a P-proof of

N\ O — o

i<k

for some m € w (m =0 in the si case).

Proof: 1If Pif L-F or L-CF, and L is a si logic, we can use the same proof as for the classical
logic (see [15, L. 4.4.10]). If L is a modal logic, we construct a P_-derivation of ¢ from

O<™¢; for some m as in Lemma 3.5, apply the classical proof of the

assumptions of the form
deduction theorem, and replace the resulting P_-proof by an equivalent P-proof.
If Pis L-EF, we apply the feasible deduction for L-F to obtain an L-F-proof of a formula
() AT (g5 < ) A N\ O — o,
j i<k
where g; < 1); are the extension axioms used in the original L- EF-derivation. We reintroduce
these extension axioms, and use necessitation and modus ponens to eliminate them from (x).

O
Lemma 3.7 We can construct in polynomial time K-F -proofs of
AT (a5 o §) = (9(@) < (D)),
i
where m is the modal degree of .
Proof: By straightforward induction on the complexity of ¢. O

We will use two kinds of interpretations of CPC in IPC. The first is the well-known
double-negation translation.

Proposition 3.8 (Glivenko translation) Let L be a consistent si logic, and T" be the set of
negative formulas. Then CPC-F =, L-F, CPC-EF =, L-EF, and CPC-SF =, L-SF.

Proof: Wlog L = IPC. Let w be a classical proof of ¢. We prefix == to every formula in
7, and fill the gaps to make it an intuitionistic proof of ==y (e.g., we use instances of the
intuitionistic tautology ——(p — ¢q) — (—=—p — ——q) to fix modus ponens). Then we construct
a short IPC-F-proof of ==y — ¢ by induction on the complexity of . O
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The second is a feasible version of conservativity of CPC over IPC wrt implications
between monotone formulas. Atserias et al. [2] give a simulation of Frege systems for formulas
of this form, with a polynomial bound on the number of lines, and a quasi-polynomial bound
on the size of the proof. We improve the size bound to polynomial. (Note that our proof
essentially uses intuitionistic implication, it does not apply to monotone sequent calculus
considered in [2].)

Theorem 3.9 Let I' be the set of all formulas
a— [
such that o and 3 are monotone. Then CPC-F <, IPC-F, and CPC-EF <, IPC-EF'.

Proof: Assume that p are all variables which appear in ¢ = a — 3, and pick new variables
qd. Let m be a CPC-F-proof of ¢ (the case of EF is similar, we only use circuits instead
of formulas). By [2, Thm. 2], we can construct in polynomial time an IPC-F-proof of the
formula

A\@iva)ha— v\ (piAag).

(2 (2
We substitute the formulas p; — (§ for g; in the entire proof. There are easily constructible
IPC-F-proofs of

\/(pz- A (pi — B)) — 5,

hence after rearranging the formula we obtain a proof of

o — (/\(pi V(pi — B)) — B)

)

We construct IPC-F-proofs of

() (A v mi—8)—5) -5

i<m
by induction on m. If m < 1, then (x) is an instance of a fixed tautology, hence it has a proof
of size O(|f]). The induction step goes as follows:

(A ®:v@i—=8)=8) = ((onV on—8) = (A iV (i = 5) = 5))

i<m+1 i<m
— ((pm V (pm — B)) — ﬂ)
— B,

using the induction hypothesis for m and 1. O

Proposition 3.10 Let L be a consistent modal logic, and I" the set of O-free formulas. Then
CPC-F =, L-F, CPC-EF =, L-EF, and CPC-SF =, L-SF.

Proof: Let mbe an L-proof of ¢. By Makinson’s theorem, L is contained in Verum = K®O L
or Triv = K @ (p <> Op). In the former case we replace every boxed formula Ot in 7 by T,
in the latter case by ¥. We obtain a classical proof of . O
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Proposition 3.11 If L is a modal or si logic, then L-F =, L-F*, and L-CF =, L-CF*.

Proof: Let P be L-F or L-CF. If L is a si logic, then P =, P* by the same proof as for
CPC-F (see [15, L. 4.4.8]). If L is a modal logic, we transform a P-proof into a P_-proof by
Lemma 3.5, we make it tree-like by the classical argument, and we transform it back into a
P-proof: the extra axioms of P_ have short tree-like derivations. O

We will see later that FF' is not in general p-equivalent to SF'. Nevertheless we can extract
some useful information from the classical proof of the equivalence (cf. [15, L. 4.5.4, 4.5.5]);
the next theorem is of that kind.

Theorem 3.12 If L is a modal or si logic, then L-EF =, L-SF™*.

Proof: Let 7 be a tree-like L-SF-proof of ¢, we construct an L- EF-proof of ¢ of size O(|r|?)
by induction on the length of 7. If ¢ = a(¢)) was derived from a(g) by substitution, we take
an L-FEF-proof of a by the induction hypothesis, and possibly rename the variables ¢ in the
proof so that they do not appear in . We introduce an O(|¢|?)-size subproof of a/(q) < a(v)
from new extension axioms ¢; < ;, and derive a(q/_;) by modus ponens. If ¢ was derived by
necessitation or modus ponens, we use the induction hypothesis and apply the same rule; the
size bound follows from tree-likeness of 7.

Given an L-FEF-proof m of ¢, we use Propositions 3.6 and 3.11 to construct a tree-like

L-F-proof of a formula of the form

N\ O (g = ) — o,

i<k
where ¢; < 1); are extension axioms from 7. We may assume that g; does not appear in v ,
§ > 4. Then we successively eliminate the conjuncts O<™(g; « 1;) in the following way: we
substitute 1o for qo, construct a short tree-like L-F-proof of O<" (1) « 1), and derive

N\ O5(g = i) — @

0<i<k

by modus ponens. O

Proposition 3.13 Let L be a modal or si logic, and assume that a formula ¢ has an L-SF-
proof of size s with € lines. Then @ has an L-F*-proof of size (s/0)" < 2° with 2¢ lines.

Proof: Let ¢1,...,p0 = ¢ be an L-SF-proof, and put s; = |p;|. We construct tree-like L-F-
proofs ; of ¢; by induction on i. If ; was derived by a Frege rule, we take the proofs of its
assumptions given by the induction hypothesis, and apply the same rule. If ¢; = ng(d_;) was
derived by substitution from ¢;(g), we take 7;, and substitute 1/_; for ¢ in the whole proof.
The number of lines in 7; at most doubles at each step, thus the number of lines in 7y is less
than 2¢. The size of the proof increases most in the substitution steps, where it is multiplied
by the size of J, which is bounded by s;. Thus the size of 7y is bounded by Hle s;. For fixed
¢ and s = ), s;, this product is maximized when s; = s/, which gives it the value (s/¢)*. O
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Note that the exponential size upper bound of Proposition 3.13 is nontrivial: unlike classical
logic, it is not true in general that any formula has an exponential-size Frege proof. In fact,
there exist %Y-complete (finitely axiomatizable) modal and si logics L, for which there is no
recursive upper bound on the length of proofs in any proof system for L.

Definition 3.14 (¢ 7 vg : 1) = (p Abo) V (mp A ).

Theorem 3.15 (Normal form for SF proofs) Let L be a modal or si logic. The following
are constructible from each other in polynomial time:

(i) an L-SF-proof of a formula ¢,
(i) a proof of v in L-CF augmented by substitution of (Boolean) propositional constants,

(iit) an L-EF-proof of a formula of the form

A\@i 705 : 05 —r) —

7

for some m € w in the modal case, or

AN (@i Ari) v =ri) = o v\ (9 A i)
i i

in the intuitionistic case, where r; are distinct variables which do not appear in @, in
the formulas v; for j > i, or in any extension axioms for variables which appear in

them (recursively).

Proof: (ii) — (i) is an easy extension of the simulation of L-CF by L-SF.

(iii) ~ (ii): First we transform the proof to an L- CF-proof in the usual way. (The formulas
1; get extension variables replaced with their definitions, which turns them into circuits.) In
the si case, we substitute 1. and T for ry to obtain

/\((% ATi) V =ri) — @V \/(?Xh A =ri) Vo,
i>0 i>0
Yo N\ (Wi Are) V) = oV ] (Wi A=),
i>0 i>0
from which we derive
I\ (@i Ari) V) = o v ] (s A=),
i>0 i>0
We continue in the same way to eliminate all r;. The modal case is similar.

(i) ~— (iii): We consider the modal case, the intuitionistic one being similar. First we
eliminate necessitation by Lemma 3.5 to obtain an L-SF_-proof 7: ¢1(p), ..., ¢n(p) = ¢. We
are going to construct an L-EF-proof ' which contains the formulas £ — ¢;(¢?) for each 1,
where £ is a formula of the form

/\(wt 705y ngﬂ“t),

t
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and qji» are new extension variables. We define m as the maximal modal degree of a formula
from 7.

Forany i =1,...,n, let i1,...,4, be the list of all indices #; > ¢ such that ¢;, was derived
in 7 by a rule which used ¢; as an assumption. If ¢;, was derived by modus ponens, we put
@b;’t = q;f. If @5, (P) = ¢i(X(P)) was derived by the substitution rule, we define z/J;-’t = Xj(q?t).
Let 7} be fresh variables. We put in 7’ the extension axioms

; 1 ; 2 ] -1 £
Q}Hﬂﬁ?wl T§7¢; -"‘-ﬁf”e 171/11 ¢;7
and define
§ = Nlpilwt) 7057 0= ),
t

¢=/\¢.

We can derive

_'Tt/\/\r —>/\q]<—>¢”)

u<t 7

from the extension axioms, hence also

morfn \ B = A BEG  0)
u<t 7

-

— (pild) < i(¥i))

using Lemma 3.7, as m > md(p;). Hence we can include in 7’ short Frege subproofs of

& A\ ~eiwit) = € A/ (moiwit) A A wilwi)
t t u<t

V(i Ao A | D)
t

u<t
— —ilqh),

thus

(+) £A@ild) — pi(it).

We include in 7’ the formulas & — ¢;(¢?), and complete the proof as follows. If ¢; is an instance
of an axiom of L-SF_, then £ — @Z((f) follows from an instance of the same axiom, hence it
has a short L-F-proof. If ¢; was derived from ¢; by substitution, then goz(q_i) = @j(w?’t) for
some t, thus & — ¢;( _%) can be derived from & — ¢, (q_ﬁ) and (). If p; was derived from ¢;
and ¢ = (goj — ;) by modus ponens, we can prove & — o;( _2) and £ — (cp](q_;) — cpz(q_;))
by £ — np](qﬂ) ¢ — vr(q ) and (x), hence £ — v;(q ) follows. O
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3.1 More on tree-like systems

We defined tree-like Frege (and CF, SF') systems in a more restrictive way than the corre-
sponding dag-like systems, with a fixed set of non-axiom rules (modus ponens, necessitation).
As we will explain shortly, the reason for this inconsistency is that neither Proposition 3.11
nor Theorem 3.12 hold for tree-like versions of standard (circuit, substitution) Frege systems
in general. In other words, tree-like (circuit, substitution) Frege systems are not in general
p-equivalent even if their dag-like counterparts are.

For the rest of this subsection, let us temporarily lift the restriction on allowed rules in
tree-like systems.

The size of tree-like proofs is intimately related to proof height, which we define as the
maximal length of a derivation path in the proof. If P is a (circuit, substitution) Frege proof
system, and ¢ a formula, let hp(p) be the minimal height of a P-proof of ¢. We observe that

this measure is very robust.

Lemma 3.16 For any tautology ¢, hp(p) is the same for dag-like or tree-like Frege, circuit
Frege, and substitution Frege systems P which use the same set of rules, and

kp(p) < 90(hp(¥))
If P and P' are two Frege systems for L, then hp(p) = O(hp/(p)).

Proof: The height of a dag-like proof does not change if we unravel it in a tree. Given a CF-
proof, we replace all circuits by equivalent formulas to get an F-proof of the same height. If
we have a tree-like SF-proof, we construct a Frege proof by going from the axioms downward,
and applying the substitutions used in the original proof to the whole subtree above the
instance of the substitution rule. Again, this does not increase the height of the proof. If we
switch to a different set of Frege rules, the simulation in Lemma 3.1 increases the height only

by a multiplicative constant factor. O

First, we mention some cases where the tree-like systems are equivalent.

Proposition 3.17 Let L be a weakly transitive logic. Then
hr(p) = ©(log kr (),

and given a (circuit) Frege proof of ¢ with k lines, we can construct in polynomial time a
(circuit) Frege proof of ¢ of height O(logk).

Proof: 1If L is a si logic, then the proof of Proposition 3.11 gives directly a proof of logarithmic
height. Let L be an n-transitive logic. The only parts of the proof constructed in 3.11 which
can be deeper than O(log k) are the subproofs of the extra axioms

O™(p — ¢) — (O™ — O™Y),
0"«

(%)

of P_, where « is an axiom of P. However, as L is n-transitive, it suffices to use a restricted
version of P_ where () are included only for m < n. Then these axioms are instances of a
fixed finite number of tautologies, hence they have proofs of height O(1). O
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Corollary 3.18 If L is weakly transitive, then all tree-like (circuit) Frege systems for L are
p-equivalent.

Proof: We transform the proof to logarithmic height by Proposition 3.17, apply the construc-
tion of Lemma 3.1, and unravel the proof in a tree. The result has height logarithmic in the
number of lines of the original proof, hence its size is polynomial. O

Proposition 3.19 Let P be a (circuit) Frege system for a modal logic L, and let Q be a (cir-
cuit) Frege system for L which uses azioms, MP, and Nec. Then P* =, Q* (or equivalently,
P* =, P) if and only if there are poly-time constructible P*-proofs of (x).

Proof: By inspection of the proof of Proposition 3.11. O

We are going to show an exponential separation between two tree-like systems for K. We
first establish a sort of converse to the relation between height and number of lines from
Lemma 3.16.

Definition 3.20 Let P be a Frege, circuit Frege, or substitution Frege system. We define Py
as the corresponding F'; CF, or SF system in which every P-rule of the form

ar, g, ..., 0y
is replaced by the rule
a1, 01, 2, @2, ..., 0n, Op

Lemma 3.21 Let P be an F', CF, or SF system. Then

hp(p) = hps(p) = O(log kp; ().

Proof: Let m be a Py-proof. By induction on k, we will show that each subproof of m with k
lines of a formula v contains a P-proof of 1 of height at most log,(k + 1). Assume that the

proof ends with
O[l,al, s 7047“0[”

/‘/) )
let m; and 7r§ be the two subproofs of «; in 7, and let k; and k; be their number of lines.
Without loss of generality, we may assume that >, k; <. k., hence k; < (k —1)/2. By the

7'V

induction hypothesis, m; contains a P-proof of a; of height h; < logy(k; + 1). Their union
augmented by an application of the P-rule

Aly...,Qp
(G
is thus a P-proof of 1 of height

14+ max h; <1+logy((k—1)/241) =logy(k+1). O

i=1,...,n
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Proposition 3.22 Let K-F be the usual Frege system for K consisting of CPC axioms, K,
MP, and Nec. If § is any tautology in (x), then hx_r(8) > m.

Proof: For every formula ¢, let p, be a fresh variable. For each formula ¢ and a number A,
we define a formula " so that (-)* commutes with Boolean connectives, preserves variables,
and

(D@)O = DPey>
(D) = O(").

h+1 are substitution instances of p. Let 7w be an F-proof of height h of

Notice that ¢ and ¢
a formula ¢, we will show that ¢" is a K-tautology by induction on h. The induction steps
for classical rules are trivial, as ¢" preserves Boolean connectives. If ¢ is an instance of K,
and h > 1, then " is also an instance of K. If ¢ = Ot was derived from ¢ by Nec, then
" = Oy follows by Nec from "1, which is a tautology by the induction hypothesis.
Assume for contradiction that 3 has a proof of height A < m. Then 3" is (up to renaming

of variables) one of the formulas

0"p — (O"q — o),
o”p,

neither of which is a K-tautology. O

Corollary 3.23 Let K-F be as in Proposition 3.22, and K-CF, K-SF be the corresponding
circuit and substitution Frege systems. Then the formulas (x) have poly-time constructible
K-F*-proofs, but require K-CF%5 and K-SF5-proofs with exponentially many lines.

4 Bimodal expansions

The purpose of this section is to establish connections of L-SF to EF for certain bimodal
expansions of L. Roughly speaking, we could say that the difference between EF and SF
is that L-SF can reason “globally” about the entire Kripke model, whereas L-EF has only
access to whatever is visible from the “current world”.

The main tool is the next lemma, which essentially describes what we can salvage from
the usual proof of CPC-SF <, CPC-EF. (This may not be quite apparent, because here
we prove Lemma 4.2 as a corollary to Theorem 3.15. We invite the reader to give a direct
proof of the lemma along the lines of [15, L. 4.5.5].)

Definition 4.1 Let L be a modal or si logic, and L’ an extension of L, possibly in a language
with more modal operators. We say that L’ has the property (S) with respect to L, if the
following holds: for every L-formula ¢(r), there exists an L'-formula «, and L’-F-proofs of
o(a) Fre(L), and p(a) Frr o(T), constructible from ¢ in polynomial time.

Lemma 4.2 If L' has the property (S) wrt L, then L-SF <, L'-EF.
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Proof: Take an L-EF-derivation of a formula
o= \(Wi 705" 1 05 —
i<k
as in Theorem 3.15. We construct an L'-formula «, and L'- F-proofs of po(ro/ag) F @o(ro/L),

©vo(ro/T). We introduce a new extension axiom 7y < ag, derive @o(r9/ag) by a poly-size
L’-F-proof, infer ¢g(ro/L) and @g(ro/T) by assumption, and conclude

A @i 70577 05 r) —
0<i<k

as in the proof of Theorem 3.15. We continue to eliminate r1,...,75_1 in the same way. O

Definition 4.3 Let L be a modal logic. The weak tense expansion LY of L is a bimodal
logic which has an extra modal operator H, and the axioms and rules

H(p =) — (Hp — HY),
¢ Hop,
CHp — .
L’ has a definable weak past modality for L, if L' O L, and there exists an L'-formula H(p)

which interprets L“! in L'.

L is weakly symmetric, if it proves the axiom
(Bx) p — 00k
for some k.

Remark 4.4 A tense (or temporal) logic is a normal bimodal logic with two modal operators
G and H, which includes the axioms

FHp — p,
PGp — p,

where Fp = =G—p and Pp = —~H-y are the dual (<-like) operators to G and H. The
intended meaning of Fp and Py is “p holds at some time in the future”, and “p holds at
some time in the past”, respectively. If L is a (mono)modal logic, its minimal tense expansion
L is the smallest temporal logic which includes L, where we identify O = G. Our L is thus
a weakening of L, which omits one of the two characteristic axioms of temporal logics. This
should explain the terminology of Definition 4.3.

Example 4.5 Any extension of KB is weakly symmetric.

Lemma 4.6 There are L"t-F-proofs of ~¢ — OSM—=H<™y constructible in time polynomial
; <
in |o| and m, where H="p = Ny, H --- Hp.

k

Proof: FExercise. O
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Theorem 4.7 Let L be a modal logic.
(i) L-SF <, L“t-EF.
(i) If L is weakly symmetric, then L-SF =, L-EF.

Proof: (i): We will show that L“! has the property (S) wrt L. Let ¢ be an L-formula,
and put m := md(¢), a := H="p(L). Using Lemmas 4.6 and 3.7, we can construct short
LWt F-proofs of

~@(L) = =p(L) ADSMH=" (1)
— —p(L) A OSM—q
— —p(a),

thus
p(a) b p(a) Ap(L) F p(a) AOSTH="p(L) F p(a) AD="a F o(T)

by necessitation.

(ii): If k- By, then L has a definable weak past modality H(p) = O%Fp. Given an
L-SF-proof of ¢, we construct an L**-CF-proof of ¢ by (i) and Proposition 3.3, replace all
subcircuits Hy by H (1) in such a way that the size increases only polynomially, and include
short L-proofs of the axioms of L*! to obtain an L- CF-proof of . O

We remark that the derivation of Theorem 4.7 from Lemma 4.2 is tight:

Proposition 4.8 Let L be a modal logic, and L' its (possibly polymodal) extension.

(i) L’ satisfies the property (S) wrt L if and only if L' has a definable weak past modality
for L.

(ii) L has a definable weak past modality for itself if and only if L is weakly symmetric.
Proof: (i): Let O, be the conjunction of all modal operators of L', and put
o(r,p,q) = (p? Or: 0-r) —q.
By (S), there exists an L'-formula «(p, ¢) such that
(p?0a:0-a) - gk (p?70L:0-1) - ¢)A((p?0T :0-T) —q) b q,
hence by the deduction theorem, there exists an m such that L’ proves
O™ (p A Do — ¢) ADE™(=p A D=a — q) — ¢.
We substitute p/ L and p/—q to obtain
O™ (0-a(L,q) = q) — ¢,

O™ (0a(~q, q) — q) — g,
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thus L' proves

(%) ) — OF™M(@-a(L, ) A ) A OT™(Oa(y, =) A1)
for every formula ¢¥. We put k£ = md(«), and
Y =-pAO(OFp AL, T)),
W =—p A OO A—a(L,T)).
We have
—p A OO Aa(L, T)) — OF™(O=a(L, =) A=p A OO p Aa(L, T)))
— OF™M(O-a(L, ~) AO(@FF ¢ Aa(L, T)))
— OF™(O-a(L, =) A Ga(L, )
— OS™m |
— L
by (x) and Lemma 3.7, and similarly
“p A O(OF P A =a( L, T)) = OF™(Ba(e, =) A—p A O(OFp A =a(L, T)))
— OF"(Ba(y,~¢') A O(OFF ' A —a(L, T))
— OF™M@a(y', ~¢) A O=a(y', —y)))
— 1,
thus
OO p — O(OFFp A a(L, T)) VOO p A —a(L, T))

It follows that H(p) = ka’p is a definable weak past modality for L.

(ii): Let H(p) be a definable weak past modality, and k = md(H). As L proves H(T), we

have O<Fp — H(p), thus p — O-H(—p) — OO=Fp.

If the logic L is (weakly) transitive, we can give a sort of converse to Theorem 4.7: L-SF

p-simulates LY-EF (on L-formulas). In fact, we can simulate a stronger expansion of L,

which is also much more natural, and often used in the literature. The result also applies to

si logics, which are all transitive by definition. (The reason we did not mention si logics in

Theorem 4.7 is that Theorem 4.12 will give a stronger result, and the only consistent “weakly

symmetric si logic” is CPC.)

Definition 4.9 Let L be a modal or si logic. The expansion LA of L with universal modality

is a logic which has an extra modal operator A, the axioms and rules
Alp = ¥) — (Ap — Ay),
Ap — o,
Ap VvV A-Ap,
¢+ Ap,
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and if L is modal, the axiom
Ap — Op.

Remark 4.10 If (W, R, V) is a general L-frame, we may define satisfaction of LA-formulas
in W by
xlFAp iff Yue Wulk .

It is easy to check that L4 is complete wrt this semantics, which gives the universal modality
its name; cf. [3].

Lemma 4.11 There are poly-time constructible L -F -proofs of

/\A(wi = xi) = (p(¥) < ¢(X).

If every variable in ¢ is in the scope of A, there are poly-time constructible L*-F -proofs of
w — Agp.

Proof: Easy. O

Theorem 4.12 Let L be a weakly transitive logic. Then L-SF =, LA-EF wrt L-formulas.

Proof: L-SF <, LA-EF: by Lemma 4.2, it suffices to show that L satisfies the property (S)
wrt L. Given a formula ¢(r), we define @« = Ap(L), and leave the verification of ¢(«) 74
©(L),¢(T) as an exercise, using Lemma 4.11.

LA-EF <p L-SF: we assume L O K ©® Tray, the intuitionistic case is similar. Let 7 be
an LA-EF-proof of an L-formula ¢, and let Ay, ..., Ay, be all subformulas with topmost
connective A which appear in 7, ordered so that j < 7 whenever At); is a subformula of v, or
of the definition for any extension variable which recursively appears in 1);. We choose new
variables r;, and for any formula «, let @ be the result of replacing each subformula A; in «
by 7;. By induction on the length of 7, we will construct an L-EF-proof which contains the

0=kq for every a € 7, where

&= N\(OFp; 2 0%Fr; - O%Fary),
%

formula £ —

The induction steps for axioms of L, modus ponens, O-necessitation, and extension axioms
are straightforward.
Consider an axiom a = Av; V A-Ay; € 7. We have & = r; V r;, and @ZT] = —r;, where
Yj = ~Av;. We can prove
ngri — ng(ﬁ' V T‘j),

and
& A-OFp; — ¢ AOSF—p
— ngrj
— ng(ri V),
thus &€ — O=F(r; V ;). The other axioms and rules of L* are treated in a similar way.

We obtain an L- EF-proof of the formula ¢ — O<F¢, from which we construct an L-SF-
proof of ¢ by Theorem 3.15. O
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Problem 4.13 Does L-SF simulate L*-EF or even LA-EF for all modal logics L?

5 Simulations

We have already seen some logics such that L-EF =, L-SF in Theorem 4.7. In this section we
will prove the same for several more classes of logics. We will concentrate on transitive logics,
partly because of their overall importance, and partly because their relatively well-behaved
model theory ensures various useful structural properties. (More or less) all the logics we
consider have finite width; if we continue the handwaving from the lead of Section 4, the
intuition could be that in narrow models the “global access” does not give SF' any significant
advantage over FF.

All the proofs use a simulation of L by classical logic: we translate an L-SF-proof to
CPC-SF, apply the classical simulation of SF by EF, and translate the CPC-EF-proof
to L-EF. The benefit of this method is that it establishes much stronger results than just
simulation of L-SF by L-EF, the drawback is that it in principle cannot be applied to logics
which are not coNP. The device is formally defined below.

Definition 5.1 Let P be a proof system for a logic L, and P’ a proof system for a logic L'.
We say that P is interpretable in P’, if there exists a poly-time function f such that ¢ € L
iff f(p) € L', and such that P-proofs of ¢ and P’-proofs of f(y) are poly-time constructible
from each other.

Observation 5.2 Let P be a proof system for a modal or si logic L, and P’ a proof system
for CPC. If P is interpretable in P’, then L is in coNP, and lower bounds on the size of
P-proofs imply lower bounds on the size of P'-proofs.

Proof: Clearly L is reducible to CPC via f, thus L € coNP. If ¢ requires P-proofs of size
s(|¢|), then ¢’ = f(¢) requires P’-proofs of size s(|p])H) > s(|/[*1))RD), O

5.1 Tabular logics

The class of tabular logics contains only a few logics of independent interest (CPC, SmL,
finitely valued Godel logics), but it is conceptually rather important: it comprises the discrete
upper part of the lattice of normal modal (resp. si) logics, which can in a sense approximate
all logics with the finite model property. It is very well-behaved and easily described.

The idea of the simulation is as follows. If L is the logic of a finite frame F', we can
define a classical formula ¢ which describes the satisfaction of ¢ in F' in an obvious way.
The problem is to extract a proof of ¢ from a classical proof of ¢f. If we have “labels” ¢,
for every point € F such that ¢, holds only in z, we can easily construct ¢ from " by
a simple substitution. In fact, we do not quite have such labels; but as ¢, do not appear in
the final formula ¢, we may imagine that we are free to assign them if it is possible at all.
If it is not possible, then we do not actually live in F', but in some smaller frame G, which
satisfies a proper extension L’ of L. This suggests that we can construct an L-EF-proof of
¢ by induction on L, where the induction hypothesis would be a proof of ¢ in L'-EF. The
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soundness of such induction (among others) follows from the next theorem, which summarizes
some well-known properties of tabular logics.

Theorem 5.3 (see [7]) Let L = L(F) be a tabular modal or si logic. Then L is finitely
axiomatizable, it has only finitely many extensions, and all of them are also tabular. A rooted
finite frame G is an L-frame if and only if it is a p-morphic image of a (rooted) generated
subframe of F.

Definition 5.4 Let F' = (F, R) be a finite modal Kripke frame, x € F, and ¢(p) a modal
formula. We define a classical formula ¢® by induction on the complexity of ¢:

Pi = Dix,
(pot)® := " 0rp”, o€ {—,AV, L1},
(Bp)* = /\ @Y.

TRy
If F = (F,<) is an intuitionistic finite frame, x € F, and ¢ is an intuitionistic formula, we

define
pzw = /\ pi,y7

y>z
(po)” =" otp”, o€ {A,V, 1},
(0= 0)" = N\ (¥ — ).

y>z

o= N "

zeF

In both cases, we put

Notice that even though the formulas ¢* and ¢! may have exponential size, they can be
expressed as (poly-time constructible) circuits of size O(|F| |¢|).

Lemma 5.5 Let F be a finite modal or intuitionistic frame, and ¢ a formula. Then ¢ € L(F)
iff of' € CPC.

Proof: Let F be a modal frame. Classical assignments e to the variables p;, are in an
obvious 1-1 correspondence with assignments IF to the variables p; in F', and a straightforward
induction on the complexity of ¢ shows that e(p®) = 1 iff x IF ¢, thus e() = 1 iff  holds
in F' under IF. The intuitionistic case is similar. O

Lemma 5.6 Let F' and G be finite modal or intuitionistic frames such that L(F) C L(G).
Given a CPC-CF -proof of o, we can construct in polynomial time a CPC-CF -proof of ©°.

Proof: Let G = |J;., Gi, where each G is rooted. By Theorem 5.3, each G; is a p-morphic
image of a generated subframe of F', hence G is a p-morphic image of a disjoint union H =
> i<y Hi of generated subframes H; C-F. Given a CPC-CF-proof of ©!" we construct proofs
of i by omitting some of the conjuncts, we rename the variables to make them disjoint, and
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we join the proofs to obtain p# = A,_, ¢ (the size increases only polynomially, as k < |G|).
Let f: H — G be a p-morphism, and let o be the substitution defined by op; . = p; f(s)-
Then o is almost identical to ¥, except that some of the subformulas may be duplicated.
We thus apply o to the whole proof, and fix the result by a short CPC-CF-proof to obtain
ng. |

Lemma 5.7 Let F be a finite modal or intuitionistic frame. Given an L(F)-SF-proof of p,
we can construct in polynomial time a CPC-CF-proof of ¢

Proof: Let P be the substitution circuit Frege system for CPC, which is p-equivalent to
CPC-CF. If ¢1,...,0m = ¢ is an L-SF-proof, we construct the sequence !’ ... ¢f  and
fix it up to a P-proof in a straightforward way. For example, if ¢; was inferred from ¢; and
¢k = (pj — ;) by modus ponens, then we can prove ¢! = A_¢? from gof = A\, ¥j and
ol = N (¢ — #f) by a poly-size CPC-CF-subproof. O

We intend to construct a simulation of L-SF in L-EF for tabular L, which goes via
interpretation in the classical logic. In the modal case, we may take a CPC-EF-proof of ¢!
substitute some modal formulas inside, and hopefully proceed to construct an L- EF-proof of
. This does not work in the intuitionistic case, as L does not contain CPC; we thus need
to use some kind of interpretation of CPC in IPC. Glivenko double-negation translation
does not help us, as substitution inside a negative formula can only produce another negative
formula. We will use the feasible conservativity from Theorem 3.9 instead.

Definition 5.8 Let ¢ be a classical formula in variables p. We pick new variables ¢, and
define monotone formulas ™, ¢y, by induction on the complexity of ¢:

<Z)m:pz‘ (Z)m:
(P AY)™ =™ AY™ (P AY)m = Pm V ¥m
(pVy)™ =™ vy™ (PVY)m=¢ Awm
(=)™ = Vm (=0)m = ¢
(¢ = )™ = pm V™ (¢ = V)m =™ AYm
1m= lm=T

(In other words, we push all negations down by De Morgan rules, and introduce new variables
for —p;.)

Lemma 5.9 Given a CPC-F-proof (CPC-EF-proof) a formula ¢(p), we can construct in
polynomial time an IPC-F-proof (IPC-EF -proof, resp.) of the formula

A\@i v a) = ™5
i
Proof: 'We can construct a CPC-F-proof of ¢ < ™ (5, —p) by a straightforward induction
on the complexity of 1, hence we have a proof of

(0, D).
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As ™ is monotone, we can construct a short proof of

/\(Pi Vi) — /\(ﬁpi — qi)

7 7

— (¢™(p, =) — (P, D)),

and obtain a CPC-F-proof (CPC-EF-proof) of

/\(pz’ Vi) — o0, q)-

1

Then it suffices to apply Theorem 3.9. O

Theorem 5.10 If L is a tabular modal or si logic, then L-EF =, L-SF, and L-EF is
interpretable in CPC-EF.

Proof: By Lemmas 5.5 and 5.7, it suffices to show that we can construct an L(F')-CF-proof
of ¢ from a CPC-CF-proof of ¢! in polynomial time. We will consider the modal case first.

Theorem 5.3 and Lemma 5.6 imply that we may proceed by reverse induction on L; i.e.,
we assume that we are given L’-CF-proofs of ¢ for every proper extension L' of L = L(F).
Let FF = U,
L(F) C L(F;) for every i < m, and let «; be formulas in pairwise disjoint sets of variables
such that L(F;) = K@ «;. Notice that L(F") (hence every its extension) is k-transitive, where
k = |F|. By the induction hypothesis and Proposition 3.6, we can construct (K @ Tray)- CF-
proofs of formulas of the form

N\ 0%Fojoi — ¢

j<n

F;, where each F; is a rooted generated subframe of F. Assume first that

for every i < m, where o; are some substitutions. We may combine them to form a (K @

Tray)- CF-proof of
/\ \/ nga—jiai - ¥,

30y Jm—1<n t<m
from which we construct a (K @ Tray)- CF-proof of ¢ using n™ instances of the axiom
i<m

This is an L(F)-CF-proof of ¢, as K@ Tray @ o C L(F'). The size of the proof increases only
polynomially, as m and k are constant (for a fixed F').

The other case is L(F') = L(F;) for some i, we may thus assume that F' = F; is rooted.
Let X be the set of all roots of F'. We pick fresh variables ¢, for every z € F', and put

o= /\ (cz — —cy) A \/cgC A /\ (cx — Ocy) A /\ (cz — Omcy),
Ty x zRy xRy
Qg = Cy N 0kq.

Let IF¢ be the valuation given by x IF¢ ¢, iff x = y.
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Claim 1

(i) If G is a k-transitive frame, and u € G, then oy is satisfiable in u iff there ezists a
p-morphism f: G, — F, such that f(u) =

(it) If 1 is a formula, and 0 € X, then oy — » € L(F) iff F,0 IF ¢ holds under every

valuation I+ which extends IFC.

(@i) If 0 € X, then L(F') proves
OSkao — \/ Q.
zeX
Proof: (i): Easy. The p-morphism is defined by f(v) =y iff v I ¢,, and vice versa.

(ii): The left-to-right implication follows from (i), as identity is a p-morphism. Right-to-
left: let x € F', and IF be a valuation in F' such that x |- g, we need to show z IF . By (i),
there exists a p-morphism f: F, — Fy = F. As f is onto, we have |F,| > |F| and F, C F,
thus F' = F,. By the same argument f is injective, hence it is an isomorphism. If IF* is the
valuation induced by f from I, then IF* D [F¢ by the proof of (i), hence 0 IF* v, which implies
x Ik .

(iii): Let IF be a valuation in F, and z € F be such that z I ©=Faq. There exists y € Fj
such that y IF «p. By the proof of (ii), there exists an automorphism f of F' such that u IF ¢,
iff f(u) =wv. In particular y € X, thus z € X, f(r) € X, and x |- a (). O (Claim 1)

Let o be the substitution such that
OPixz = ng(cx - pi)'
Claim 2 Let 0 € X. For all formulas 1 in variables p;, there are poly-time constructible

L(F)-CF-proofs of
Qo — A(U¢x - ng(cm — ).

xT

Proof: By induction on the complexity of ¥. The steps for variables and A are trivial. The
steps for - and O follow from substitution instances of the formulas

g — (05K (ey — —q) & =0%F (¢, — q)),

Oéo—><D<ka—)Dq /\D Cy~>q>
Ry

which are provable in L(F) by Claim 1. O (Claim 2)

We take a CPC-CF-proof of ¢!, and apply the substitution o to the whole proof to obtain
a proof of !, By Claim 2 we construct an L(F)-CF-proof of

A (@ = o),

zeX

thus

() Ok — \/ Qp —
reX
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for any 0 € X by Claim 1. The formula «q is satisfiable in F, thus L’ := L(F) & -y is
a proper extension of L(F'). The induction hypothesis gives an L’-CF-proof of ¢, which we
transform into a (K @ Tray)- CF-proof of

(**) /\ ngﬁo'jao —
j<n

for some substitutions o; by Proposition 3.6. We take n substitution instances of (x) to
construct an L(F)-CF-proof of

/\ ng—'crjao Vo,
j<n
which we combine with (%) to make an L(F)-CF-proof of .
In the intuitionistic case we use the same strategy, we will only indicate below the differ-
ences. Let L = L(F) with rooted F, and assume we are given a CPC-CF-proof of ¢!, and
L’-CF-proofs of ¢ in proper extensions L’ of L. Let 0 be the (unique) root of F, and put

ﬁ:z/\((/\czﬁcy)ecx>—>co.
Ty 2Ry

Let I-¢ be the valuation in F given by z I-¢ ¢, iff # £ y. By Lemma 5.9, we can construct an
IPC-CF-proof of the circuit

(%) Apie v aiz) = ()™

i,T
Let o be the substitution defined by
opie = [\ ey — pis
yFx

0Qix ‘= Pi — Cg.
We prove

Claim 3

(i) If G is an intuitionistic frame, and uw € G, then (3 is refutable in w iff there exists a

p-morphism f: H - F from a subframe H C G.

(i) If ¢ is a formula, then BV ¢ € L(F) iff F |- v holds under every valuation I+ which
extends IF°.

(@i) For all formulas 1 in variables p; and x € F, there are poly-time constructible L(F')-CF -
proofs of

BV (O_(wm)m A U(W)m - C:z:),

BV (@™ A (N ey =)V (0@ )m A (6 — c0)).
yte
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similarly to Claims 1 and 2. Then we proceed as in the modal case: we construct a proof of
BV @ using o(xxx) and Claim 3, we derive

N\ oiB—¢

j<n
from the induction hypothesis and Proposition 3.6, and we conclude ¢. O

Remark 5.11 The exponent of the polynomial simulation from Theorem 5.10 is quite large,
and grows rapidly with F. It can be shown by a more careful analysis that the exponent is
exponential in |F|.

5.2 Logics of finite depth and width

A transitive logic is tabular if and only if it has finite depth, finite width, and finite cluster
size. However, Theorem 4.7 suggests that infinite clusters should not impede simulation of
SF by EF. We are indeed going to generalize Theorem 5.10 to all logics of finite depth and
width (including e.g., S5 and K45). (Recall that logics of finite width or depth are transitive
by definition.) Notice that a si logic of finite depth and width is tabular, hence we will only
consider modal logics in this subsection.

Logics of finite depth and finite width behave very similarly to tabular logics, except that
they admit infinite clusters (see Theorem 5.16). A simple model-theoretic argument (Lemma
5.13) shows that we may replace infinite clusters by finite ones of size bounded by the length
of the formula we are trying to refute; the basic idea of our simulation, apart from what
we used in the tabular case, will be to formalize a proof-theoretic version of Lemma 5.13 in
extended Frege.

Definition 5.12 Let F' be a transitive Kripke frame, and m € N. We define F'" as the frame
obtained from F by reducing all clusters to size at most m. (In particular, F! = oF is the
skeleton of F.)

Lemma 5.13 Let F be a transitive frame, and ¢ a formula. Then F E ¢ iff FI¢?l E ¢. In
particular, L(F) = (,,en L(F™).

Proof: F™ is a p-morphic image of F, thus L(F) C L(F™). Let IF be a valuation in F' which
refutes ¢, let @1, ..., pr be the list of all formulas such that Og; is a subformula of ¢, and
put wo =@, m =k+1 < |p|. If C is a cluster in F such that |C| > m, we pick a subset
C’ C C of size m such that

dz e Caz W ;= 3z c C'axl¥y;

for all 4, otherwise we put C’ = C. Let F’ be the union of all C’. Then F' ~ F™, and a
straightforward induction on the complexity of 1) shows that

Fxl-y if F ozl

for every x € F’ and v a subformula of ¢, thus ¢ is refuted in F. O
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Definition 5.14 Let F be a finite transitive frame with root 0. The frame formula of(F, 1)
is defined as

N Bpe = —p) AB\/p A N Blpz = Opy) A J\ Bpe — D-py) — —po.
2y x zRy xRy

Lemma 5.15 Let G be a transitive frame, and u € G. Then of(F, 1) is refutable in u iff
there exists a p-morphism f: Gy — F such that f(u) = 0. In particular, G ¥ of(F, L) iff F
s a p-morphic image of a generated subframe of G.

Proof: Easy, cf. [7]. O
Theorem 5.16 Let L be a transitive modal logic of finite depth and width.

(i) There exists a countable Kripke frame F such that L = L(F), and oF is finite.

(ii) L is finitely axiomatizable.

Proof: Let G be the disjoint union of skeletons of all rooted L-frames. G is finite, as there are
only finitely many non-isomorphic rooted frames of a given finite depth and width without
proper clusters. Let R be the set of reflexive points of G. For any s: R — N U {w}, let
G5 be the Kripke frame such that ¢Gs; = G, and for every « € R the size of the cluster of
Gs which collapses to x is s(z). Put X = {s; Gs F L}. As L has finite depth, it has the
finite model property by Segerberg’s theorem, hence it is complete wrt {Gs; s € X}. We
endow N U {w} with the natural linear order, and the corresponding ordinal topology. The
set S := (NU{w}) is then partially ordered by the product order, and it carries the product
topology.

Claim 1 X is a clopen lower set.

Proof: X is a lower set, as the class of all L-frames is closed under p-morphisms. This
also implies that X is open, as [«,a] := {s € S; s < a} = [[,cg[l,a(x)] is an open set
in the product topology for any a € S. Let s € X. For any m € N, define s™ € S by
s™(x) = min{s(x),m}. As [s",s] is an open neighbourhood of s, and X is a lower set, we
must have s”* € X. Then s € X by Lemma 5.13. O (Claim 1)

As X is lower, we have X = J .y [+, s]. The sets [+, s] are open, and X is compact (being
a closed subset of S, which is compact by Tychonoff’s theorem), thus there exists a finite set
{si1 i < k} such that X = (J, [, s;]. This implies L = (), L(Gs,), thus F := ", . G,
satisfies the requirements of (i).

The set S\ X is upper and clopen, hence S ~ X = |J;_/[si, —] for some { € w and
s; € NE by a similar compactness argument. For every i < ¢ pick a rooted generated
subframe H; C-G,, such that H; # L. Assume that L has depth and width at most &k, and
let Y be the (finite) set of all rooted frames of depth and width at most k& with no proper
clusters, which are not models of L. We claim that L can be finitely axiomatized as

L =K4BD;BW, @ {o*(H, L); He Y} @ {o*(H;, L); i < €} = L.

34



The inclusion L' C L follows immediately from the definition. As a logic of finite depth, L’
has the finite model property, thus to prove L C L’ it suffices to show that any rooted finite
L’-frame H is an L-frame. Clearly H has depth and width at most k, and oH ¢ Y, hence
oH E L. It follows that oH is (isomorphic to) a disjoint summand of G. Let s € S be such
that H is a disjoint summand of G, and G~ H has no proper clusters. As G is an L'-frame,
we have G5 F L'. We cannot have s € S~ X as H; ¥ L', thus G, and H C-G, are L-frames.

O

Corollary 5.17 Inclusion is converse well-founded on the set of all transitive logics of finite
depth and width.

Proof: The union of an infinite strictly increasing chain of logics cannot be finitely axioma-
tizable. O

Lemma 5.18 Let F' and L be as in Theorem 5.16. Given an L-SF-proof of a formula o,
and m € N (in unary), we can construct in polynomial time a CPC-CF-proof of the circuit
"

Proof: We construct a substitution circuit Frege proof of ¢ by induction on the length of
the proof of ¢ as in Lemma 5.7. The induction steps for modus ponens, necessitation, and
substitution are handled in the same way as in 5.7, hence it suffices to deal with axioms a of
L. As we work with a SF system, we only need to consider the constant-size base form of the
axioms, not their substitution instances. It thus suffices to show the following: for any fixed
L-tautology «, there are CPC-CF-proofs of o™ constructible in time polynomial in m.

Claim 1 Given a formula @, and m > |¢|, we can construct in polynomial time a CPC-CF -
proof of
U(pFM - (me

for some substitution o.

Proof: Put k = |¢|, let Ogq,...,O¢pg_1 include all boxed subformulas of ¢, and define
¢ = . If  belongs to a cluster of size at most k in F', we put op;, = pi.. Let C be a
cluster of F' such that |C| > k (a large cluster). We fix an enumeration {zc 1,...,zcy} of its
image C* in F'*, and an enumeration (possibly with repetitions) {yc1, ..., ycm} of its image
C™ in F™. Then we define

. _ Yyc,i 2. . Yyc,2 2. R Yyc,m—1 2. .
ODizc,; = 7P;  “Piyca - 795  “Piyca - C e “Piycm-1 * Piyo,m-

By induction on the complexity of a subformula 1 of ¢, we construct proofs of
(+) oyt o gt
for x whose cluster in F' has size at most k, and

(ex)  oYTOT o O DU SO DU . O D gpUCmt s g¥Cm
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for any large cluster C. The steps for variables and Boolean connectives are straightforward.

Let ¢ = Op;. We first prove /\ /\
ovi = /\ ¥

zeCk yeCm
for any large cluster C. The right-to-left implication is immediate from the induction hypoth-
esis. The left-to-right implication follows by

i—1
o A A=V A )

yeCm

- .\/ I A (00 o0 IO0))

from the induction hypothesis. Then for any = € F¥, and y € F™ which belong to the images
of the same cluster of F', we have

o(Tp)* = N ov? = N ¥ = (Og))Y,
zRx’ yRy’

which implies the induction statement for O¢p;.
We take (x) and (xx) for ¢ = ¢, and derive

N\ oe" = N\ ¢

x€Fk yerm

as in the induction step for O, using ¢ = ¢,. We obtain JgoFk — of™, O (Claim 1)

We finish the proof of Lemma 5.18 as follows. If m < |a| = O(1), we take any proof of af™
If m > |a|, we take a proof of aFla‘, and apply the claim. |

Remark 5.19 Readers familiar with bounded arithmetic may substitute the proof of Lemma
5.18 with the following high-level argument. Lemma 5.13 is obviously provable in the theory
V1, and then a straightforward induction (inside V') on the length of an L-SF-proof 7 of a
formula ¢ shows that ¢ is valid in the frame F™, hence ¢ is a tautology. The propositional
translation of this variant of a reflection principle thus has poly-time constructible proofs in
CPC-CF, and implies ¢ if we plug in constants describing a concrete proof 7.

Theorem 5.20 If L is a (transitive) modal logic of finite depth and width, then L-EF =,
L-SF, and L-EF 1is interpretable in CPC-EF.

Proof: The proof goes by reverse induction on L, which is possible by Corollary 5.17. Let
L = L(F), where F is as in Theorem 5.16. By the same reasoning as in Theorem 5.10, we may
assume that F' is rooted. Put G := FX where K := 1+ max{|C|; C is a finite cluster of F'}.
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Let a := ozﬁ(G , L) in variables ¢, instead of p,, and let 0 be the root of G used in the definition
of a. Fix a p-morphism h: F — G such that h(z) = z if |cl(z)| < w, and for every infinite
cluster C' in F, h(C) = CX, and h~![z] is infinite for every x € C¥. Let I-¢ be the valuation
of the variables ¢, in F such that y I ¢, iff h(y) = x, and fix 0 € h=1[0].

Claim 1
(i) aV e L iff 0k under every valuation b in F which extends I-°.

(i1) L proves

/\ alco/cx, ca/co) — Ba.

x~0

Proof: (i): The left-to-right implication is obvious, as 0 ¥ a. Right-to-left: let u € F, and
let I be a valuation such that u ¥ «, we will show u I 9. Using Lemma 5.15 there exists a
p-morphism f: F,, - G such that f(u) =0, and y IF ¢, iff f(y) = = for every y € F,. Let I
be the set of infinite clusters of F, and F' = F ~ |JI. If C € I, there exists a cluster D in F'
such that f(D) = CX; by the definition of K, D must be infinite. Hence f induces a partial
surjection f°° from I onto itself. As I is finite, f°° is total, and it is a bijection. In particular
f(UI) € UI, thus f7'[F'] C F', i.e., f | ' is a partial surjection of F’ onto itself. Again,
F' is finite, thus f | F” is total, and it is a bijection. In particular, F,, = dom(f) = F, thus u
is a root of F.

It follows that there exists a function g: F' — F such that f~![x] = {g(z)} if z is finite,
and for every C € I and z € CF, g is a surjection of h~![x] onto f~![z]. Without loss of
generality we may assume g(0) = u. It is easy to see that g is a p-morphism, and f o g = h.
Let IF* be the valuation defined by y IF* x iff g(y) I x. Then IF* extends IF¢, hence 0 IF* 1,
and u = g(0) I 4.

(ii): Assume that u ¥ D« for some valuation I, and u € F. There exists a v > u such
that v ¥ «, hence there exists a p-morphism f: F,, — F such that f(v) = 0, and y IF ¢, iff
f(y) = . By the proof of (i), dom(f) = F, hence v and u are roots of F', and z := f(u) is a
root of G, thus u ¥ a(co/cz, cz/co). O (Claim 1)

As « is refutable in F', L' := L @ « is a proper extension of L. By the induction hypothesis,
there exists a poly-time interpretation (-)# of L'-SF =, L'-CF in CPC-CF. We define

% N
o=t At

where N = max{K, |p|}. Given an L-SF-proof of ¢, we can construct in polynomial time
a CPC-CF-proof of ¢* by Lemma 5.18. Given a CPC-CF-proof of ¢*, we can construct
an L'-CF-proof of ¢ by the induction hypothesis. Using the same reasoning as in Theorem
5.10, it thus suffices to construct an L-CF-proof of Ha V ¢ from a CPC-CF-proof of gpFN.
Moreover, part (ii) of Claim 1 implies that it suffices to construct a proof of a V ¢.

We denote the accessibility relations in FX and FN as R¥ and RV, respectively. Assume
that ¢ uses the variables pg, ..., pr_1. Let Oy, ..., Opn_1 include all boxed subformulas of ¢,
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and put ¢o = ¢. Let C be any infinite cluster of F. We fix enumerations CX = {yc,j: j < K},
CN = {zcj; j < N}, and we put
co = \/ Cy-
yeCK
For any ¢ < k we define the circuits PZ.C’_1 as
cC,—1 . C,—1
PO = 0(co n N\ r = PO = mi)
i'<i

by induction on ¢, and we define the circuits Pic’j for j < N as

Ci C.i— C,j
P = 0lec = i) PR 0o n N = PEY) = miv )
i <i

by induction on jk + i. We define

i = co N /\(pl — Pic’j).
i<k

If x € F is such that cl(z) is finite, we put ¢* := ¢,. Let o be the substitution such that
opix = B(c” — p;).

Claim 2 There are poly-time constructible L-CF-proof of oV (3, where 3 is

(i) B(ce — PET)V B(ce — —PY),
(i) B(c® — ) vE(c® — =) for any subformula ¥ of ¢,
(iii) O(c*C3 — ;) — O(co — ¢j),
(v) B(c® — oY), if v RN y,
(vi

Proof: (i): Notice that Pic’j is a Boolean combination of boxed circuits. We can thus prove

)
)
)
(iv) ©c,
)
)

op* «— B(c* — ) for any subformula ¢ of p.

the statement by induction on jk + ¢, using instances of the formula
(*) aV B(cc — Og) V B(cc — —Hg),

which is provable in L by Claim 1.
(ii): If clp(x) is finite, we use an instance of

aV (e, — q) V(e — q),

which follows from Claim 1. If x = x¢ j, we proceed by induction on the complexity of ).
We use (i) for variables, (x) for boxed formulas, and the steps for Boolean connectives are

obvious.
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(iii): We prove
aV (<>(cc A—pji) — <>(cc A /\ (pir < Pfj) A —\g0j>)
i <i
by induction on %, using the definition of Pl-c’j , and instances of
aVO(cc Ag— <q).

(iv): If clp(z) is finite, we have oV ©¢, by Claim 1. Let C be an infinite cluster. We have
aV <Oce by Claim 1, and we derive

aV <>(cc A /\(pz — Pic’_l))

as in (iii). Then we prove oV &¢Ci by induction on 7, using (iii) and the definition of PZ-C’j.
(v): If clp(y) is finite, we have a V B(c® — <¢,) from Claim 1. If y € CV for an infinite
cluster C, we have a V B(c* — Oce) from Claim 1, and o V B(cc — &) from (iv) and (x).
(vi): By induction on the complexity of ¢. The steps for variables and A are trivial, and
the step for = follows from (ii) and (iv). Let ¢ = O¢p;. We construct a proof of

av (a(Og)" = A\ Bl - )
xRNy
by the induction hypothesis, and the definition of (Og;)*. It thus suffices to prove
aV ( /\ H(c¢Y — (pj) — O(c" — Dgpj)).
xRNy

Right-to-left: we have
aV (B(c" — Op;j) — &(cY ANyy))

by (iv) and (v), thus
aV (B(c® = Opj) — B¢’ = ¢;))

by (ii). Left-to-right: we have
aV( /\ El(cy—>goj)—> /\ E(cy—>(pj)>
xRNy zREy

by (iii), and

a\/B(cx—>D \/ cy>

xRKy

by Claim 1. O (Claim 2)
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We apply o the CPC-CF-proof of ¢! ¥ we are given. By Claim 2, we construct an L- CF-proof
of
aV /\ B(c” — ).
x

If the root cluster C' of F' is finite, we conclude oV ¢ from a V ¢g. If C' is infinite, we obtain
aVO(cc — @)

from (iii) of Claim 2, we use an instance of
aV(Og—q)

(which is provable by Claim 1, and reflexivity of the root cluster) to derive

aV (CC - ¢)7

and we conclude a V ¢ from a V c¢, which is provable by Claim 1. O

5.3 Some logics of finite width

Typical modal and si logics do not have finite depth, and the purpose of the present subsection
is to attempt simulations of SF' by EF' in some logics of finite width, but unbounded depth.
As our strategy only applies to colNP logics, we need additional restrictions on the logic.
A convenient requirement is to consider only cofinal subframe logics: on the one hand, csf
logics of finite width have the poly-size model property, and are decidable in coNP (if finitely
axiomatizable); on the other hand, most of the standard transitive logics are csf, including
combinations of K4BW, with S4, GL, Grz, K4.1, K4.2, etc. Of particular importance are
csf logics of width 1: the Gédel-Dummett logic LC is one of the fundamental fuzzy logics,
and K4.3 = K4BW; and its variants (S4.3, GL.3, Grz.3, ...) are used as logics of time.
However, we will need more restrictions, either on the set of formulas, or on the logic.

The idea is to find a proof-theoretic version of the following argument, which explains
why csf logics of finite width have the poly-size model property. Consider a model of fixed
width £ refuting a formula ¢, and define its submodel as follows: for each boxed subformula
Oy of ¢, pick a point from each maximal cluster where 1 is refuted. (It is actually sufficient
to consider only formulas 0t occurring positively in ¢.) For fixed 1 these points make an
antichain, hence there are at most k of them. We thus obtain a model of size at most k|p|,
which also refutes .

There are serious obstacles in feasible proof-theoretic formulation of the argument: we
cannot define maximal points satisfying a given formula (save in GL), and we cannot identify
(label) the individual points of the new model from inside.

Our first result in this subsection will apply to all csf logics, but only to restricted classes
of formulas: those where the argument above uses only a constant number ¢ of antichains.
Notice that the argument then gives nontrivial information even for logics of infinite width:
it reduces the depth of the model to a constant. We will in fact formalize this more general
statement, and obtain the simulation of SF' in FF in the special case of finite width logics as
a corollary using the results of the previous subsection.

40



Definition 5.21 The width of a modal formula ¢ is the number of distinct positively occur-
ring boxed subformulas of ¢. The width of an intuitionistic formula is the number of distinct
succedents of implications occurring positively in . For any ¢ > 0, let I'. be the set of all
formulas of width at most c.

Theorem 5.22 Ifc > 0, and L is a cofinal subframe logic, then (L&BD42)-EF <,r. L-EF.

Proof: We consider the modal case first. Assume ¢ € I';, and let Oy, ..., O, be all boxed
formulas occurring positively in ¢. Put pg := ¢, @et1 := L, and m := ¢ + 2. Recall that

BDy = L,
BDyy1 =paV D(Dpn - BDn)

Let 7 be an (L @ BD,,,)-CF-proof of ¢, and © the set of all subcircuits of 7. For any circuit
a, let ¥ — Y® be the translation which preserves propositional variables, commutes with
Boolean connectives, and

(O9)* = O — ¢%).
Claim 1 Ify € L, then a A OO — ¢ € L.

Proof: Let W be an L-frame such that x IF a A O&Ca A —p* for some z € W, and a valuation
IF. Let W’ be the cofinal subframe of W defined by

W' ={yeW;yl-a}.

Then W' is an L-frame as L is csf, and a straightforward induction on the complexity of v
shows that
W' ylky iff W,y l-y®

for any y € W', hence W',z ¥ ). O (Claim 1)

For any subsets Y C X C m such that Y # @, we define the circuits

o=\ ax,

XCm
ax = \/ axy,
PAY CX
axy = Bxy A\ —ei,
€Y
Bxy = xy A N (B(Exy = 9%7) vO(O(Exy — 9Y) — ¢))),
YeO
€Y
wy = N\ Bein \ B@e;i—e) A N\ BOEE — ¢;) — 0,
¢X 1,j€Y €Y
JEXNY
txy =\ ~ev \/ oz
icYy ZCX\Y
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Claim 2 There are poly-time constructible K4-CF -proofs of
(i) Bla — i) = @i,
(i) ™ — 1,

for any positively occurring subformula i of ¢.

Proof: (i): We first show that the formula is a tautology. If W is a finite transitive frame,
x e W, and z ¥ ¢;, let y > x be a maximal point where ¢; fails, and

X :={j em; yl¥ Byp;},
Y:={jeX; @y ~yl)lFg}

Then it is easy to see that y IF ax y, hence z ¥ O(a — ;).
We construct a short proof of d(a — ¢;) — ¢; as follows. The circuit

(+) _‘SOi_><>(_‘SOi/\ \V 'yx,y>
X2Y>2:

is an instance of a fixed tautology, as m is a constant. For any Y C X C m, i € Y, we can
construct a proof of

i = (i A N\ (Blexy — 957) v O(O(Exy — 957) = )
V€O

by induction on |©|, using instances of =p — &(—p A (BgV O(Og — p))). We combine it with
(%) to obtain a proof of

i — <><ﬁ90¢ rn ﬁX,Y) — O(—pi A a),
X2Y5i

using yx,y — Byxy.
(ii): By induction on the complexity of 1. The steps for variables, negated variables, A,
V, and < are easy, and the step for O follows from (i). O (Claim 2)

Claim 3 There are poly-time constructible K4-CF -proofs of
(1) Bxy — B(a < &xy),

(i) a— \/ (wm A (9% v OO — 9°) —>¢i))).

<m Y€

Proof: (i) follows from (i), and the definition of ax y.
(i): It suffices to prove Bxy — (a < &£xy), as Bxy — Bfx,y. The implication

Bxy Néxy — «

is straightforward: {x y gives either \/ zCcx~y @z, which implies a by definition, or Viey —%i,
which implies axy (hence o) by Bxy.
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Let @ # W C Z, we have to show

Bxy Nazw — Exy.

The cases Z C X \Y,or W CY, are clear. We distinguish three other cases.
Z ¢ X: pick i € Z~ X. We have Og; by vxy, and B(Hp; — ¢;) for every j € W by

~zw, hence /\jeW @;, and ~ozw.
ZCX,Z¢X\Y:letieZNnY, and j € X \ Z. We have Oyp; by vzw, and
B(Be; — i) by vx,vy, thus ;. This implies Ay Bor by vz,w, hence ~az .
Z=X,WZY:letiec WNY,and j €Y. We have B(0g; — ¢;) by vzw, hence By,
by vx,y. This implies Ay ox, and —azw. O (Claim 3)

Claim 4 IfYg,...,0, € O, there are poly-time constructible K4-CF -proofs of
— (BDy(Po, - - -, Om)).
Proof: We will construct proofs of
a A /\ Clp; — (BDjx| (Yo, .- ., ¥)x)))*
i¢X

for every X C m by induction on |X|. The base case X = @ is clear, as we have

/\ By — na.

i<m
Assume k = |X| > 0. We have
an N Be— \/ (0F vO(O(a@ - 97) — @)
iEX iex
—>19%\/\/D(D(oz—>19‘,:)—> /\ E(pj)
iex JEX~{i}

— IV O(O(a — 9%) Ao — (BDg_1(do, - - ., 9k—1))%)
— (BDg (Yo, - - -, 9%))®

by Claim 3, and the induction hypothesis. O (Claim 4)

We take the proof 7: ¢1,...,9, = ¢, and construct the sequence
a— YT, o — Y.

We complete it to an L-CF-proof as follows. If v; is an instance of an axiom x of L, then
aANOGa — ¢ € L by Claim 1; moreover, it has a proof of linear size, as it is an instance of
the constant-size tautology ¢ A O&q — x?. We construct a proof of ®«a by Claim 2 (i) (recall
Yetr1 = L), and we derive a — .

If 9); was derived by necessitation or modus ponens, we construct a subproof of o — "
easily. If ¢; is an instance of BD,,,, we use Claim 4.
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We thus obtain a L-CF-proof of a — ¢®. We derive a — ¢ by Claim 2 (ii), hence ¢ by
Claim 2 (i).

The proof in the intuitionistic case is quite analogous, we sketch it below. If a =
{(Bi,di); i < n} is a set of pairs of circuits, we define the translation ¢ +— ¥ which pre-
serves variables and |, commutes with V and A, and

W —x)*= \Bi A = x>V ).

(2

As in Claim 1, we can show
el = =(T-1)*—=(T—-v)*el.

Let p € I'¢, and let 1, ..., ¢ be all succedents of implications occurring positively in ¢. We
put ©g := @, @et1 := L, and m :=c+2. Let w: ¢1,...,¢, be an (L + BD,,)-CF-proof of ¢,
and O the set of all subcircuits of 7. We define

o= U ax,

XCm
ax :={(Bxy,pi);i€Y C X},
Bxy i=yxy A\ @YV (@05 — ),

9€0
€Y
wy = Nein N\ i—=edn N\ ((ei = @) = 00,
igX 1,j€EY €Y
JEXNY
Exy ={(T,e)iieYiu |J oz
ZCXY

Analogously to Claim 2, we can construct IPC-CF-proofs of
/\ (Bxy — @i) = @i
X2Y>:
for every i < m, and
P — 1y if ¢ occurs positively,
Y — Y if ¢ occurs negatively,
for every subformula ¥ of ¢. Then we construct IPC-CF-proofs of
Bxy — (0 X)),
hence
Bxy — 9"V (9 — ¢;),
forevery i € Y C X, and ¢ € O, as in Claim 3. We derive
(T — BDy,(9))"
for every ¥ € © as in Claim 4. Finally, we construct an L- CF-proof including the circuits
(T - wl)aa KR (T - ¢n)a7

and we conclude . O
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Corollary 5.23 Ifc > 0, and L is a cofinal subframe logic of finite width, then L-EF =,
L-SF.

Proof: Given an L-SF-proof of a formula ¢ € I';, we construct an (L @ BD.42)-EF-proof of
¢ by Theorem 5.20 (or 5.10 in the intuitionistic case), and then an L-EF-proof by Theorem
5.22. O

Example 5.24 Hrubes tautologies from Definitions 6.23 and 6.28 have constant width, hence
they have poly-time constructible EF proofs in all logics of finite width by Corollary 5.23,
and Lemmas 6.26, 6.29.

Our second result will give a full simulation for all formulas, but it will only apply to a
selected list of modal logics: K4BWj, (including K4.3) and friends. The idea is to avoid the
labelling problem mentioned above by employing a variant of selective filtration. In general,
filtration produces frames with points labelled by sets of formulas, hence there are potentially
exponentially many labels. The bound on width however enables to restrict our attention to
sets of special form, of which there are only polynomially many. (Basically, points from an
antichain of constant size can be separated by using only constantly many formulas.)

Theorem 5.25 Let L be KA®BWg, S4dBWg, GL®BWg, K4Grz ® BWg, or S4Grz @
BWg for some K > 0. Then L-EF =, L-SF, and L-EF is interpretable in CPC-EF'.

Proof: Let ¢ be a formula in the variables po, . .., py_1, and put N := (2|¢|)®. We define the
translations ¢* for all i < N by induction on the complexity of ¢: (p¢)* = pss, (-)° commutes
with Boolean connectives, and

@) = N (rig — ¢7).
<N
Let xn,m be the conjunction of the formulas

ei,j — ej,i

€ij Nejk — €k

Tij — €ii VAN €;5.j

€ij NTjk = Tik

Tij N e€jk = Tik

€ij \Dei — Pej

Tij NTjk = Tik

Ty if L O GL
€ii — Tij if L DS4

Tij ANTji — € if L ©D K4Grz

/\ ei'zuiu - v (eiiyiv \/ Tiuyi’u)

u<K uFv

45



forall i,j,k < N, £ < M, and g, ...,ix < N. We define

90* = XN,M — /\ (ei,i N SOZ)
<N

Claim 1 Given an L-SF-proof of ¢, we can construct in polynomial time a CPC-CF -proof
of p*.

Proof (sketch): Fix an assignment v such that v(xny ) = 1, and put E = {(i,7); v(e; ;) =
1}, X = {; E(i,9)}, R = {(i,4); v(riy;) = 1}, and P, = {i; v(pei) = 1}. Then E is an
equivalence relation on X, congruent wrt R and Pp. W := (X, R)/FE is a transitive Kripke
frame of width at most K (reflexive, irreflexive, or antisymmetric, as appropriate), hence
W E L. If we define i/E IF py iff Py(i), we have

i/E -y iff w@) =

by induction on the complexity of 1, thus v(¢*) = 1.
The argument above can be easily formalized in the theory V', and its propositional
translation yields a CPC-CF-proof of ¢*. The details are left to the reader. O (Claim 1)

Assume we are given a CPC-CF-proof 7 of ¢*, we will construct an L-CF-proof of ¢. Let
S be the set of subformulas of Oy, and W be the set of pairs (¢, h), where Oy € S, and h is
a partial function from S to 2 such that |dom(h)| < K. For each Oy € S, let

—p A Oy if L O GL,
M) = A N\ (E@ VDY) Va0V DY) if L2 K4Grz, L 2 GL,
ves
=) otherwise.

We fix an enumeration S = {9;; j < m}, and W = {(¢4, h;); i < N}. For each ¢ < N and
Jj < m, we define the circuits X; ; and X J by induction on j:

Xi0=X"Y:= M),
B(X5 — ;) if hi(9;) =1,
Xijr1 = Xij A B(E(XH — ;) — ;) if hi(¥;) =0,
B(X5 — 9;) v E(E(XY —9;) — ) if 9 ¢ dom(h;),
Xt = XA X1 A (9 — B(XY — 95)).
We also define N
D(E(XY —9;) — ) if hi(9)) =
B(X5 — ;) if hy(9;)

)

_ 1
X=X, A
Z).] Z’-] { 0

whenever ¥; € dom(h;). We put
fi = Xi’mv
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and we define

Vi = & A /\ 51_>19 \/D(gz_)_"ﬂ))

ves
Bigi=2n A\ (@& = 9) < B = 9),
ves
Rj=viAA A\ (@& - 09) - Bl — 29))
oves
R = jo A (Rg,i — B, ;) if L D K4Grz, L 2 GL
, R?,j otherwise,

Py = 0B(& — pe).

Notice that E;; is equivalent to 7;. Let o be the substitution such that oe; ; = E; ;, or;; =

R; j, and opg; = Py;.
Claim 2 There are poly-time constructible L-CF -proofs of
(Z ij — Q(XZJ A\ ( (Xi’j — Igj) V B(B(Xi’j — 19]) — ’(ﬁz))),

w) X — <>XW
J

() i A A& NEj) — Eij,

(v

Proof: (i): Notice that X ; is a conjunction of —¢;, and a monotone combination of formulas

)
)
(iii) —p — ©M(¥),
)
)

i A A& NOE) — Ry

starting with &, hence
(*) Xij— O(; = Xij).
It thus suffices to show
~i — (i A (DX — 95) VB(E(XY — 95) — 1)),
which we prove as follows:

B((BX — ;) v B(E(XY — 9;) — 1)) — i)
— B(A(XY — ;) — i) AD(B(E(XY — ;) — i) — ;)
— ;.

(ii): By induction on j. Trivially

Xi,j A Xi,j+1 A E'(X’L,] N 19]) N )(i,j'f'l7
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and
XA Xijt1 A @(Xi’j A ﬂﬂj) — @(Xi’j AXijt1 A —|19j)
— OXHITL
by (*), hence
Xi’j A Xi,j—i—l — <>Xi’j+1.
Moreover,
Xij+1 = Xije1 A OXY
— O(X™ A Xij11)

by the induction hypothesis, and (x).
(iii): There is nothing to do unless L O K4Grz. If L O GL, then

Y — O(—=p A DY)

follows from the Lob’s axiom. If L 2 GL, we have to construct a proof of

B A (©00; v 09) v 805 v 09)) = ) = .

j<m

If m < 1, the formula is an instance of a constant-size K4Grz-tautology. We proceed by
induction on m; the step for m + 1 is

m( A (m(ﬁjvmqp)vm(ﬁﬁjvw}))ﬂ@y)

j<m+1
= 3( A (3 v o) vB(=d; v Oy)
Jj<m
— B((B(Im V OP) V B(~0y, V O9)) — 1/’))
— B(/\ (E](?_?j V D?/J) V E‘(_‘ﬁj vV Dﬂ’)) - ¢>

-1,

using the induction hypothesis for 1 and m.
(iv) is clear from the definitions.
(v): We have

Yi Ay; AO(E A OE) AB(E — O9) — &(O& A TOV)
— <>(£j A\ ‘319)
— E(fj — |Z|79)

for any 09 € S, hence
Vi Avj A& N OE) — RY .
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We are thus done, unless L. = K4Grz & BWg or L = S4Grz & BWg. In this case the
definition of M (v)) gives

Vi ANy AN (& A CEj) N E;

=\ @& —>)AB(&— I (BOVOg) V(=9 VO))))
ve+s

— \ (@& — 9) AB(& — O — D))

Yexs

— (B(§ — Ovi) AB(& — i)

0
— _\Rjﬂ

where +£5 = SU{-9; ¥ € S}. O (Claim 2)

Claim 3 There are poly-time constructible L-CF -proofs of

o(En-0g) - \/ ( (EAOXY A N\ oXiy
7,<N j€dom(h;)
pi=
AN B =95 v ax - —i)))
i<k
for any k <m, Oy € S, and a formula &.

Proof: By induction on k. If k = 0, we can take i such that (¢, h;) = (¢, @) by Claim 2 (iii).
Assume we have a proof of the statement for k&, we will prove it for k + 1. Let W’ be defined
similarly to W, except that we relax the domain size condition to |[dom(h)| < K. We extend
the enumeration of W to W’ = {{(¢;, h;); i < N'}, and define X; j, X/, and X, ; for i < N’
as before. We first construct a proof of

(1) S(EA-0Y%) — \/ <<>(§/\<>Xi’k+1)/\ A oXi

i<N’ jedom(h;)

A /\ Xz N2 N 19]) V. D(Xi,kJrl _ _\19])))
j<k+1

by formalization of the following argument: “fix ¢ < N which witnesses the statement for k.
W.l.o.g., assume dom(h;) C k. If

holds, then also E(X¥* L — —9,) v (XL — 9;) by the definition of X ;11 and XH*+1,
Moreover & (& A O X5*+1) by Claim 2 (i,ii), hence i witnesses the statement for &£+ 1. On the
other hand, if we have

O(Xip AD(XHF — 91)) A O (X ABE(X — k) — 1)),
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let ig,71 < N’ be such that ;. =, and h;. = h; U {(Jk,e)}. Then

A oXign N (B =95 v et - -))
jedom(h;, ) j<k+1

holds for both & = 0,1, and & (& A OX;_k11) (hence ©(& A OXH 1)) holds for some ¢ by
Claim 2, thus 7o or i7 is a witness for k£ + 1.”
We derive the statement for k£ + 1 from (%) by constructing a proof of

ﬁ(<>(5 AOXPEF A A <>X”)

jedom(h;)

for every i > N. By the definition of W and W', we have |[dom(h;)| = K, hence there exists
an increasing enumeration dom(h;) = {jo < j1 < --- < jx-1}. Put

yi,ju ifu< K,
Ay =
Xi,k—f—l if u =K.

Then we have

SEANOXHA A 0K N Cau

jedom(h;) u<K
— \/ (ay A Oay)
uFv
= Ve ABXY -9 ADE(XY - b)) - 1)
uFv
j:jmin(u,v)
— (= A Tly)
— 1
using an instance of BWg-. O (Claim 3)

Claim 4 There is a poly-time constructible L-CF-proof of oxn -

Proof: We have

N Eivio = N\ 7

u<K u<K

— )\ ©&,

u<K

=\ O, A 9&,)
uFv

— \/ (Bii, V Riyi,)
uFv

using an instance of BWg, and Claim 2 (iv,v). The other conjuncts of oxn s are straight-
forward. O (Claim 4)
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Claim 5 For any ¢ € S, and i < N, there are poly-time constructible L-CF-proofs of
Vi — (o9’ o B(& — ).

Proof: By induction on the complexity of 1. The statement holds for variables by definition,
and the steps for Boolean connectives are straightforward. We will show the step for 0. By
the induction hypothesis and the definition of (0v)*, we have a proof of

% = (o(@0) = A(Rig — B(& —v))).

J

Clearly
B(& — DY) — (Riy — B(§ — )
from the definition of R; ;. On the other hand, we have

% A=B(& — O%) = \/ (& A 0(& A=) A A (B = va) v B — ~0.))

J

— \/(Rm’ A=B(& — )

J
by Claims 3 and 2 (v). O (Claim 5)

We finish the proof of the theorem as follows. We apply o to 7w to get an L-CF-proof of
oe*, and use Claims 4 and 5 to derive

NGi = B — ).

(2

We construct a proof of
—0 — \/ (3 A (& A )

1

by the same reasoning as in the proof of Claim 5, and we conclude ¢. O

It is not clear how to modify the proof of Theorem 5.25 so that it applies to the si logics
BW,., which lack classical negation. Nevertheless, we give an ad hoc simulation for the most
important case of the Godel-Dummett logic LC = BW;. The idea is that in a linearly
ordered finitely generated refined frame, we can recognize the point where we are by counting
the number of generators which are satisfied. Extended Frege can count without any difficulty.

Theorem 5.26 LC-EF =, LC-SF, and LC-EF is interpretable in CPC-EF.

Proof: If ¢ is a formula in variables p;, i < N, let F' = (N + 1,>) be the chain of length
N + 1 with 0 on the top, and ¢* := " using the notation of Definition 5.4.

Claim 1 Given an LC-SF-proof of a formula @, we can construct in polynomial time a

CPC-CF -proof of p*.

Proof: Exercise. O (Claim 1)
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We define the threshold circuits 1} (po, . . ., pn—1) by induction on n + k:

Ty =T,
TP, =1,
T]:i_ll(p()a s 7pn) = T]?Jrl(p(]a s apnfl) vV (pn A T]?(p()a s 7pn71))-

We will omit n and/or p when it can be inferred from the context.

Claim 2 There are poly-time constructible CF -proofs of
(i) Ty — Ty for k > ¢,
(i) =T,
D) ngll(ﬁ) = T (Pos -+ Pim1,Dit1s- - Pn) V (Di AT (Pos - -, Die1,Di1s - -+, Pn))-

Proof: Easy. (Notice that classical proofs are good enough, by Theorem 3.9). O (Claim 2)

Assume we are given a CPC-CF-proof of ¢*. We can construct an IPC-CF-proof 7 of

/\ (pi,u \% Qi,u) - ((p*)m
<N
u<N

by Lemma 5.9. We fix any K < N, and define
Rj,u = T]](V—u(p()a cee 7pN—1) — Pi,
Qi,u = (TKfu - pi) - TKfqul

for each ¢« < N, and u < K. Let ox be the substitution such that oxp;., = P, and
OK Qi = Qiu-

Claim 3 There are poly-time constructible LC-CF -proofs of

N
(i) =Ty V \/ (To — Tp) A ((Ty, — To1) — Tpt1)) for eacha < N +1,

b=a

() PiyV Qi for eachi < N, u < K,

(i) ox (V)™ Aok (V")m — Tk—u+1 and o (P*)™V o (Y*)m for each u < K, and each
formula 1.

Proof: (i): By reverse induction on a. The base case a = N + 1 follows from Claim 2 (ii),
and the induction step from a + 1 to a follows from the instance

(To = (Ta = Tat1)) V (Ta — Tay1) — Ta)

of the LC axiom.
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(ii): We have

N
(*) TV \/ (Tx—u—To) A((Th = Th1) = Thp1)
—K—

b u

from (i) and Claim 2. For every b > K — u, we have

Y — TbNil(pm-uapi—l,pi-i-ly s PN-1) V P

and
N—-1 N
T, (pos-- s Pi-1,Pit1, - ) Api = Tyiy

from Claim 2 (iii), hence
Ty — pi V (i = Tot1)-

Using an instance of the LC-tautology
(%) (= BVy) = (= B)V(x—1),

we obtain
(Ty — pi) V (pi NTy — Tyq1).

Clearly
(TKfu - Tb) A (Tb - pi) - Pi,ua

and

((Ty = Toy1) = Tog1) A (i ATy — Top1) A (Ti—u — pi) — (T — pi)
— (Ty — Tp41)
- Tb+1

— Tk —u+t1
using Claim 2, hence
(To = Togr) = Togr) A (pi ATy — Tys1) = Qi

As b was arbitrary, we obtain
Pi,u \ Qi,u

from (x).
(iii): By straightforward induction on the complexity of v, using (ii) and

-Pi,u A Qi,u — Tk ut1

for the base case. O (Claim 3)
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Claim 4 There are poly-time constructible LC-CF -proofs of

T AN Try1 — (ox ()™ = (Tk—u — 1))
for every u < K, and every formula .

Proof: By induction on the complexity of ). The steps for variables, A, V, and L are easy,
using (#*). We will show the step for —. By definition, we have

ox (= X)) = N\ (ox@")m V or (x)™).

For each v < u, we have

T AT N (Tr—u — (Y — X)) Nog (@)™ = (Tk—y — V)
- (TK—’U - X)
— ok (X")™

by the induction hypothesis, hence

T AT 1 AN(Tr—uw — (Y = X)) = ok (¥")m V o (x")™

by Claim 3 (iii). On the other hand, the induction hypothesis and the same Claim imply

~~Tg A =Trp1 A N\ (O (W")m Vo (X)™) Ay — N\ ox (@)™

v<u v<u

— /\ (TK—U—H V O’K<Xv)m)

v<u

— /\ (TKvarl \ (TK*U - X))

v<u

We can prove
/\ (Tk—v11 V (T~ = X)) = (Tk—u = X) V Tk 41

v<u

by induction on w, thus

=Tk A=Tg1 A N\ (0 (@)m V ok (X)™) = (Tk—u — (¥ = X)) O (Claim 4)

v<u

We substitute o in 7 to get a proof of

NPV Qi) — o (™)™,

iU
and we apply Claims 3 and 4 to obtain

_'_‘TK /\ _'TK+1 — (TO — SO),
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ie.,
T AN "Txi1 — .

As LC D KC, we can prove

\/ (=T N =Tg41) VT4
K<a

by induction on a. Taking a = N we obtain a proof of

\/ (m=Tk A —Tk41),
K<N

hence ¢. O

6 Separations

In this section we are going to show exponential separation of L-SF and L-EF for all logics
of infinite branching. The proof has a purely model-theoretic part (Theorems 6.9 and 6.21)
providing a description of maximal logics of infinite branching, which we have put separately
in Subsection 6.1. The proof-theoretic part follows in Subsection 6.2.

6.1 A characterization of logics with infinite branching

Definition 6.1 Let (W, S, V) be a transitive modal general frame, and (F, R) a finite tran-
sitive Kripke frame. A partial mapping f from W onto F is called a subreduction of W to F,
if for every z,y € W and u € F,

(i) « Sy and z,y € dom(f) implies f(x) R f(y),
(ii) if f(x) R u, there exists y € dom(f) such that = S y and f(y) = u,
(iii) f~i[u] € V.

(A total subreduction is thus a p-morphism.) A domain is an upper subset d C F', which
is not generated by a single reflexive point. A subreduction f satisfies the closed domain
condition (CDC') for a domain d, if there is no z € dom(f)7 ~ dom(f) such that f(z7) = d.
If D is a set of domains, f satisfies CDC for D if it satisfies CDC for every d € D.

Subreductions of intuitionistic frames are defined in a similar way, except that condition
(iii) is replaced with

(iii") W~ f~ull e V.

Notice that (iii’) holds whenever f~![u] is in the Boolean closure of V.

Definition 6.2 Let (F, R) be a finite transitive Kripke frame with root 0 € F', and D a set
of domains in F. The modal canonical formula o(F, D) in variables {p;; i € F'} is defined as

A Bi Vi) A \B(Op; — pi) A\ Bpi v Opj) A N D(/\pi/\/\lﬂpi — \/Dpz) — Do

i#] iRj iRj deD i i¢d ied
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where indices i, j range over elements of F. We introduce the abbreviations «(F, D, 1) =
af(F,DU{2}), a(F) = o(F, ), of(F) = a(F, F*), where F* is the set of all non-empty
domains in F.

If F' is intuitionistic, the intuitionistic canonical formula G(F, D) is defined as

i{{\ﬁ((JQ}{m —>pj> —>p¢) /\dé\D(ig/\dpi —>i\€/dpi) — Po-

The formulas 3(F, D, L), 3(F), and B%(F) are defined similarly to the modal case.

Lemma 6.3 (Zakharyaschev [7]) A transitive modal (intuitionistic) general frame W re-
futes a(F, D) (B(F, D), resp.) if and only if there exists a subreduction of W onto F satisfying
CDC for D.

Example 6.4 The frame formulas of (F, L) from Definition 5.14 are (over K4) deductively
equivalent to the canonical formulas of(F, L). The formula 3 used in the proof of Theo-
rem 5.10 is the subframe canonical formula 5(F).

Theorem 6.5 (Zakharyaschev [7]) For every modal formula ¢, there exists a finite se-
quence of canonical formulas a(F;, D;), i < k, such that

K4® o =Ka4® {a(F;,D;); i < k}.

For every intuitionistic formula @, there exists a finite sequence of canonical formulas
B(F;, D;) such that
IPC + ¢ =IPC + {B(F;, D;); i < k}.

Example 6.6 S4 = K4 @ a(e), GL = K4® a(o), K4Grz = K4 @ a(Cs) where C5 is the 2-
point cluster, KC = IPC+3(F, L) = IPC+*(F, L) and LC = IPC +(F) = IPC+ 3*(F)
where F' is the tree of depth 2 with 2 leaves, etc.

Lemma 6.7 (Zakharyaschev [7]) For any k € w,
T), = IPC + 3 (Fpp1),
where Fyy1 is the (reflexive) tree of depth 2 with k + 1 leaves.

Lemma 6.8 Let (W, R,V) be an intuitionistic or transitive modal descriptive frame, < =
R~R Y and AcV. IfA#W, then W . A contains a <-mazimal point.

Proof: Assume that W is a modal frame (the intuitionistic case is similar). By descriptiveness
and Zorn’s lemma, there exists a maximal subset X C V such that Y := (. x OB\ A # @,
where OB := BNOB. Pick u € Y. Clearly v ¢ A. If u < v, then {B € V;v € OB} is a
proper superset of X, hence v € A. O
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Theorem 6.9 Let L be a si logic. L has infinite branching if and only if L C BD», or
L CBD3; + KC.

Proof: Clearly BDy and BD3 + KC have infinite branching. Let L be a logic with infinite
branching, and n > 1. By Lemma 6.7, there exists a descriptive L-frame W, and a subre-
duction f: W — Fy, with CDC for an If r is the root of Fb,, the set f~![r] contains a
maximal point u by Lemma 6.8. We may assume W = W,, without loss of generality, thus

f71[r] = {u}. Define
X={ecF~{r};Iz,yeW(x<yAflx)=LAf(y]) =92)}.

Assume first | X| > n. Pick Y C X of size n, and let F¥ be the frame {r} UY U {x}, where
¢ < x for every ¢ € Y. We define a mapping g: W — F* by

r if x = u,
g(x) = q L if fx1)={{}, LY,y ezl f(y) =2,

* otherwise.

The definition of Y, and CDC of f imply that g is a p-morphism of W onto F};. In particular,
ErE L.

If | X| < n, we pick Y C Fy, \ (X U{r}) of size n, and ¢y € Y. We define a mapping
g W —={r}uY ~ F, as

r if x = u,
gl@) =130 i flal) = {f},L €Y,
b if flaT)NY =@.

Again, g is a p-morphism of W onto F},, thus F, F L.
For every n > 1, we have F,, £ L or F; E L. If there are infinitely many n such that
F,, E L, then every finite rooted BDs-frame is a p-morphic image of an L-frame, hence it is
an L-frame itself. As BDs has the finite model property, this implies L C BD,. Otherwise
there are infinitely many n such that F¥ = L, hence L C BD3 + KC by a similar argument.
O

In the rest of the present subsection, we are going to find a modal analogue of Theorem
6.9. The result and its proof will be more complicated; the main source of obstacles is that
we cannot dispense with arbitrary junk by mapping it p-morphically to a singleton frame,
as we did in the proof Theorem 6.9. For example, if W is any generated subframe of the
universal K4-frame of rank 0, then the only p-morphic image of W is itself. We start with a
characterization of K4BBy by canonical formulas (which incidentally shows that K4BBy, is
finitely axiomatizable).

Lemma 6.10 Let k € w, let X1 be the set of all trees of depth 2 with k + 1 leaves (where
each point may be reflexive or irreflexive), and for any F € X1, let FZ2 be the set of all
sets of leaves of ' of size at least 2. Then

K4BB, = K4 ® {a(F, FZ%); F € X} }.
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Proof: D: Let (W, R) be a finite transitive frame of branching at most k, and f: W — F a
subreduction onto some F € X;,1. Put < := R~ R™!, and pick a <-maximal point = € W
which is mapped to the root of F' by f. For each leaf ¢ € F, we pick xy > z such that
f(xg) = £. The points z; form an antichain of size k + 1, while W has branching at most k,
hence by the pigeonhole principle there exists y > x such that y < xy, xy for some £ # ¢'. We
cannot have y € dom(f) by maximality of =, thus y violates CDC for F=2.

C: Denote the RHS by L. By Theorem 6.5, it suffices to show that L ¥ «(F, D) implies
K4BBy, ¥ a(F, D) for each canonical formula a(F, D). Let (W, R, V) be a transitive general
frame such that W E L and W E «(F, D). Let (oW, oR) be the reflexivization of the skeleton
of (W, R), and define oV = {p(BX); X € V} so that (oW, pR, ¢V') is a general intuitionistic
frame. Similarly, let oF be the reflexivization of the skeleton of F', and 9D = {o(d); d € D'},
where

D' = {d € D; d is not generated by a singleton}.

We have
(*) oW ¥ B(oF, oD).

Indeed, if f is a subreduction of W to F with CDC for D, then f induces a mapping of: oW —
oF', which is easily seen to be a subreduction with CDC for oD.

Claim 1 oW E T.

Proof: By Lemma 6.7, it suffices to show oW E (¥(Fj41). Assume for contradiction that
fir oW — Fyy is a subreduction with CDC for FIBH,
from W onto Fjy1. We will construct a G € Xj11 by adjusting the reflexivity of some

which induces a partial mapping h

points of Fj.1, and a subreduction g: W' — G from a generated subframe W’ C-W. Using
Lemma 6.8, we pick a maximal point u in h=1[r], and define W' = W,,, g~ 1[r] = W' Nnh~1[r|].
If u is irreflexive, we make r irreflexive as well, otherwise we leave it reflexive. Let £ be
any leaf of Fi 1. If W/ N (h71[{] ~ h™1[{]]) # @, we make £ irreflexive, and define g~ ![{] =
W' N (R[] ~ h=1[f]]), otherwise we leave ¢ reflexive, and put g~ 1[(] = W' nh~1[].

It is easy to see that g: W/ — G is a subreduction. If d € G=2, and 2 € W’ \ dom(g) is
such that g(z7) = d, then h(z1) 2 d, thus r € h(z]) by CDC for F,§+1, which contradicts the
definition of g~![r]. Hence g satisfies CDC for G=2, which contradicts W’ F L. O (Claim 1)

Claim 1 and (x) imply Ty ¥ ((oF, 0D), hence there exists a finite k-ary tree U such that
U ¥ B(oF, oD). Assume that |U| is minimal possible, and let f: U — oF be a subreduction
with CDC for oD.

Claim 2 The set {u € U; f(ul) = 1} is an antichain for every x € oF. In particular,
ful) = x7 implies f(u) = z.

Proof: Assume for contradiction that f(ul) = f(v1) = 27 for some u < v. Let U’ be the
subframe of U defined by U’ = (U \ u]) Uo7, and put f' := f [U’. Then f'(w?) = f(w?)
for every w € U’, hence f’ is a subreduction of U’ to oF with CDC for pD. However, U’ is a
k-ary tree, and |U’| < |U|, which contradicts the minimality of U. O (Claim 2)
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We construct a modal frame U’ from U as follows. If u € dom(f), and C is the cluster in
F such that f(u) = o(C), we replace u with a copy of C. Let f’ be the mapping from U’
to F, induced from f in the obvious way. Then f’ is a subreduction of U’ onto F (Claim 2
guarantees that f'(u) = f/(v) = x for no u < v € U’ and irreflexive x € F), and it satisfies
CDC for D'. By Claim 2 f’ also satisfies CDC for all domains generated by (irreflexive)
singletons, thus f’ satisfies CDC for D, and K4BBy ¥ «(F, D). O

Remark 6.11 If k > 1, the logic K4 @ {o(F); F € X}41} is strictly weaker than K4BBy,,
and in fact, it has infinite branching. However, it has the same finite frames as K4BBy.
By extension of the proof of Lemma 6.10, it can be shown that

K4BBy = K40 0(\/ 0(2p; - \/p;) - \/ 2p) = \/ 0/ 0

i<k i i<k i<k j#i
We skip the details as we will have no use for this explicit axiomatization.

Let us fix a transitive modal logic L with infinite branching for the rest of the subsection.
By Lemma 6.10, for every k > 0 there exists a descriptive L-frame (W, R, V'), and a subre-
duction f: W — F with CDC for FZ2 for some F € X;. Let r be the root of F. There
exists a maximal point u € f~1[r] by Lemma 6.8. We may assume W = W, without loss of
generality, thus f~1[r]] is a cluster. As f~![r] € V, we can collapse the cluster to a single
point by a p-morphism, thus we may assume f~![r] = {u}. Put A; = f~1[{]] ~ {u}, where
i < k, and ¢ is the ith leaf of F. Moreover, let FF = W ~ ({u} U, Ai). We have the
following properties (the disjointness of A;’s follows from the CDC for F=2):

(i

) (W,R,V) is an L-frame with unique root u,

(ii) W is the disjoint union of {u}, F', and A;, i < k,
)
)

(iii) A; # @, and A;| C A; U{u} for i < k (hence F is a generated subframe of W),
(iv) {u}, F, and A; belong to V.

Let us call any frame W with distinguished subsets A; satisfying these conditions a k-special
frame. Moreover, we call W a (k,o)-special frame if u is reflexive, and a (k, e)-special frame
if u is irreflexive.

Notice that if k" < k, and W is a k-special frame wrt {4;; i < k}, then W is a k’-special
frame wrt {A;; i < k'}. Hence if there exist (k,o)-special frames for infinitely many &, then
they exist for every k; otherwise there exist (k, ®)-special frames for all but finitely many k,
hence they exist for every k. We get:

Lemma 6.12 There is A € {0, e} such that for every k > 0 there exists a descriptive (k,A)-
special frame.

We fix an appropriate A € {o,e}. Let W be a (k, A)-special frame wrt {A4;; i < k}, and X
a set of variable-free formulas. We say that W is (k, A, X)-special, if z I+ ¢ for every ¢ € X
and z € |J; Ai. X is complete, if ¢ € X or ~¢ € X for every variable-free formula ¢.
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Lemma 6.13 There exists a complete set X of variable-free formulas such that for every
k>0 and finite Y C X, there exists a descriptive (k, A,Y)-special frame.

Proof: By Zorn’s lemma, there exists a maximal set X of variable-free formulas which satisfies
the conclusion of the lemma, we will show that X is complete. Clearly ¢ € X if X Fcpc o,
it thus suffices to show that Op € X or ~Oyp € X for every variable-free ¢. Assume that
Op ¢ X, and fix ¢ > 0 and finite Yy € X such that no descriptive (c, A, Yy U {Op})-special
frame exists. Let k > 0, and Y C X finite. There exists a descriptive (k + ¢, A, Y U Yp)-
special frame W wrt {A;; i < k+c}. Put I ={i < k+c¢ dx € Ajxz ¥ Op}. As W is a
(k+c—|I|,A,YoU{Ogp})-special frame wrt {A;; i ¢ I}, we must have |I| > k. For each i € I,
put A, = {z € A;; x ¥ Ogp}. Then A, € V, and A, is a non-empty lower subset of A;, thus W
is a (|I],A,Y U{-O¢})-special frame wrt {A}; i € I}. As k and Y were arbitrary, we have
—-Op € X by maximality of X. O

We fix a set X satisfying Lemma 6.13. If W is a (k, A, Y )-special frame, we call W
(k, A, Y)-extraspecial, if
JyeFxRyAylkp)

for every x € |J; A; and every O € Y. Let (XS) be the statement
(XS) For every k > 0 and finite Y C X, there exists a descriptive (k, A, Y )-extraspecial frame.
A descriptive frame A is of
(i) type e, if it is an irreflexive antichain (equivalently: if AF O.1),
(ii) type o, if all its final clusters are reflexive (equivalently: if A E OT),
(iii) type oo, if it validates GL, and the rule Op/p.

Let x € {o,0,00}. A (k,A,Y)-extraspecial frame W is called (k, A,Y, *)-special if the sub-
frame A; of W is of type * for every i < k.

Lemma 6.14 If (XS) holds, there exists x € {®,0,00} such that for every k > 0 and finite
Y C X, there exists a descriptive (k, A,Y, *)-special frame.

Proof: By an argument similar to the proof of Lemma 6.13, it suffices to show the following;:
for every k > 0 and finite Y C X, there exists x € {®,0,00}, and a (k, A,Y, *)-special frame.
Fix k£ and Y, and let (W, R,V) be a (3k, A, Y )-extraspecial frame by (XS). Consider any
1 < 3k. If A; ¥ GL, there exists a non-empty B; € V such that B; C A;, and Vax € B; Jy €
Bixz R y; we put A, = A; N B;|, and %; = o. If A; refutes the rule Op/p, there exists a
non-empty B; € V such that B; C A;, and A; N B;| = &; then we put A, = B, and *; = e.

Otherwise A; is of type oo, and we put A; = A;, *; = oo.
By the construction, A/ is a nonempty lower subset of A; of type *;. There exists x €
{®, 0,00} such that |{i; *; = *}| > k, hence W is a (k, A,Y, )-special frame wrt {A}; %; = *}.
Od
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Lemma 6.15 If (XS) fails, then for every k > 0 there exists a descriptive (k,A)-special
frame such that | J; A; is an antichain of reflexive points.

Proof: As above, it suffices to show that for every k > 0 and finite Y C X, there exists
a (k, A, Y)-extraspecial frame, or a (k, A)-special frame which satisfies the conclusion of the
lemma. There exists a descriptive (2k, A, Y')-special frame by Lemma 6.13, hence there exists
a descriptive (k, A,Y')-special frame W such that either A; F S5 for all i < k, or A; ¥ S5 for
all ¢ < k. In the former case A; is an antichain of reflexive clusters by descriptiveness, and
we may collapse each cluster to a single point by a p-morphism.

Assume the latter case. Let i < k. Notice that S5 = K4B @ D, thus A; refutes D or B.
If A; refutes D (i.e., it contains an irreflexive final point), we put A, = A; N (A4; ~ A;])]. If
z € A, and Oy €Y, there exists z € A; \ A;] such that x < z, and as z |F O, there exists
y I ¢ such that z R y. Then clearly z Ry, and y ¢ A].

If A; refutes B, then A; also refutes the rule p — GO-p/—p, as

Fk —(p — OCp) — OO(p — OCp).

Hence there exists a nonempty B; € V such that B; C A;, and Vo € B;dy € A; ~ B;lz R y.
Put A, = A;NB;]. If z € A}, and O € Y, there exists z € A; \ B;| such that z R z, and
there exists y such that z Ry and y IF ¢. Then z Ry, and y ¢ A}.

It follows that W is a (k, A, Y )-extraspecial frame wrt {A%; i < k}. O

Let W be a (k, A)-special frame, and Y, Y” sets of variable-free formulas. We say that W is
a (k,A,Y,Y")-superspecial frame, if A =|]J; A; is a reflexive antichain, 3y € F'(x Ry Ay - ¢)
for every x € Aand p € Y, and ~Jy € F(x Ry Ayl ) for every x € A and p € Y'.

Lemma 6.16 If (XS) fails, there exists a set Z of variable-free formulas such that for every
k>0, and finite Y C Z, Y' N Z = @, there exists a descriptive (k,A,Y,Y")-superspecial
frame.

Proof: Using Zorn’s lemma similarly to the proof of Lemma 6.13, it suffices to show the
following: if W is a (2k, A,Y,Y’)-superspecial frame, and ¢ is a variable-free formula, then
W is (k,A,Y U {g},Y')-superspecial, or (k,A,Y,Y’" U {p})-superspecial. For any i < 2k,
we define A} as {x € A;; Iy € F(x Ry Ay lF ¢)} or its complement in A;, whichever is
non-empty, and proceed in the usual way. The key point is that superspeciality wrt Y,Y” is
preserved, as A; is an antichain. O

Let us consider the theory T in variables r, p, p; (i € w), consisting of the following axioms
(for all i < j € w, all formulas ¢, and variable-free formulas «):

(i) r, 7P, Pi, <>pi7 D(pi — DA _'pj)v D(Or - T’), D(Qp — pV T)v D(Opi — Pi \/’I“),
O(pi — O(p — pi)), v — O(r — ),
(i)
O-r if A=,
Or if A=o,
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(iii)

O(p — <p) if ~(X8) or x = o,
0(Op — ) if (XS) and * = e,
O(p — O O

O(0(p — ) = ) — Oy

(iv) if (XS):

O(p — Oa) if Do € X,
{D(D(a\/p)—>—|p) if -Oa € X,
if =(XS):
O(0(a—p) — —p) ifaeZ,
{D(p—>D(a—>p)) ifadZ.

T is L-consistent: it is easy to see that any finite subset of T is satisfied in the root of a
suitable (k, A,Y, *)-special or (k, A,Y,Y’)-superspecial frame, if we put

zlFrsr=u,
l‘||—pi<:)>l‘€Ai,
zlFpexe A

Hence there exists a descriptive L-frame (W, R, V'), a valuation I € V, and a point u € W
such that u IF T. Without loss of generality W = W,,, and V is generated by the sets

U:={zeW;zlFr}
A:={z e W,z p},
A; = {.%‘EW,l‘H—pz}

We also put F' =W \ (AUU), Axw = A~ |UJ; Ai. The axioms (i), and descriptiveness of W
imply U =U] ={u}, FC-W,u¢ A, and {4;; i € wU{o0}} are pairwise disjoint non-empty
lower subsets of A. Axiom (ii) implies that u is reflexive iff A = o. Axioms (iii) imply that
A (hence also A;, i € w) is of type * (or o, if =(XS)). Notice that the subframe F' of W is
0-generated.

Lemma 6.17 zTNF =yTNF forall x,y € A.

Proof: Assume for contradiction x R z, y R z for some z € F. By descriptiveness, there
exists a formula ¢ such that y I- Oy, 2 ¥ ¢. As F is 0-generated, there exists a variable-free
formula « such that F' |- ¢ <> . Assume (XS), the other case is similar. As y IF O(aVp)Ap,
we cannot have -Oa € X by axiom (iv), hence Oa € X. But then x IF Oa by the same
axiom, which contradicts x R z ¥ «. O
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Figure 1: An example of a frame Ws o F G-

Let us define
G:=Fnal

for any x € A. Notice that G is a generated subframe of F. It is also closed in F' (i.e., an
intersection of admissible subsets): if u € F' \ G, there exists an admissible set U such that
uwe U, and x € O-U (hence GNU = @), as F is refined.

Definition 6.18 Let F' be a transitive general frame, G its generated subframe, A € {e,0},
and * € {8,0,00}. We define the frame Wy , p ¢ as follows. If F' = &, W, , r ¢ is a Kripke
frame which consists of a root u, reflexive iff A = o, and countably many disjoint copies of
the singleton reflexive frame if * = o, the singleton irreflexive frame if * = e, or the irreflexive
descending chain of depth w if ¥ = co. In general, W, . r¢ is a union of F' and Wy « o o,
where F' is a generated subframe of Wy 4 r g, u is a root of W, 4« rq, and FFNx] = G for
every £ € W 4 .o\ {u}. (See Figure 1.)

In a similar way, WZF,*, £ 1s a union of F" and W;*& &, Where W:’*& & is a general frame
defined as follows. If * € {e 0}, the underlying Kripke frame of W:’*&g is W00 We
pick Zoo € W, 5 5~ {u}, and let a subset X of W, 5 o be admissible if and only if X is
finite and z ¢ X, or X is cofinite and o € X. If x = oo, we let WIOO,Q’Q = (W' R, V"),
where W/ = {u} U{zap; a,f cw+1}, u R uiff A=o0,u R 248, xap R x4 iff =10, and
v < a or @ = w. The ordinal topology on w + 1 induces the product topology on W’ ~\ {u},
and we let V' consist of sets X C W’ such that X ~\ {u} is clopen in this topology. Notice
that WZ «F.G is a descriptive frame whenever F' is descriptive, and G is its closed generated
subframe.

Lemma 6.19 W is isomorphic to W:* G-
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Proof: Assume x = 0o, the other cases are similar but easier. We define a mapping f: W —
WZ—,*,F,G so that f [ (FFU{u}) =1id, and for any € Ag, f(x) = x5, where
n if A,z k9, =0 L AO"T,
o=
w if A,z IFO™T for every n € w.

It is easy to see that R y implies f(x) R f(y). Let n,m € w. As A, # &, and A,, validates
the rule Op/p, there exists * € A,, such that A,z - O""'T. Moreover A,, F GL, and
Far O™t — ¥, hence there exists an 2 such that f(z) = ZTn,m- By descriptiveness there
also exists an z such that f(x) = zym, as {{z € An; A2z IFO" T} newh CV has fip. A
similar compactness argument shows that there exist = such that f(x) = x4, for all , hence
fis onto. If f(x) = x4, and xq 3 R 2., there exists a y such that z R y and f(y) = x45:
if v < w, we use Fgr, OV T — &Yy if oo = v = w, we use compactness. It follows that f is
a p-morphism of the underlying Kripke frames.

The generators of V' (i.e., A, Ay, and {u}) are f-preimages of sets admissible in Wgrm el
hence f is injective by refinedness of W. Conversely, admissible sets of W:,*, FG are generated
by {u}, F, and the clopen subbasis of (w+ 1) x (w+ 1) (i.e., the sets {zq,m; @ € w+ 1} and
{znp; B € w+ 1} for n,m € w), whose f-preimages are in V, hence f is an isomorphism of
general frames. O

Lemma 6.20 L(W;*EG) = L(Waxra)-

Proof: Let us denote W . pe = (W,R, V), W} .o = (W, R, V'), and put W, , no =
(W, R, V"), where V" = {X NW; X € V'}. Tt is easy to see from the definition of V' that

WNX|=Wn(XnW)]|

for every X € V'; it follows that the mapping f: V' — V” defined by f(X) = X NW is
an isomorphism of modal algebras, hence L(W;*’EG) = L(W,, pg)- Clearly V" C V, thus
L(Wasra) € LW, , pg). Assume ¢ ¢ L(W,a . rc), and fix a valuation I- € V' such that
x W o for some x € W. If © # u, the subframes of Wy . re and Wa re generated by
coincide, hence ¢ & L(W, | ;). We may thus assume u} ¢. Let S be the (finite) set of all
formulas v such that O is a subformula of . Assume % = oo, the other cases are similar.
There exists M < w such that for every ¢ € S, if x,, ,, ¥ ¢ for some n,m < w, then x;, ., ¥ ¢
for some n < w and m < M. Similarly, there exists N < w such that for every ¢ € S and
m < M, if z, , ¥ 2 for some n, then ., ¥ 1 for some n < N. We define a valuation -
by the following modification of I-: for any variable p, m < M, and n > N, we put x,,, IF* p
iff xn ., IF p; for any m > M and n, we put x, m, IF* p iff z, 3 IF* p. Clearly IF*e V", A
straightforward induction on complexity shows that valuation of subformulas of ¢ is preserved
in u. In particular, u ¥ ¢, thus ¢ ¢ L(W, | 1) O

The considerations above show that any logic L of infinite branching is valid in a frame of
the form Wy . . Conversely, it is easy to see that L(W, . r ) has infinite branching, using
Lemma 6.10. We have thus proved the following characterization.
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Theorem 6.21 The following are equivalent for any transitive modal logic L.
(i) L has infinite branching.

(ii) There exist A € {o,0}, x € {®,0,00}, a frame F, and a generated subframe G C- F,
such that Wy « rc F L.

Moreover, we may assume that F' is descriptive, 0-generated, and G is closed in F.

Remark 6.22 Given a formula ¢, the question whether K4 & ¢ or IPC + ¢ has finite
branching is by definition r.e., and Theorem 6.9 immediately implies that over IPC it is
in fact decidable. It is not hard to show from Theorem 6.21 that the property of finite
branching is also decidable (more precisely NP-complete) over e.g. D4, GL, or K4BDy,, and
it is decidable over K4 for |-free formulas ¢. However, it is likely to be undecidable over K4
in general.

6.2 Hrubes tautologies

P. Hrubes [10] discovered a variant of monotone interpolation for K-F, and used it to prove
an unconditional exponential lower bound on the number of Frege proof lines in K, and other
modal logics. He extended the lower bound to intuitionistic logic in [11]. We will use his
results to show an exponential speed-up of SF over EF for logics of infinite branching: on the
one hand, we extend the lower bounds to all logics of infinite branching, on the other hand
we observe that the hard tautologies have poly-size SF-proofs.

Definition 6.23 For any k < n, let Cliqueﬁ(ﬁf’) denote the propositional formula which
expresses “7 encodes a clique of size k in the graph on n vertices defined by p”, and let
Colourﬁ(ﬁ,g) be a formula expressing “s encodes a k-colouring of the graph on n vertices
defined by p”. We define the modal Hrubes formulas

0,, := CliqueX™!(D0p, #) — O- Colourk (7, 3),
and the intuitionistic Hrubes formulas

@ff = /\(pz Vgi) — Colourﬁ(ﬁ, 5) V = CliqueX 1 (=q, 7),

n
%

where k := |/n].

Theorem 6.24 ([10]) The formulas ©,, are K-tautologies. If L is a sublogic of GL or S4,
then ©, requires L-F-proofs with 7™ lines.

Theorem 6.25 ([11]) The formulas O are IPC-tautologies, and require TP C-F-proofs
with 2" lines.

Lemma 6.26 There are poly-time constructible K-SF -proofs of ©,,, and IPC-SF -proofs of
eyt
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Proof: There are poly-time constructible CPC-F-proofs of

(%) Cliquef (5, 7) — — Colour” (5, 5)

n

by Buss [4]. If a(p, §) is any O-free formula monotone in the variables p, we construct short
K- F-proofs of

A\ (@si v 8-s;) = (a(O5,5) — Da(p, 5))

i

k

n, We obtain a

by straightforward induction on the complexity of a. Taking a = — Colour
K- F-proof of
/\(Bsi V B-s;) A Cliquel ™ (Op, 7) — O- Colourk (7, 3),

%

using a substitution instance of (x). We substitute T and L for sy to obtain a K-SF-proof of

(k) /\(Dsi V B-s;) A CliquertH(Op, 7) —
i>0

— O= Colourfl(ﬁ, T,81,82,...) AO= Colourﬁ(ﬁ, 1,81,89,...).
As Colour is a O-free formula, there are poly-size proofs of
O(— Colour’fl(ﬁ, T,81,...) A~ Colourfl(ﬁ, 1,s1,...) =~ Colourﬁ(ﬁ, 50551, ---)),
which we combine with (xx) to get a proof of

/\(Dsi V E-s;) A Cliquer ™ (0p, 7) — O- Colourk (7, 3).
i>0
We continue to eliminate the other conjuncts Hs; V O—s; in the same way.

We construct an IPC-F-proof of (x) using Glivenko translation, and the intuitionistic
equivalence ==(¢ — =) < (¢ — —p). For any formula a(p), there are poly-time con-
structible IP C- F-proofs of

/\(Pz’ Vopi) = a Vo,
(2

hence we obtain a proof of

/\(pz- Voapi) A /\(7"z V —r;) — = Colour® (7, 5) v = Clique® ™ (p, 7).

3 (3

We substitute L and T for rg to get

/\(pi Vopi) A /\(7“Z V ;) — — Colour (7, 5)v

i >0
V (= Clique®™ (5, L, rq,...) A = Clique*™ (7, T,71,...)),

and use a short CPC-F-proof (hence IPC-F-proof, by Glivenko translation) of

- Cliqueﬁ“(ﬁ, Lory, .. ) A= Cliqueffl(ﬁ, T,7r1,...) — = Cliquek+1(ﬁ, T)

n
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to infer
/\(pi V =pi) A /\(7’Z V —r;) — = Colour® (7, 5) v = Clique® ™ (p, 7).

i >0

We continue in the same way to construct an IPC-SF-proof of

/\(pi vV opi) — Colourf; (7,8) V-~ Cliquefl“(ﬁ, 7).

)

Then we construct IPC-SF-proofs of

A\ @iV a) A i v =pi) = = Colour) (75, 5) v = Cliquef ™ (=qo, - - ., =1, pj, - - -, 7)
i<j 2]

by induction on j. The induction step from j to j + 1 is as follows. We substitute L and T
for p; to get

/\(pi Vi) A /\(pZ V —pi) — - Colour];;(J_) Vo= Cliqueﬁ“(J_),

i<j i>j
A @iVa) A (i v =p;) — = Colour;(T) v = Cliquey;, ™ (T).
i<j i>j

As — Colour is monotone in p;, there are short proofs of
- Colour® (L) — = Colour® (p;),

hence we obtain

/\(pz' V) A /\(Pi V =p;) — = Coloury; (p;)V
1<J i>7
V (= Clique® ™ (L) A = Colour® (T)) V (= Cliquef ™ (L) A = Clique®™(T)).

n n n

We combine it with short proofs of

- Cliquel™ (L) A = CliqueF ™ (T) — = Clique®™ (—g;),

n

(pj Vgj) A= Colourfl(—l') A - CliquekH(L) — Colourﬁ(pj) Vo= Cliquekﬂ(—'qj),

n n

and obtain a proof of

A\ @iV a) A )\ (pi v =p;) — = Coloury (p;) v =~ Cliquej; ™ (=gy). O
i<j i>j

The intuitionistic tautologies G)f;L are not quite satisfactory for our purposes, because of
the following observation.

Lemma 6.27

(i) KC-F p-simulates CPC-F wrt essentially negative formulas.
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(ii) There are poly-time constructible KC-F -proofs of olt

Proof: (i): Given a classical proof of an essentially negative formula ¢, we construct an
intuitionistic proof of =—¢. We combine it with a poly-size KC-F-proof of =—¢ — ¢, which
we construct by induction on the complexity of ¢, using the KC-tautology ——(a V 3) —
——a Vo0,

(ii): We use (i), and a short classical proof of ©5 to construct a KC-F-proof of

/\(ﬁﬂpi V ==g;) — = Colour (5, 5) v = Cliquel ™ (=¢, 7),

i
which implies 6)7[7;L by a short IPC-F-subproof using p; — =—p;, ¢; — ——g;. O

The logic of the weak excluded middle KC certainly has infinite branching; it is arguably
the most important si logic after CPC and IPC, and many other interesting si logics are its
sublogics (e.g., the Kreisel-Putnam logic KP, the Scott logic SL, the Medvedev logic ML,
logics axiomatized by the Nishimura formulas, etc.). It is thus very desirable to make sure
our lower bounds apply to KC, which means we cannot use the original formulas ©7+. The
problem is that there are too many negations in ©7+, hence the obvious solution is to devise
a negation-free version of these tautologies, which we define next.

Definition 6.28 Let k& < n. We define the formulas

ab(5,5,5) =\ N\siev \V V(sieAsienpiy),
i<n <k ij<nt<k

Br(q, 7 ) - \//\7‘5\/\/ \/ (Tig ANTjm N dij)-
I<ki<n i,j<n b<m<k

Notice that Colour (p,5) = =k (7, §,-5), and Clique® (7, 7) = ~8¥(—p, 7, —7). We introduce
the negation-free (intuitionistic) Hrubes formulas

ey, = /\(pz‘,j Vgij) — (/\(Sz‘,lf Vi) = an (P, 5, 37)) v (/\(T’i,e Vi) — BTN T 7?))7
i it .

where k = |/n].

The original Hrubes formulas ©5" are (equivalent to) substitution instances of the |-free
formulas ©/, hence the lower bound of Theorem 6.25 also applies to ©1.

Lemma 6.29 There are poly-time constructible IPC-SF -proofs of ©L.

Proof: 'We use a classical proof of a(p, §,—3) V 3(—p, 7, =F) to construct an IPC-F-proof of
AN@i Vv =pi) A N\(si Vasi) A N\ (i v =ri) — alf, 8, -8) v B(=p, 7, =)
i 7 7

We substitute L and T for rg to obtain

/\(pl _'pz /\ /\ 8 V _‘31 /\ /\ Ty V _‘7'7,) - OZ(_’,g,_‘g)\/

i >0
vV (B(=p, T,r1,. .., Ly, o ) AB(EP, Ly, .o, Ty, .00).
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As 3 is monotone, we can construct short proofs of

ﬁ(_'ﬁa—l—arla"wJ—v_'rl"") _)B(_'ﬁ—rarla"'vré))_‘rla"')

— (ro — B(=P, 70,71, .., 70, 7T, .- )),
ﬁ(_'ﬁaJ—ﬂrla"wTv_'rla"‘) H/6(_']5;7“(]77417---7—|—,_‘7”1,...)
— (rg = B(=F, 70,715 -+ 70, 7715+ 4),s

and we infer

A@i V=) A N(siVasi) AN\ (i Vrs) = ol 5,-5) v ((ro V rg) — B(=F, 7,7, 11, . ).
7 7 >0

We continue in the same way to construct a proof of

AV =pi) A N\(si v =si) = a5, 5.8 v (A v i) = B5.7.7)).

7 i

We apply the same construction to a and §, and obtain a proof of

AV =p) = (s V) = a@5.5) v (A v ) = BEp. 7).

]

Then we construct a proof of

AV @) = (s vsh) = a@5.9) v (A Vi) — 8@.7 7))

7 7 7
as in Lemma 6.26. a

The next lemma shows why making the hard tautologies 1-free helps.

Lemma 6.30 IfT is the set of all L-free formulas, then KC-EF <, IPC-EF, and (BD3+
KC)-EF <,r BDy-EF.

Proof: Let v be the classical valuation which makes all variables true. Let ¢* be the trans-
lation which preserves variables and 1, commutes with A and V, and

e* =" ifu(p — ) =1,

1 otherwise.

(so—w,!))*:{

Notice that v(p) = 1, and ¢ = ¢*, for every ¢ € I'. If ¢1,..., 0y is a KC-CF-proof, we
construct the sequence ¢7,..., ¢y, and complete it to an IPC-CF-proof. As v satisfies all
(classical, hence KC) tautologies, instances of modus ponens translate to instances of modus
ponens; it thus suffices to show that translations of axioms have poly-time constructible
proofs.

Let o be an instance of the axiom

(o= (W —=x) = (g =) = (¢ — X))
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Then o™ is one of the formulas

(" = (" = X)) = ((¢" = ¢7) = (¢ = X)),
(" = L) = ((¢" = ¥") = (¢" = X)),
(" = (" = X)) — (L= 1),
("= W = X)) = (L= (¢" = X),
1 — 1,

it is thus an instance of one of the tautologies

p—=(g—=r)—=((p—q9 —(—r)),
-p—(¢g—(—r)),
p—(L—q),
1 — 1,

hence it has an IPC-CF-proof of size linear in |a|. The other axioms of IPC are handled
similarly.

It is easy to show by induction on ¢ that Frpc —¢* whenever v(¢) = 0, and moreover,
we can construct an IPC-CF-proof of —¢* of polynomial size. Hence up to shortly provable

(mp) = L ifo(p) =1,
UTAT i) =0

equivalence, we have

Translations of instances of the KC-axiom —¢ V == thus have short IPC- CF-proofs.
If « is an instance of the BD3-axiom

eV (p =YV (W —xVx)),

then
o ="V (" = YTV (U = XV (=x)Y)),

as v(--- — x V-x) = 1. Hence a* follows from the instance
@V (" = PtV )
of BDs. O

Remark 6.31 The intent of a modal analogue of Lemma 6.30 is to get rid of F'in L(Wx « r.¢)-
proofs of the tautologies ©,. The actual result we obtain (Lemma 6.33) happens to be
somewhat more complicated, and involves quasi-normal logics of the frames W, » & &.

(Circuit, substitution) Frege systems for quasi-normal modal logics can be defined similarly
to normal logics, by omitting the necessitation rule. L.e., a quasi-normal Frege system consists
of finitely many axiom schemata, and modus ponens.

Every normal logic L is also quasi-normal. If L O K4, and L is finitely axiomatizable, then
L is also finitely axiomatizable as a quasi-normal logic, hence it admits a quasi-normal Frege
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system. By (the proof of) Lemma 3.5, the normal and quasi-normal (circuit, substitution)
Frege systems for L are p-equivalent, as we only need the axioms of P_ with “k < 1” due to
the transitivity axiom.

Lemma 6.32

Lyy(Weezz)=KaDOL)4+OT,
Lyn(Weo,0,0) = (K@ O(p « Op)) +OT,
Lgn(We,0,0,0) = (GL® O(0(Bp — ¢q) vV O(Bq — p))) + OT + (00p — Op).

Proof: The inclusions DO are obvious. The logic K @ 0% L includes K4BD>, hence it has the
finite model property; its finite rooted frames are irreflexive trees of depth at most 2. Thus
assuming ¢ ¢ (K@ O0OL) 4+ T, there exists such a tree W with root r, and a valuation
IF such that r IF GT A —p. In particular, r has at least one successor, thus there exists a
p-morphism of W, ¢ &, onto W which respects the roots, hence ¢ ¢ Lyp(We o 2,2)-

The inclusion Lgn(Weo,0,0) € (K @ O(p <> Op)) + OT is completely analogous.

We will use some results of [13] to prove the third equation. As K4 & OGL = GL, the
RHS of the last equation equals the logic Ag; 5 by [13, Thm. 4.13]. If ¢ ¢ Agy 5, then ¢
is refutable in the irreflexive root r of a countable Kripke frame W such that W ~ {r} is a
linearly extensible GL.3-frame by [13, Thm. 3.5]. It is easy to see that W is a p-morphic
image of W o0 ., hence ¢ ¢ Lyp(We 00,0.2). O

Lemma 6.33 Let L be a transitive modal logic of infinite width, and ¢ a formula of the form
a(p, 0p) — OB(p),
where «, B are O-free. If @ has an L-CF-proof of size s, then ¢ or
¢’ = a(p, Op) — OB(P)
has a CF-proof of size O(s) in K® 021, K® O(p <> Op), or Lyn(We co.2.0)-

Proof: By Theorem 6.21, L is included in the logic of a frame of the form W, . rg. Let
IFg be the valuation in F' which makes all variables true. We define translations ¢* and 2,
which preserve variables, commute with Boolean connectives, and

% 1 if GH‘() @,
(T) :{

Oe* if G Ik o,
J_ lf FHAO (p,
(Bp)® = < Op* if FlFg o, and A = e,

e® AOp* if Flrg ¢, and A = o.

Let u be the root of W, . ra-

71



Claim 1 If ¢ € L, then ¢* € Lg(We s ,0). Moreover, there exists a finite sequence of
formulas p1,. .., 05 € Lgn(We x.2,5) such that for every substitution o, (o@)® is an instance
of some ;.

Proof: Let S be the set of subformulas of ¢(p). For any substitution o, we define a function
de: S — 3 by

2 if Flkg o0,
doe(Y) =<1 if G I o), F o o),
0 if GWo o,

For any d: S — 3, and ¢ a subformula of ¢, we define formulas ¥}(q,7), ¥5(q,7) by

y
Wox)i=vhoxl, te{xa}oe{rV,—, 1}

.1 itd@) =0,
(Ov)a = {Dz/zz, if d(v) > 0,
1 it d(y) < 2,
(O9)g = Oy if d(p) =2, and A = e,

wg ADY; ifd(y) =2, and A =o.

Clearly (o¢)® = gpﬁa((g_ﬁ)A, (ap)*), it thus suffices to show that ¢4 € Lyn(Wae .« 2,0) whenever
d = d, for some substitution o. Let IF be a valuation of ¢ and 7 in W, 5 &, and define a
valuation IH of p'in Wy « ¢ by

zlkgop;, ifx€eF,
rlH pie ik g if ¢ = u,
z k7 if v ¢ FFU{u}.

We have
WasFrG, T I = F, 2k oy

for every x € F and every v, as I’ is a generated subframe of W, . r . Then a straightforward
induction on the complexity of ¢ € S shows

I/I/Aﬁk,F,Gv'r ”_/ 71[} ~ WO,*,@,@a x I Q;Z):l)

WA,*,F,G’: U “_, ¢ < Wo,*,@,@; u - wﬁ

for every x ¢ F U {u}. In particular, p € L C L(W, 4 r ) implies u Ik ¢3. O (Claim 1)

Let ¢1,...,0m = @ be an L-CF-proof of a formula ¢. We may assume the proof to be
necessitation-free by Remark 6.31. Then the sequence pf,..., 95 can be completed to a
polynomially longer (quasi-normal) Ly, (W, . & &)- CF-proof of ¢ by the claim (and Lemma
3.1). In the case * € {e, 0}, we use the axiomatization of Ly, (W, s 2 o) from Lemma 6.32,
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and we further eliminate the axiom T using the feasible deduction theorem to obtain a
(K@ 0%1)-CF or (K @ O(p « Op))-CF-proof of OL V o,

Assume that ¢ = «(p,0p) — OF(p) for some propositional formulas «, and . Notice
that F Ikg p by definition. If A = e, the formula 2 is thus one of the formulas

a(p, Bp) — B4(p),
a(p,8p) — L,

hence O V ¢ implies ¢. If A = o, then OL V ¢* similarly implies ¢’ O

Remark 6.34 Both Lemmas 6.30 and 6.33 formalize in CF the well-known model-theoretical
argument that validity of 1-free formulas is preserved under dense subframes. However,
the formulas ©,, are not actually 1-free, hence we formulated Lemma 6.33 under different
assumptions.

The translation (-)? in the proof of Lemma 6.33 does not make a p-simulation, as validity
of variable-free formulas in F' or G may be undecidable.

The remaining task is to prove a lower bound on CF-proofs of ©,, (or ©%) in the four
logics BDy, K & 0?1, K @ O(p < Op), and Lg(We s,2,0). In the first three cases we
could give a simple reduction to Hrubes’s theorems 6.24, 6.25. However, such a reduction
seems impossible in the case of Lgn(We c0,2,2), We thus have to include a full proof of the
lower bound. We will actually give a self-contained proof of the lower bound in all four cases,
because we believe that our approach using propositional valuations as in [14] (inspired by
the feasible Kleene slash of [16]) is simpler and more direct than Hrube§’s proof, hence the
reader may find it useful.

Lemma 6.35 Let ¢ be a formula of the form
a(0p,7) — BB(p. 9)
or

a(8p,7) — OB, 9),

where a and B are O-free. If 1 has a CF-proof of size s in K ® 0?1, K @ O(p « Op),
or Lgn(We 0o,2.2), there exists a monotone circuit C(p) of size O(s*) which interpolates the
classical tautology

a(p, ™) — B(p, 5).

Proof: Let 7 be an L-CF-proof of 1. For any set X of the variables p, let P(X) be the
closure of 7 U X U OX under modus ponens and the rule Op/¢ if L = K & O(p < Op)
or L = Lgn(Weeo,2,2), and the closure of # U {01} U X U OX under modus ponens if
L =K@ O%1. We define a Boolean function &(j5) by

£(&) & B, 5) € P({pi; 2 = 1}).

Claim 1 For any assignment e, if e(§) = 1, then e(3) = 1.
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Proof: Let o be the substitution which maps each p; satisfied by e to T, and put P’ =
oP({pi; e(p;) = 1}). Then P’ is included in

Kool if L =Ka@0D?1,
K & (p < Op) if L=K®0O(p« Op),
GL.3 + (Dp - p) if L = an(Wo,oo,Q,Q)a

which is a consistent quasi-normal logic, hence conservative over the classical logic. We have
thus o3 € P/ C CPC, which implies e(3) = 1. O (Claim 1)

Claim 2 For any assignment e, if e(a) =1, then e(§) = 1.

Proof: Put P := P({p;; e(p;) = 1}), and extend e to all modal formulas by
e(@p) =1 iff {p,0p} CP.

We have e(Op;) = e(p;) (> is obvious, and < follows from the proof of Claim 1), hence
e(a(dp, 7)) = e(a(dp, 7)) = 1. It thus suffices to show that e(p) = 1 for all formulas ¢ € ,
which we prove by induction on the length of . The induction steps for propositional axioms
and rules are trivial, and the step for necessitation is immediate from © C P. The step
for the K axiom follows from the closure of P under modus ponens. If ¢ is an axiom of
the form Oy, then either y € P by closure under Oy/x, or x = OL € P by definition. If
L = Lyn(We so.2.0), then e(0%p — Op) = 1 by closure under Op/p, e(dL) = 0 as P is
consistent by the proof of Claim 1, and e(dp — OOp) = 1 by closure under modus ponens
(using Op — OOp € w C P). O (Claim 2)

It remains to show that £ is computable by a small monotone circuit C. We assume L =
K @ 0?1 for notational simplicity. Let S be the set of subformulas of formulas in 7. Notice
that [S| < s :=|«|, and P(X) C S for any X C S. Moreover, if U = Uy C S, and U4, is
the closure of U; under one application of modus ponens, then the closure of U under modus
ponens is Us. We can define a monotone circuit which includes nodes c,; for every ¢ € S,
and ¢ < s, with the meaning

coi =1 iff pe(rU{0L}UXUDOX),,

as follows: we put

Cp,itl = Cpi V \/ (cy,i A Cde')
h—peS

for every ¢ € S and ¢ < s, and

1 ifpenu{Ol},
Co0 = 4 pi if ¢ =p; or ¢ = Op;,

0 otherwise.

It suffices to define C'(p) = cp.s. O
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Lemma 6.36 If the formula

V= N\wiVa)— a5V B(E7)

has a BDo-CF -proof of size s, then the classical tautology —~3(—p, ) — «a(p, §) has a monotone
interpolant C(p) of size O(s?).

Proof: Let m be a BDy-CF-proof of 1. For any set X of the variables p, ¢, let P(X) be the
closure of

WU{AM%V%&U{wﬂxvﬂx@VOpHxvﬂmeﬂ}UX

1

under modus ponens. As in Lemma 6.35, we can define monotone circuits C, of size O(s?)
such that

(O D) =1 i e(A(iva)) =11y e PHve {p.ah elv) = 1))

7

for v € {a, B}, and any assignment e. It is easy to see that
(%) e(Cy) =1=e(y) =1
Claim 1 Ife(\;(pi V ;) =1, then e(Cq V Cg) = 1.

Proof: Let P := P({v € {p,q}; e(v) = 1}). We define a classical valuation |¢ of intuitionistic
formulas ¢ by

|v for every variable v,

[ Ax) i e Alx,

[pvx) i loVvilx,

(o —x) iff (o= Ix,
not |L,

where
lo f e PAlp

Notice that |1 is equivalent to

HA@ﬂmﬁﬁﬂaVW,

)

which implies
I A\@i V@) = e(Ca) =1V e(Cp) =1,

(2

and we have

I A va)
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by the definition of P. It thus suffices to show that |p for every ¢ € m. We proceed by
induction on the length of w. The induction steps for axioms of IPC, and modus ponens
follow from [14, L. 4.11, 4.12], as P is closed under modus ponens. If p V (p — x V-x) € 7
is an instance of the BDy axiom, we have

p—=xV-xeP.

Either ||¢ and we are done, or —||¢, hence |(¢ — x V =), thus |[(¢ — x V —x). O (Claim 1)

Let us define
C(p) & Ca(p, T).

Clearly C' is a monotone circuit, and

C(p) — a(p,5)

is true by (x). Moreover,
—B(—p,7) = ~Cs(p, ~p) — Cu(p, —p) — C(P)

by (%), Claim 1, and monotonicity of C. Hence C(p) is an interpolant of =3(—p, ) — a(p, 5).
O

Theorem 6.37 If L is a modal or si logic which has a transitive extension with infinite
branching, then L-SF has an exponential speed-up over L-EF. Specifically, the Hrubes tau-

tologies ©,, or ©L have poly-time constructible L-SF-proofs, but require L-EF-proofs of size
o(1)
2

Proof: The formulas ©,, or ©! have poly-time L-SF-proofs by Lemmas 6.26 and 6.29. If L
is a modal logic, and ©,, has an L-EF-proof of size s, then ©,, or ©), has a CF-proof of size
O(s) in K@ 021, K@ O(p < Op), or Lyn(Wecoz.z) by Lemma 6.33, hence there exists a
monotone circuit of size O(s?) which interpolates

(%) Cliquef 1 (5, 7) — — Colour” (7, 5)

n

by Lemma 6.35. However, any such circuit must have size 20(n'/%) by [1], hence also s >
2Q(n1/4)‘

Assume that L is si logic, and ©f has an L- EF-proof of size s. Then O has a BDy-CF-
proof of size O(s) by Theorem 6.9, and Lemma 6.30, as ©! is | -free. We substitute —i for 7:7,
and —§ for s to obtain a BDy- CF-proof of ©L of size O(s). Then there exists a monotone

interpolant of (%) of size O(s?) by Lemma 6.36, hence s > 22(n'*) a5 above. O

7 Problems

We left many questions open. First of all, we did not quite resolve the SF' vs. EF problem.
Our results suggest that the boundary separating logics L such that L-EF = L-SF from the
others runs somewhere between logics of finite width and logics of finite branching, but it is
not clear which of these two parameters is more relevant.
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Problem 7.1 Determine whether L-SF < L-EF for L = K4BBy, T (k > 2), or some
other logic of infinite width but finite branching.

There are however also some interesting cases of logics of finite width. For example:

Problem 7.2 Does L-SF < L-EF hold for BWy? Does it hold for all csf logics of finite
width?

Notice that a positive solution to the latter question would settle the situation for csf logics,
as all csf logics of infinite width have infinite branching, and therefore fall into the scope of
Theorem 6.37.

Due to the method used, all simulations in Section 5 applied only to coNP logics. We
believe that this is just a residue of our proof, and does not truly represent the picture. (Notice
also that K4BD} and many other logics of finite depth and infinite width are in coNP, yet
separate EF from SF by 6.37.)

Problem 7.3 Show L-SF < L-EF for some transitive logic outside of coNP (or better yet,
for a natural class of such logics).

Other interesting questions concern the relations of different logics. One was already
stated in Section 4, we repeat it here.

Problem 7.4 Does L-SF simulate (wrt L-formulas) LVt-EF or even LA-EF for all modal
logics L?

Probably the most important question in this context is the relationship of modal and si logics
(see [7] for the definitions):

Problem 7.5 Let L be a si logic, and L' its modal companion. Does L'-EF interpret (in the
sense of Definition 5.1) L-EF via Gddel translation? What about SF %

(The translation as such is feasible. The problem is the opposite direction: whether we can
extract an L- EF-proof of ¢ from an L’- EF-proof of its translation.) Notice that the answer
is affirmative if L is tabular, or L = LC: the Godel translation commutes (up to feasibly
provable equivalence) with the relevant translations to CPC we used in Section 5. The
problem is more interesting for weaker logics, such as the basic pair L = IPC, L' = S4.
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