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1 Preface

This thesis is devoted to differential equations with solutions which need not be
absolutely continuous. It consists of two parts.

The first part is concerned with generalized linear ordinary differential equation
(GLODE) of the form

x(t) = x̃0 +

∫ t

a

d[A]x+ f(t)− f(a) , t ∈ [a, b] . (1.1)

which contains as special case linear differential equations with impulses. Sections
3 and 4 are based on papers [8] and [9] and we present here some results on
continuous dependence of solutions of GLODE on a parameter.

Section 5 presents results from [10], [11]. It is concerned with approximations of
solutions of (1.1) by solutions of ordinary linear differential equations. We continue
research initiated by M. Pelant in his Ph.D. thesis [25].

The second part is based on the paper [12]. The main result (see Theorem
8.1) deals with periodic impulse problems for nonlinear second order impulsive
differential equations of the form

u′′ + c u′ = g(u) + e(t), u(0) = u(T ), u′(0) = u′(T ),u(ti+) = u(ti) + Ji(u, u
′),

u′(ti+) = u′(ti) +Mi(u, u
′), i = 1, 2, . . . ,m,

where g ∈ C(0,∞) can have a strong singularity at the origin and
0<t1< . . . < tm<T, e ∈ L1[0, T ], c ∈ R and Ji, Mi, i = 1, 2, . . . ,m are continuous
mappings of G[0, T ]×G[0, T ] into R, where G[0, T ] denotes the space of functions
regulated on [0, T ]. In particular, we prove continuation type existence principle
which is an analogy of the result of Manásevich and Mawhin (see [22]) valid for
the classical case. Unlike most of the previously published results, our existence
principle concerns also problems, in which monotonicity of impulse functions is not
required.

Recent state summary

Linear systems of ordinary differential equations have been described in details
in many textbooks devoted to ordinary differential equations. On the elementary
level, solutions are understood in a classical sense. A function x : [a, b] → Rn is
said to be a (classical) solution to the initial value problem

x′ − P (t)x = q(t) , x(t0) = x̃0 (1.2)
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on the interval [a, b], if it possesses a continuous derivative on [a, b] and it is such
that t0 ∈ [a, b], x(t0) = x̃0 and the equality

x′(t)− P (t)x(t) = q(t) (1.3)

is satisfied for all t ∈ [a, b]. One can see that in such a case it is natural to assume
that the coefficients P , q are continuous on [a, b]. The initial value problem (1.2)
can be equivalently reformulated as the integral equation

x(t)− x̃0 −
∫ t

t0

P (τ)x(τ)dτ =

∫ t

t0

q(τ)dτ (1.4)

where the integrals are the Riemann ones.

In a more advanced setting the Lebesgue integral is used, P and q can be
Lebesgue integrable functions and x is said to be a (Carathéodory) solution to (1.2)
on the interval [a, b], if it is absolutely continuous on [a, b], t0 ∈ [a, b], x(t0) = x̃0 and
the equality (1.3) is satisfied for almost all t ∈ [a, b]. Equivalently, x is a solution
to (1.2), if it is a solution to the integral equation (1.4), where the integrals are
the Lebesgue ones.

Let us notice that if we put

A(t) =

∫ t

a

P (τ) dτ and f(t) =

∫ t

a

q(τ) dτ, (1.5)

the equation (1.4) can be rewritten as

x(t)− x̃0 −
∫ t

t0

d[A(τ)]x(τ) = f(t)− f(t0), t ∈ [a, b]. (1.6)

It is very natural to ask how the solutions depend on the change of parameters
of the system, i.e. to find conditions ensuring that if Pk → P and qk → q holds,
then also xk → x is true for solutions of systems (1.2) and

x′k − Pk(t)xk = qk(t) , xk(t0) = x̃0, k ∈ N. (1.7)

It is well known that if Pk → P and qk → q in L1, then xk ⇒ x holds for the
Carathéodory solutions of (1.7). Moreover, due to Kurzweil and Vorel (c.f. [16,
Theorem 1]), the same holds if

there is m ∈ L1[a, b] such that |Pk(t)| ≤ m(t) a.e. on [a, b] for k ∈ N, (1.8)∫ t

a

Pk(s) ds ⇒
∫ t

a

P (s) ds and

∫ t

a

qk(s) ds ⇒
∫ t

a

q(s) ds on [a, b] (1.9)
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If we define Ak(t) =
∫ t
a
Pk(s) ds and fk(t) =

∫ t
a
qk(s) ds, conditions (1.8) and (1.9)

respectively reduce to
sup

{
varbaAk : k ∈ N

}
<∞ (1.10)

and
Ak ⇒ A, fk ⇒ f on [a, b]. (1.11)

Now, let us give two easy observations.

• Consider very simple ODE x′ = f ′n(t), x(0) = 0, where

fn(t) =

{
0 for 0 ≤ t ≤ 1

n
,

t sin(π
t
) for 1

n
< t ≤ 1.

We have fn ∈ AC[0, 1] for n ∈ N and

xn(t) = fn(t) ⇒ x(t) =

{
0 for t = 0,

t sin(π
t
) for t > 0.

However, x /∈ AC[0, 1], i.e. x is not a solution of any ODE.

• Consider x′k = Bk(t)xk, xk(0) = x̃0 ∈ Rn, whereBk(t) = P (t) + k χ(τ,τ+ 1
k
)(t) I, 0 < τ < 1,

P : [0, T ]→Rn×n is continuous, P (t)P (s) = P (s)P (t) for t, s ∈ [0, T ].

We have

xk(t)→ x(t)=


exp

(∫ t

0

P (s) ds

)
x̃0 if t ≤ τ,

exp

(∫ t

τ

P (s) ds

)
exp(I) exp

(∫ τ

0

P (s) ds

)
x̃0 if t > τ.

Since x(τ+) − x(τ) = (exp(I )− I) exp
(∫ τ

0
P (s) ds

)
x̃0 6= 0, we can see that

x has a jump at t = τ . In other words, x is subjected to a impulse at t = τ .

Motivated by the above observations, let us consider linear equation (1.6) in
a more general framework. It is natural to assume, that A is of bounded variation
and f is regulated. In this way, equation (1.6) covers both the above observations,
i.e. the case that the coefficients of the system are rapidly oscillating and the case
that they contain impulses.

The equation (1.6) is a special case of generalized differential equations
introduced by J. Kurzweil 1957 in his celebrated paper [17]. From the results
by I. I. Gichman, M. A. Krasnosel’skij and S. G. Krein and from the paper [16]
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it turned out that to get the conditions for continuous dependence of solutions
on a parameter, only the knowledge of the indefinite integral is sufficient. This
together with certain convergence effects which could not be explained by the
known results was the main motivation for [17]. Moreover, in this paper new
notion of nonlinear K-integral

∫ τ2
τ1

DU(τ, t) was introduced. In the special case

U(τ, t) = f(τ) g(t), this integral reduces to the Perron–Stieltjes integral
∫ b
a
fdg.

Solutions of generalized differential equation were defined as solutions of the
related integral equation where the nonlinear K-integral was involved. In this
paper he presented basic existence results and results on continuous dependence
of solutions on a parameter. In a series of papers published in the years 1957–1959
he continued his investigations and, in particular, he introduced the notion of the
emphatic convergence.

Independently of Kurzweil, in 1959, T. H. Hildebrandt (c.f. [13]) investigated
linear integral equations of the form (1.6) with the σ-Young integral and with
right-hand side of bounded variation. In particular, he gave conditions ensuring
the existence and uniqueness of solutions and constructed the fundamental ma-
trix, essentially in the form of the product integral. In seventies in some sense
a complete theory of linear boundary value problems for ordinary and generalized
differential and integro-differential equations was established in a series of papers
by Š. Schwabik, M. Tvrdý and O. Vejvoda (c.f. [43], [41], [51]). It appeared that
the Kurzweil integration theory is an extremely powerful tool for investigating in-
tegral and differential equations from the general viewpoint of functional analysis.
This stadium of the research was summarized in the monograph [42]. The mono-
graph by Š. Schwabik [39] gave a representative account of the theory of generalized
ODE’s. In particular, various types of continuous dependence on parameters and
variational stability were the topics of this monograph. Furthermore, differential
equations with impulses turned out to be special cases of generalized differential
equations.

In nineties the research by Š. Schwabik and M. Tvrdý was focused on extension
of the results known for the setting on the space BV of functions of bounded
variation to the space G of regulated functions. At the beginning this research was
inspired by the work done by Ch. S. Hönig [14] who treated similar questions but on
the basis of the interior Dushnik integral which in general differs somewhat from the
Perron-Stieltjes integral. Properties of the Perron-Stieltjes integration with respect
to regulated functions and analytic representation of the dual spaces to subspaces
of G were disclosed in [45], a general form of linear bounded and compact operators
was given in [40]. Results for the corresponding linear boundary value problems
were delivered in [46] and fundamental theory of general linear integral equations
in Rn was established in [47]. This stage of the investigation of differential and
integral equations with regulated solutions was summarized in the monograph [49]
by M. Tvrdý.
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Problems of continuous dependence on a parameter from a new viewpoint have
been investigated by M. Ashordia [1] and later by M. Tvrdý [48]. A closely related
problem is that of approximating solutions of GLDE by solutions of properly chosen
sequence of ODE’s which was treated by M. Pelant in his Ph.D. thesis [25]. Sections
3 – 5 of our thesis are devoted to similar topics. In particular, we generalize and
extend the result by the above mentioned authors.

In general, known ODE theories can be compared by the following table:

Theory Integral Solution

Classical Riemann, N ewton C1

Carathéodory Lebesgue AC
GODE Kurzweil BV, G

Many applications from physics, biology, medicine and economy are modeled by
systems with impulses. Let us mention e.g. the following: models of clock mecha-
nism, oscillation of a pendulum with shock impulses, (Andronov, Witt and Khaikin,
1937; Kalitin, 1969); radiation of electric of magnetic waves in a medium with
rapidly changing parameters (Friedman, 1956); motion of a particle in a field gene-
rated by a potential concentrated in a single point (Gottfried (1966)); control and
optimal control, in particular cosmonautics (Lasota and Szafraniec, 1968; Tingh,
1969; Utkin, 1981); hysteresis and generalized variational inequalities (Krejč́ı, 1996;
Krejč́ı and Laurençot, 2006); dosage schedule and pharmacokinetics in chemothe-
rapy, drug distribution in the human body (Krüger-Thiemer, 1966); mass measles
vaccination across age cohorts (Agur, Cojocaru, Mazor, Anderson and Danon,
1993); population growth models with impulsive effects (Ballinger and Liu, 1997);
market models with discontinuous current prices (Zavalishchin, 1994). These mo-
dels are mostly nonlinear. The next observation shows how to utilize the basic
properties of GLODE’s for solving nonlinear impulse problems.

Consider the impulse boundary value problem{
x′ − P (t)x = q(t), M x(0) +N x(T ) = r,

∆+x(τ) = ∆[k] if τ = tk ∈ D = {t1, . . . , tm},
(1.12)

where 0 < t1 < · · · < tm < T ; P, q ∈ L1[0, T ], M, N ∈ Rn×n, ∆[k], r ∈ Rn.
Let X be the Cauchy matrix for x′ − P (t)x = 0, X(0) = I
and let B = M X(0) +N X(T ), det B 6= 0.

Put f(t) =

∫ t

0

h(s) ds+
m∑
k=1

∆[k] χ(tk,T ](t) for t ∈ [0, T ].

Then problem (1.12) is equivalent to the systemx(t)− x(0)−
∫ t

0

P (s)x(s) ds = f(t)− f(0) for t ∈ [0, T ],

M x(0) +N x(T ) = r
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It possesses an unique solution x for each f and r

x(t) = X(t)B−1 r +

∫ T

0

Γ(t, s) d [f(s)]

= X(t)B−1 r +

∫ T

0

Γ(t, s)h(s) ds+
m∑
k=1

Γ(t, tk) ∆[k] for t ∈ [0, T ],

where Γ is Green’s function for

x′ − P (t)x = 0, M x(0) +N x(T ) = 0.

Using a quasilinearization method, we can conclude that x is a solution to the
nonlinear problem

x′ − P (t)x = F (t, x), M x(0) +N x(T ) = R(x), ∆+x(t) = Sk(x) if t = tk ∈ D

if and only if it is a solution to the integral equation

x(t) = X(t)B−1R(x) +

∫ T

0

Γ(t, s)F (s, x) ds+
m∑
k=1

Γ(t, tk)Sk(x) on [0, T ].

Starting with Hu and Lakshmikantham [15], periodic boundary value problems

u′′ = f(t, u, u′), u(0) = u(T ), u′(0) = u′(T ){
u(ti+) = u(ti) + Ji(u(ti)),

u′(ti+) = u′(ti) +Mi(u
′(ti)), i = 1, 2, . . . ,m,

have been studied by many authors. Usually it is assumed that the functions
Ji, Mi : R → R, i = 1, 2, . . . ,m, are continuous functions and fulfil some mono-
tonicity type conditions. A rather representative (however not complete) list of
related papers is given in references. In particular, in [4], [5], [7], [20], [21] exis-
tence results in terms of lower/upper functions obtained by the monotone iterative
method can be found. All of these results impose monotonicity of the impulse
functions and existence of an associated pair of well-ordered lower/upper func-
tions. The papers [6] and [52] are based on the method of bound sets, however
the effective criteria contained therein correspond to the situation when there is
a well-ordered pair of constant lower and upper functions. Existence results which
apply also to the case when a pair of lower and upper functions which need not be
well-ordered is assumed were provided only by Rach̊unková and Tvrdý, see [30],
[32]–[34]. Analogous results for impulsive problems with quasilinear differential
operator were delivered by Rach̊unková and Tvrdý in [35]–[37]. When no impulses
are acting, periodic problems with singularities have been treated by many authors.
For rather representative overview and references, see e.g. [27] or [28]. To our
knowledge, up to now singular periodic impulsive problems have not been treated.
For singular Dirichlet impulsive problems we refer to the papers by Rach̊unková
[26], Rach̊unková and Tomeček [29] and Lee and Liu [19].
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Part I

Generalized Linear ODE

2 Preliminaries

2.1 Basic notation

The following notation and definitions will be used throughout this text: N =
{1, 2, 3, . . . } and N0 = N ∪ {0}. R is the set of real numbers; Rm×n is the space of
real m× n matrices B = (bij)i=1,...,m

j=1,...,n
equipped with the norm

|B| = max
j=1,...,n

m∑
i=1

|bij| ;

Rn = Rn×1 stands for the set of real column n-vectors.
For a matrix B ∈ Rn×n, detB denotes the determinant of B. If detB 6= 0,

then the matrix inverse to B is denoted by B−1. BT is the matrix transposed to
B. The symbol I stands for the identity matrix and 0 for the zero matrix.

If a, b ∈ R are such that −∞ < a < b < +∞, then [a, b] stands for the
closed interval {x ∈ R; a ≤ x ≤ b}, (a, b) is its interior and (a, b], [a, b) are the
corresponding half-closed intervals.

The sets D = {t0, t1, t2, . . . , tm} of points in the closed interval [a, b] such that

a = t0 < t1 < t2 < · · · < tm = b

are called divisions of [a, b]. The set of all divisions of the interval [a, b] is denoted
by D[a, b].

For a matrix valued function B : [a, b] → Rm×n, its variation varbaB on the
interval [a, b] is defined by

varbaB = sup
D∈D[a,b]

m∑
i=1

|B(ti)−B(ti−1)| .

If varbaB < +∞, we say that the function B is of bounded variation on the interval
[a, b]. BVm×n[a, b] denotes the set of all m× n matrix valued functions of bounded
variation on [a, b]. We will write BVn[a, b] instead of BVn×1[a, b] and BV[a, b]
instead of BV1×1[a, b]. The set BVm×n equipped with the norm ‖B‖BV = |B(a)|+
varbaB is Banach space. For further details concerning the space BVm×n[a, b], see
e.g. [50].

If a sequence of m× n matrix valued functions {Bk}∞k=1 converges uniformly to
a matrix valued function B0 on [c, d] ⊂ [a, b], i.e.

lim
k→∞

sup
t∈[c,d]

|Bk(t)−B0(t)| = 0 ,
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we write
Bk ⇒ B0 on [c, d] .

We say that {Bk}∞k=1 converges locally uniformly to B0 on a set M ⊂ [a, b], if
Bk ⇒ B0 on each closed subinterval J ⊂M .

Cm×n[a, b] stands for the set of functions B : [a, b]→ Rm×n that are continuous
on [a, b]. Cm×n equipped with the supreme norm

‖B‖ = sup
t∈[a,b]

|B(t)|

is Banach space.

We will write briefly B(t+) = lim
τ→t+

B(τ), B(s−) = lim
τ→s−

B(τ). Furthermore,

we denote

∆+B(t) = B(t+)−B(t) for t ∈ [a, b), ∆+B(b) = 0,

∆−B(s) = B(s)−B(s−) for s ∈ (a, b], ∆−B(a) = 0

and

∆B(r) = ∆+B(r)−∆−B(r) = B(r+)−B(r−) for r ∈ (a, b).

We say that the matrix valued function B : [a, b]→ Rm×n is regulated on [a, b],
if it possesses finite1 limits B(t+) and B(s−) for each t ∈ [a, b), s ∈ (a, b]. The set
of all m× n matrix valued functions regulated on the interval [a, b] is denoted by
Gm×n[a, b]. Furthermore, for each regulated function B, we denote

S+(B; [a, b]) = {t ∈ [a, b] : ∆+B(t) 6= 0} ,
S−(B; [a, b]) = {t ∈ [a, b] : ∆−B(t) 6= 0}
and

S(B; [a, b]) = S+(B; [a, b]) ∪S−(B; [a, b]).

(2.1)

Thus, S(B; [a, b]) is the set of all points of the discontinuity of the function B on
the interval [a, b]. It is known that for each B ∈ Gm×n[a, b] this set is at most
countable and for each ε > 0 there are at most finitely many points t ∈ [a, b)
such that |∆+B(t)| ≥ ε and at most finitely many points s ∈ [a, b] such that
|∆−B(s)| ≥ ε. Clearly, each function regulated on [a, b] is bounded on [a, b], i.e.
‖B‖ <∞ for all B ∈ Gm×n[a, b].

By ACm×n[a, b] we denote the set of all functions B : [a, b] → Rm×n such that
each component bij, i = 1, . . . ,m, j = 1, . . . , n of B is absolutely continuous on
the interval [a, b].

1i.e. in Rm×n
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Analogously to the spaces of functions of bounded variation, ACn[a, b] =
ACn×1[a, b], Gn[a, b] = Gn×1[a, b], Cn[a, b] = Cn×1[a, b] and AC[a, b] = AC1[a, b],
G[a, b] = G1[a, b], C[a, b] = C1[a, b]. Obviously,

ACm×n[a, b] ⊂ BVm×n[a, b] ⊂ Gm×n[a, b] and Cm×n[a, b] ⊂ Gm×n[a, b].

Finally, a function f : [a, b]→ R is called a finite step function on [a, b] if there is
a division {α0, α1, . . . , αm} ∈ D[a, b] of [a, b] such that f is constant on every open
interval (αj−1, αj), j = 1, 2, . . . ,m. The set of all finite step functions on [a, b] is
denoted by S[a, b], Sm×n[a, b] is the set of all m× n matrix valued functions whose
arguments are finite step functions and Sn×1[a, b] = Sn[a, b]. It is known that the
set Sm×n[a, b] is dense in Gm×n[a, b] with respect to the supremal norm, i.e.{

for each ε > 0 and each B ∈ Gm×n[a, b]

there is an B̃ ∈ Sm×n[a, b] such that ‖B − B̃‖ < ε.
(2.2)

We say that a proposition P (n) holds for almost all (briefly a.a.) n ∈ N if it is
true for all n ∈ N \K where K is a finite set.

2.2 Kurzweil-Stieltjes integral

In this subsection we will recall the definition of the Kurzweil-Stieltjes integral (in
what follows KS-integral).

Let −∞ < a < b < +∞. For given m ∈ N, a division D = {t0, t1, . . . , tm} ∈
D[a, b] and ξ = (ξ1, ξ2, . . . , ξm) ∈ Rm, the couple P = (D, ξ) is called a partition of
[a, b] if

tj−1 ≤ ξj ≤ tj for all j = 1, 2, . . . ,m .

The set of all partitions of the interval [a, b] is denoted by P [a, b].
An arbitrary positive valued function δ : [a, b] → (0,+∞) is called a gauge on

[a, b]. Given a gauge δ on [a, b], the partition

P = (D, ξ) =
(
{t0, t1, . . . , tm}, (ξ1, ξ2, . . . , ξm)

)
∈ P [a, b]

is said to be δ-fine, if

[tj−1, tj] ⊂
(
ξj − δ(ξj), ξj + δ(ξj)

)
for all j = 1, 2, . . . ,m .

The set of all δ-fine partitions of the interval [a, b] is denoted by A(δ; [a, b]).
For functions f, g : [a, b]→ R and a partition P ∈ P [a, b],

P =
(
{t0, t1, . . . , tm}, (ξ1, ξ2, . . . , ξm)

)
we define

ΣP (f ∆g) =
m∑
i=1

f(ξi)[g(ti)− g(ti−1)] .
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We say that I ∈ R is the KS-integral of f with respect to g from a to b if

∀ε > 0 ∃δ : [a, b]→ (0,+∞) ∀P ∈ A(δ; [a, b]) : |I − ΣP (f ∆g)| < ε .

In such a case we write

I =

∫ b

a

fdg or I =

∫ b

a

f(t)dg(t) .

It is well known that the KS-integral
∫ b
a
f dg exists provided f ∈ BV[a, b]

and g ∈ BV[a, b]. For the properties of the KS-integral with respect to functions
of bounded variation, see [42]. The KS-integral with respect to scalar regulated
functions is described in [45], [49], [50].

If F : [a, b]→ Rm×n, G : [a, b]→ Rn×p and H : [a, b]→ Rp×m are matrix valued
functions, then the symbols∫ b

a

F d[G] and

∫ b

a

d[H]F

stand respectively for the matrices( n∑
j=1

∫ b

a

fi,j dgj,k

)
i=1,...,m
k=1,...,p

and
( m∑
i=1

∫ b

a

fk,i dhi,j

)
k=1,...,p
j=1,...,n

,

whenever all integrals appearing in the sums exist. Since the integral of a matrix
valued function with respect to a matrix valued function is a matrix whose elements
are sums of KS-integrals of real functions with respect to real functions, it is easy
to reformulate all the statements from Section 5 in [50] for matrix valued functions
(cf. [42, I.4]).

The extension of the results known for scalar real valued functions to real vector
or matrix valued functions is obvious and hence for the basic facts concerning
integrals with respect to regulated functions we shall refer to the corresponding
assertions from [45] or [49].

The next theorem summarizes the fundamental properties of KS-integration
with respect to regulated functions.

2.1 Theorem. ([49, Theorem 2.3.8 and Theorem 2.3.15]) If f, g ∈ G[a, b] and at
least one of the functions f, g has a bounded variation on [a, b], then the integral∫ b
a
f dg exists. Furthermore,∣∣∣ ∫ b

a

f dg
∣∣∣≤ 2

(
|f(a)|+ varba f

)
‖g‖ if f ∈BV[a, b] and g ∈G[a, b], (2.3)

and ∣∣∣ ∫ b

a

f dg
∣∣∣ ≤ ‖f‖ varba g if f ∈G[a, b] and g ∈BV[a, b]. (2.4)
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2.2 Remark. The inequality (2.3) is in [49, Theorem 2.3.8] in the form∣∣∣ ∫ b

a

f dg
∣∣∣ ≤ (|f(a)|+ |f(b)|+ varba f

)
‖g‖ ,

from which (2.3) immediately follows using

|f(b)| ≤ |f(a)|+ |f(b)− f(a)| ≤ |f(a)|+ varba f .

The inequalities (2.3) and (2.4) imply the following simple convergence asser-
tions.

2.3 Corollary. If f ∈ BV[a, b] and gk ∈ G[a, b] for all k ∈ N and gk ⇒ g on [a, b]
then ∫ t

a

f dgk ⇒
∫ t

a

f dg and

∫ t

a

gk df ⇒
∫ t

a

g df on [a, b].

The next natural assertion is very useful for consideration of GLODE was
proved in our paper [11]. It provides more sofisticated convergence criteria which
will be useful later.

2.4 Theorem. Let x, xk ∈ Gn[a, b], A, Ak ∈ BVn×n[a, b] for k ∈ N. Furthermore,
let

xk ⇒ x on [a, b], (2.5)

α∗ := sup {varbaAk : k ∈ N} < +∞, (2.6)

and

Ak ⇒ A on [a, b]. (2.7)

Then ∫ t

a

d[Ak]xk ⇒
∫ t

a

d[A]x on [a, b]. (2.8)

Proof. Let ε > 0 be given. By (2.2) and (2.5), we can find u ∈ Sn[a, b] and k0 ∈ N
such that

‖x− u‖ < ε, ‖xk − u‖ < ε and ‖Ak − A‖ < ε for k ≥ k0.

Furthermore, since varba u <∞, using (2.3) we can see that for t ∈ [a, b] and k ≥ k0

the relations∣∣∣∣∫ t

a

d[Ak]xk−
∫ t

a

d[A]x

∣∣∣∣= ∣∣∣∣∫ t

a

d[Ak] (xk−u)+

∫ t

a

d[Ak−A]u+

∫ t

a

d[A] (u−x)

∣∣∣∣
≤ α∗ ε+ 2 (varba u) ε+ α∗ ε = 2 (α∗ + varba u) ε

hold, wherefrom our assertion immediately follows.
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2.5 Corollary. The assertion of Theorem 2.4 remains unchanged, if we replace
condition (2.7) by (

Ak − Ak(a)
)

⇒
(
A− A(a)

)
on [a, b] .

Proof. By Theorem 2.4, we get∫ t

a

d[Ak]xk =

∫ t

a

d
[
Ak − Ak(a)

]
xk ⇒

∫ t

a

d
[
A− A(a)

]
x =

∫ t

a

d[A]x on [a, b].

2.6 Remark. Corollary 2.5 is slightly generalized version of result due to Ashordia
[1, Lemma 1].

2.3 Generalized linear ordinary differential equations

Here we describe some fundamental properties of generalized linear differential
equations. Throughout the whole text we work on a bounded interval [a, b].

2.3.1 Definition and basic properties

Assume that
A ∈ BVn×n[a, b], f ∈ Gn[a, b] (2.9)

and consider the equation

x(t) = x(s) +

∫ t

s

d[A]x+ f(t)− f(s) . (2.10)

Let [c, d] ⊂ [a, b]. We say that a function x : [c, d] → Rn is a solution of (2.10) on
[c, d] if ∫ d

c

d[A]x ∈ Rn

and (2.10) holds for all t, s ∈ [c, d].
Moreover, if t0 ∈ [c, d] and x̃0 ∈ Rn are given, we say that x : [c, d] → Rn is a

solution of the initial value problem (2.10), x(t0) = x̃0 on [c, d] if it is a solution of
(2.10) on [c, d] and x(t0) = x̃0, i.e. if

x(t) = x̃0 +

∫ t

t0

d[A]x+ f(t)− f(t0) (2.11)

for all t ∈ [c, d].
Notice that under assumption (2.9) each solution of equation (2.10) on [a, b] is

regulated on [a, b] (see Theorem 2.10). Equation (2.10) is usually called a gene-
ralized linear differential equation. Such equations with solutions having values
in the space Rn of real n-vectors have been thoroughly investigated e.g. in the
monographs [42] or [39].
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2.7 Theorem. ([42, III.1.4]) Let A ∈ BVn×n[a, b]. If t0 ∈ [a, b], then the initial
value problem (2.11) possesses for any f ∈ Gn[a, b], x̃0 ∈ Rn a unique solution x(t)
defined on [a, b] if and only if

det
[
I−∆−A(t)

]
6= 0 on (t0, b] and det

[
I +∆+A(t)

]
6= 0 on [a, t0).

If t0 = a, then the initial value problem (2.11) possesses for any f ∈ Gn[a, b],
x̃0 ∈ Rn a unique solution x(t) defined on [a, b] if and only if

det
[
I−∆−A(t)

]
6= 0 for each t ∈ (a, b]. (2.12)

2.3.2 Fundamental matrix

2.8 Lemma. ([42, III.2.10, III.2.11]) For a given A ∈ BVn×n[a, b] such that
(2.12) and

det
[
I +∆+A(t)

]
6= 0 on [a, b) (2.13)

there exists a unique U : [a, b]× [a, b]→ Rn×n such that

U(t, s) = I +

∫ t

s

d[A(r)]U(r, s) (2.14)

for all t, s ∈ [a, b].
Moreover, if we denote X(t) = U(t, a) for t ∈ [a, b], we get detX(t) 6= 0 for

t ∈ [a, b],
U(t, s) = X(t)X−1(s) for all s, t ∈ [a, b] (2.15)

and

X(t) = I +

∫ t

a

d[A]X , t ∈ [a, b]. (2.16)

Furthermore, the inverse matrix X−1(t) is of bounded variation on [a, b] and it
satisfies the relation

X−1(t) = X−1(s)−X−1(t)A(t) +X−1(s)A(s) +

∫ t

s

d[X−1]A (2.17)

for t, s ∈ [a, b].

By Theorem 2.7, for a given t0 ∈ [a, b], the unique solution x(t) of

x(t) = x̃0 +

∫ t

t0

d[A]x (2.18)

on [t0, 1] is given by

x(t) = X(t)X−1(t0) x̃0 . (2.19)
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2.9 Definition. The matrix valued function X : [a, b]→ Rn×n given by Lemma 2.8
is called the fundamental matrix of the homogeneous generalized linear differential
equation

x(t) = x(s) +

∫ t

s

d[A]x , t, s ∈ [a, b] (2.20)

on the interval [a, b] or, briefly, the fundamental matrix corresponding to the given
matrix function A.

2.3.3 Variation-of-constants formula

For our purposes the property (2.12) is crucial. Its importance is well illustrated by
the next assertion which is a fundamental existence result for the equation (1.1).

2.10 Theorem. Let A ∈ BVn×n[a, b] satisfy (2.12). Then, for each x̃0 ∈ Rn and
each f ∈ Gn[a, b], the initial value problem (1.1) has a unique solution x on [a, b]
and x ∈ Gn[a, b]. Moreover, x− f ∈ BVn[a, b].

Proof follows from [46, Proposition 2.5].

2.11 Lemma. ([42, III.1.6]) Assume that A ∈ BVn×n[a, b], f ∈ Gn[a, b]. Let x(t)
be a solution of the equation (2.10) on [a, b]. Then the one-sided limits x(a+),
x(t+), x(t−), x(b−), t ∈ (a, b) exist and the relations{

x(t+) = [I + ∆+A(t)]x(t) + ∆+f(t) for all t ∈ [a, b) ,
x(t−) = [I−∆−A(t)]x(t)−∆−f(t) for all t ∈ (a, b]

(2.21)

hold.

2.12 Theorem. ([42, III.2.13]) (variation-of-constants formula) Assume that
A ∈ BVn×n[a, b] satisfy (2.12) and (2.13). Then for any t0 ∈ [a, b], x̃ ∈ Rn,
f ∈ Gn[a, b] there is an unique solution of the nonhomogenous initial value prob-
lem

x(t) = x̃+

∫ t

t0

d[A]x+ f(t)− f(t0)

which can be expressed in the form

x(t) = X(t)X−1(t0)x̃+ f(t)− f(t0)−X(t)

∫ t

t0

d[X−1(r)]
(
f(r)− f(t0)

)
for t ∈ [a, b], where X : [a, b]→ Rn×n is the fundamental matrix corresponding to A.



2 PRELIMINARIES 15

2.3.4 Further properties

2.13 Lemma. ([42, I.4.30]) (generalized Gronwall’s inequality) Assume that h :
[a, b]→ R is a nonnegative nondecreasing function, ϕ : [a, b]→ R nonnegative and
bounded, i.e. there exist K ∈ R such that ϕ(t) ≤ K for all t ∈ [a, b].

a) If h is left-continuous on (a, b] and if there exist nonnegative constants K1,
K2 such that

ϕ(t) ≤ K1 +K2

∫ t

a

ϕ dh for all t ∈ [a, b],

then
ϕ(t) ≤ K1 exp

[
K2

(
h(t)− h(a)

)]
for any t ∈ [a, b].

b) If h is right-continuous on [a, b) and if there exist nonnegative constants K1,
K2 such that

ϕ(t) ≤ K1 +K2

∫ b

t

ϕ dh for all t ∈ [a, b],

then
ϕ(t) ≤ K1 exp

[
K2

(
h(b)− h(t)

)]
for any t ∈ [a, b].

Analogously to [42, Theorem III.1.7] where f ∈ BVn[a, b], we have

2.14 Lemma. Let A ∈ BVn×n[a, b] satisfy (2.12). Then

cA := sup{
∣∣[I−∆−A(t)]−1

∣∣ : t ∈ [a, b]} <∞ (2.22)

and

|x(t)| ≤ cA (|x̃0|+ 2 ‖f‖) exp(cA vartaA) for t ∈ [a, b] (2.23)

holds for each x̃0 ∈ Rn, f ∈ Gn[a, b] and each solution x of (1.1) on [a, b].

Proof. First, notice that for t ∈ [a, b] such that |∆−A(t)| < 1
2

we have

∣∣[I−∆−A(t)]−1
∣∣ =

∣∣∣∣∣
∞∑
k=1

(∆−A(t))k

∣∣∣∣∣ ≤
∞∑
k=1

|∆−A(t)|k =
1

1− |∆−A(t)|
< 2.

Therefore, (2.22) follows easily from the fact that the set

{t ∈ [a, b] : |∆−A(t)| ≥ 1

2
}

has at most finitely many elements.
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Now, let x be a solution of (1.1). Put B(a) = A(a) and B(t) = A(t−) for
t ∈ (a, b]. Then, as in the proof of [42, Theorem III.1.7], we getA−B ∈BVn×n[a, b],

A(t)−B(t) = ∆−A(t) and

∫ t

a

d[A−B]x = ∆−A(t) for t ∈ [a, b].

Consequently

x(t) = [I−∆−A(t)]−1

(
x̃0 + f(t)− f(a) +

∫ t

a

d[B]x

)
and

|x(t)| ≤ K1 +K2

∫ t

a

|x|dh for t ∈ [a, b],

where

K1 = cA (|x̃0|+ 2 ‖f‖) , K2 = cA and h(t) = vartaB for t ∈ [a, b].

The function h is nondecreasing and, since B is left-continuous on (a, b], h is
also left-continuous on (a, b]. Therefore we can use Lemma 2.13 (the generalized
Gronwall inequality) to get the estimate (2.23).

2.15 Corollary. Let A ∈ BVn×n[a, b] satisfy (2.12). Then for each x̃0 ∈ Rn,
f ∈ Gn[a, b] and each solution x of (1.1) on [a, b], the estimate

varba (x− f) ≤ cA (varbaA) (|x̃0|+ 2 ‖f‖) exp(cA varbaA).

is true, where cA is defined by (2.22).

Proof. By (2.23), we have

‖x‖ ≤ cA (|x̃0|+ 2 ‖f‖) exp(cA varbaA).

Therefore

varba (x− f) ≤ (varbaA) ‖x‖

≤ cA (varbaA) (|x̃0|+ 2 ‖f‖) exp(cA varbaA).

2.16 Lemma. Let A∈BVn×n[a, b] satisfy (2.12) and let cA be defined by (2.22).
Then

cA =
(

inf
{∣∣[I−∆−A(t)

]
x
∣∣ : t ∈ [a, b], x ∈ Rn, |x| = 1

})−1

. (2.24)
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Proof. We have

cA = sup
{
|[I−∆−A(t)]−1| : t ∈ [a, b]

}
= sup

{
|[I−∆−A(t)]−1| |[I−∆−A(t)]x|

|[I−∆−A(t)]x|
: t ∈ [a, b], x ∈ Rn, |x| = 1

}
≥ sup

{
|x|

|[I−∆−A(t)]x|
: t ∈ [a, b], x ∈ Rn, |x| = 1

}
= sup

{
1

|[I−∆−A(t)]x|
: t ∈ [a, b], x ∈ Rn, |x| = 1

}
=
(
inf
{
|[I−∆−A(t)]x| : t ∈ [a, b], x ∈ Rn, |x| = 1

})−1
.

Thus, it remains to prove that the inequality

cA ≤
(
inf
{∣∣[I−∆−A(t)

]
x
∣∣ : t ∈ [a, b], x ∈ Rn, |x| = 1

})−1
(2.25)

is true, as well. To this aim, first let us notice that for each t ∈ [a, b] there is
a z ∈ Rn such that |z| = 1 and∣∣[I−∆−A(t)]−1

∣∣ =
∣∣[I−∆−A(t)]−1 z

∣∣ . (2.26)

Indeed, let t∈ [a, b] and let B= [I −∆−A(t)]−1. Let i0 ∈{1, 2, . . . , n} be such that
|B| =

∑n
j=1 |bi0,j| and let

z =


sgn (bi0,1)
sgn (bi0,2)

.

.
sgn (bi0,n)

 .

Then |z| = 1. Furthermore,

|B z| = max
i=1,2,...,n

n∑
j=1

|bi,j zj| = max
i=1,2,...,n

n∑
j=1

|bi,j sgn (bi0,j)|

≤ max
i=1,2,...,n

n∑
j=1

|bi,j| = |B| .

On the other hand, we have

|B| =
n∑
j=1

|bi0,j| =

∣∣∣∣∣
n∑
j=1

sgn (bi0,j) bi0,j

∣∣∣∣∣ ≤ |B z| .

Therefore, we can conclude that (2.26) is true.
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Now, due to (2.12), there is w ∈ Rn such that z = [I−∆−A(t)]w. Inserting this
instead of z into (2.26), we get∣∣[I−∆−A(t)]−1

∥∥ =
|[I−∆−A(t)]−1 [I−∆−A(t)]w|

|[I−∆−A(t)]w|

=
|w|

|[I−∆−A(t)]w|
=

1∣∣∣[I−∆−A(t)]
(
w
|w|

)∣∣∣
≤ sup

{
1

|[I−∆−A(t)]x|
: x ∈ Rn, |x| = 1

}
.

It follows that

cA ≤ sup

{
1

|[I−∆−A(t)]x|
: t ∈ [a, b], x ∈ Rn, |x| = 1

}
=
(
inf{|[I−∆−A(t)]x| : t ∈ [a, b], x ∈ Rn, |x| = 1

)−1
,

i.e. (2.25) is true. This completes the proof.

2.4 Continuous dependence of solutions on a parameter

Together with problem (1.1) let us consider the sequence of initial value problems

x(t) = x̃k +

∫ t

a

d[Ak]x+ fk(t)− fk(a) , t ∈ [a, b] , (2.27)

where k ∈ N. We are interested in finding conditions ensuring the convergence of
solutions of (2.27) to a solution of (1.1). First, let us recall the result of Ashordia
concerning the case of uniform convergence of Ak(t) to A(t) on a compact interval.
This lemma was stated in Theorem 1 in [1]. We present it in the form which we
will need for the proof of our main convergence result (see Theorem 3.1).

2.17 Lemma. ([1, Theorem 1]) Let A, Ak ∈ BVn×n[a, b] for k ∈ N and let (2.12)
hold. Assume that the sequence {Ak}∞k=1 satisfies (2.6) and(

Ak − Ak(a)
)

⇒
(
A− A(a)

)
on [a, b]. (2.28)

Then there exists a fundamental matrix Xk corresponding to Ak for a.a. k ∈ N
and X0 corresponding to A on [a, b] and Xk ⇒ X0 on [a, b].

Moreover, let (2.13), x̃k → x̃0, f , fk ∈ BVn[a, b] for k ∈ N and let the sequence
{fk}∞k=1 satisfy the condition(

fk − fk(a)
)

⇒
(
f − f(a)

)
on [a, b].

Then there exists a unique solution xk of (2.27) for a.a. k ∈ N and there exists
a unique solution x0 of (1.1) on [a, b] and

xk ⇒ x0 on [a, b].
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Sketch of proof. Step 1. We can show that

det[I +∆+Ak(t)] 6= 0 and det[I−∆−Ak(t)] 6= 0 on [a, b].

By (2.28),
∆+Ak ⇒ ∆+A and ∆−Ak ⇒ ∆−A on [a, b].

Since varbaA < +∞, the series
∑

t∈[a,b]

|∆+A(t)| and
∑

t∈[a,b]

|∆−A(t)| converge. Thus

|∆+A(t)| < 1

2
and |∆−A(t)| < 1

2
for a.a. k ∈ N.

Step 2. According to the first part of the proof, the fundamental matrices X0,
Xk, k ∈ N are defined on [a, b]. By Gronwall’s inequality applied on |Xk(t)−X0(t)|
we obtain that Xk ⇒ X0 on [a, b].

Step 3. Using the variation-of-constants formula (Theorem 2.12) and Corollary
2.5 we get xk ⇒ x0 on [a, b].

The next fundamental result on the continuous dependence of solutions of gene-
ralized linear differential equations on a parameter generalizes the result due to
M. Ashordia [1, Theorem 1]. Unlike [1] and [2], we do not utilize the variation-of-
constants formula and therefore we need not assume that, in addition to (2.12),
also the condition (2.13) is satisfied. Furthermore, both the nonhomogeneous part
of the equation and the solution may be only regulated functions, not necessarily
of bounded variation.

2.18 Theorem. Let A, Ak ∈ BVn×n[a, b], f, fk ∈ Gn[a, b], x̃0, x̃k ∈ Rn for k ∈ N.
Assume (2.6), (2.7), (2.12),

fk ⇒ f on [a, b] (2.29)

and

lim
k→∞

x̃k = x̃0. (2.30)

Then the equation (1.1) has a unique solution x on [a, b]. Furthermore, for each
k ∈ N sufficiently large there exists a unique solution xk on [a, b] to the equation
(2.27) and

xk ⇒ x on [a, b] . (2.31)

Proof. Step 1. As in the first part of the proof of Lemma 2.17, we can show
that there is a k1 ∈ N such that

det[I−∆−Ak(t)] 6= 0 on [a, b]

holds for all k≥ k1. In particular, (2.27) has a unique solution xk for k≥ k1.
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Step 2. For k ≥ k1, put

cAk
:= sup{

∣∣[I−∆−Ak(t)]
−1
∣∣ : t ∈ (a, b]} <∞

Then, by Lemma 2.16, we have

(cAk
)−1 = inf

{∣∣[I−∆−Ak(t)
]
x
∣∣ : t ∈ [a, b], x ∈ Rn, |x| = 1

}
≥ inf

{∣∣[I−∆−A(t)
]
x
∣∣ : t ∈ [a, b], x ∈ Rn, |x| = 1

}
− sup

{∣∣[∆−(Ak(t)− A(t))
]
x
∣∣ : t ∈ [a, b], x ∈ Rn, |x| = 1

}
.

Since, due to the assumption (2.7),

∆−Ak ⇒ ∆−A on [a, b] ,

we conclude that there is a k0 ≥ k1 such that

(cAk
)−1 ≥ (cA)−1 − (2 cA)−1 = (2 cA)−1 for k ≥ k0.

To summarize,
cAk
≤ 2 cA <∞ for k ≥ k0. (2.32)

Step 3. Set wk = (xk − fk)− (x− f). Then, for k ≥ k0,

wk(t) = w̃k +

∫ t

a

d[Ak]wk + hk(t)− hk(a) on [a, b],

where

hk(t) =

∫ t

a

d[Ak − A] (x− f) +

(∫ t

a

d[Ak] fk −
∫ t

a

d[A] f

)
for t ∈ [a, b]

and

w̃k = (x̃k − fk(a))− (x̃0 − f(a)) .

By (2.29) and (2.30) we can see that

lim
k→∞

w̃k = 0. (2.33)

Furthermore, since x − f ∈ BVn[a, b] and Ak ⇒ A on [a, b], by Theorem 2.1 we
have

lim
k→∞

∥∥∥∥∫ t

a

d[Ak − A] (x− f)

∥∥∥∥ = 0

and, by Lemma 2.4,

lim
k→∞

∫ t

a

d[Ak] fk =

∫ t

a

d[A] f.

To summarize,
lim
k→∞
‖hk‖ = 0. (2.34)
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On the other hand, applying Theorem 2.14 and taking into account the relation
(2.32), we get

‖wk‖ ≤ 2 cA (|w̃k|+ 2 ‖hk‖) exp(2 cA α
∗) for t ∈ [a, b] and k ≥ k0,

wherefrom, by virtue of (2.33) and (2.34), the relation

lim
k→∞
‖wk‖ = 0

follows. Finally, having in mind the assumptions (2.29) and (2.30), we conclude
that the relation

xk ⇒ x on [a, b]

is true, as well. This completes the proof.

It is easy to see that the generalized differential equation (1.1) is equivalent
with the equation

x(t) = x̃0 +

∫ t

a

d[B]x+ g(t)− g(a)

whenever B − A and g − f are constant on [a, b]. Therefore Theorem 2.18 can be
also reformulated as follows.

2.19 Corollary. The assertion of Theorem 2.18 remains unchanged, if we replace
assumptions (2.7) and (2.29) by(

Ak − Ak(a)
)

⇒
(
A− A(a)

)
on [a, b] ,

and (
fk − fk(a)

)
⇒
(
f − f(a)

)
on [a, b] .

Below we will formulate a result concerning the case when the assumption (2.28)
is not satisfied. To this aim, let us introduce the following notation.

2.20 Notation. For F : [a, b]→ Rm×n and J = [α, β] ⊂ [a, b], we define

F J(t) = F (t)− F (α) for t ∈ J .

2.21 Theorem. ([49, Theorem 3.3.2]) Let A, Ak ∈ BVn×n[a, b] for k ∈ N, (2.6)
and (2.12) hold. Furthermore, assume that there is a finite set D ⊂ [a, b] such that

AJk ⇒ AJ on any closed interval J ⊂ [a, b] \D , (2.35)

det[I−∆−Ak(t)] 6= 0 for all t ∈ D and for a.a. k ∈ N, (2.36)
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and 

if τ ∈ D, then ∀ ξ ∈ Rn and ∀ ε > 0 ∃ δ > 0 such that

∀ δ′ ∈ (0, δ) ∃ k0 ∈ N such that the relations

|uk(τ)− uk(τ − δ
′
)−∆−A(τ)[I−∆−A(τ)]−1ξ| < ε ,

|vk(τ + δ
′
)− vk(τ)−∆+A(τ)ξ| < ε

are satisfied ∀ k ≥ k0 and ∀uk, vk such that

|ξ − uk(τ − δ
′
)| ≤ δ, |ξ − vk(τ)| ≤ δ and

uk(t) = uk(τ − δ
′
) +

t∫
τ−δ′

d[Ak]uk(s) on [τ − δ′ , τ ] ,

vk(t) = vk(τ) +

t∫
τ

d[Ak] vk(s) on [τ, τ + δ
′
] .

(2.37)

Then for a.a. k ∈ N the fundamental matrix Xk corresponding to Ak is defined
on [a, b] and

lim
k→∞

Xk(t) = X0(t) on [a, b], (2.38)

where X0 is the fundamental matrix corresponding to A.

2.22 Remark. Theorem 2.21 is a slightly modified version of [49, Theorem 3.3.2].
Notation is simplified and, in particular, from the proof given in [49, Theorem 3.3.2]
it follows that the assumption det[I−∆−Ak(t)] 6= 0 on (a, b] for all k ∈ N used in
[49] is not necessary and can be replaced by a weaker one, i.e. det[I−∆−Ak(t)] 6= 0
for all t ∈ D and for a.a. k ∈ N.

Conditions (2.35) – (2.37) characterize the concept of emphatic convergence
introduced by J. Kurzweil (c.f. [18, Definition 4.1]). For more details see [49,
Definition 3.2.8] or [39].

In the proof of Theorem 4.2 the following two lemmas are needed. The former
one is from [1, Lemma 2]. The latter one is based on [49, Theorem 3.2.5] and on
[1, Lemma 2].

2.23 Lemma. ([1, Lemma 2]) Assume that A, Ak ∈ BVn×n[a, b] for k ∈ N and
(2.12), (2.13) hold. Let Xk be fundamental matrix corresponding to Ak, k ∈ N, let
X0 be fundamental matrix corresponding to A and let Xk ⇒ X0 on [a, b]. Then

X−1
k ⇒ X−1

0 on [a, b].

2.24 Lemma. Let A, Ak ∈ BVn×n[a, b] for k ∈ N and let (2.6), (2.12), (2.13) and
(2.28) hold.
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Then there exists the fundamental matrix Xk corresponding to Ak for a.a.
k ∈ N and X0 corresponding to A on [a, b] and

X−1
k ⇒ X−1

0 on [a, b] .

3 Nonhomogeneous equations

This section deals with the problem of continuous dependence on a parameter of
solutions to nonhomogeneous GLODEs.

Together with problem (1.1) let us consider the sequence

x(t) = x̃k +

∫ t

a

d[Ak]x+ fk(t)− fk(a) , t ∈ [a, b], (3.1)

where k ∈ N. Throughout the section we assume:

A, Ak ∈ BVn×n[a, b], f, fk ∈ Gn[a, b] and x̃0, x̃k ∈ Rn for k ∈ N. (3.2)

Our main result is the following assertion which extends Theorem 2.21 and
provides conditions ensuring the continuous dependence of solutions of (3.1) on
a parameter k. In comparison with Theorem 2.21, condition (2.37) has to be
somewhat modified. We keep the notation introduced in Notation 2.20.

3.1 Theorem. Assume (3.2), (2.6), (2.12) and (2.36). Let x̃k → x̃0 and let x0(t)
denote a solution of (1.1). Moreover, assume that{

there is a finite set D ⊂ [a, b] such that AJk ⇒ AJ and

fJk ⇒ fJ on any closed interval J ⊂ [a, b] \D
(3.3)

and 

if τ ∈ D, then ∀ ξ ∈ Rn and ∀ ε > 0 ∃ δ > 0 such that

∀ δ′ ∈ (0, δ) ∃ k0 ∈ N such that the relations

|uk(τ)− uk(τ − δ
′
)−∆−A(τ)[I−∆−A(τ)]−1ξ

−[I−∆−A(τ)]−1∆−f(τ)| < ε ,

|vk(τ + δ
′
)− vk(τ)−∆+A(τ)ξ −∆+f(τ)| < ε

are satisfied ∀ k ≥ k0 and ∀uk, vk fulfilling (3.5), (3.6)

and such that |ξ − uk(τ − δ
′
)| ≤ δ, |ξ − vk(τ)| ≤ δ ,

(3.4)

where

uk(t) = uk(τ − δ
′
) +

t∫
τ−δ′

d[Ak]uk + fk(t)− fk(τ − δ
′
) on [τ − δ′ , τ ] , (3.5)
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vk(t) = vk(τ) +

t∫
τ

d[Ak] vk + fk(t)− fk(τ) on [τ, τ + δ
′
] . (3.6)

Then for a.a. k ∈ N the solution xk of (3.1) exists on [a, b] and

lim
k→∞

xk(t) = x0(t) (3.7)

for any t ∈ [a, b], where x0(t) is the solution of (1.1). Moreover, (3.7) holds locally
uniformly on [a, b] \D.

Proof. First, notice that Corollary 2.19 implies that (3.7) holds locally uniformly
on [a, b] \D.

Assume that D = {τ}, where τ ∈ (a, b).
Due to Theorems 2.7 and 2.21, we can see that the problem (3.1) has a solution

xk on [a, b] for a.a. k ∈ N. Indeed, by Theorem 2.21 there exists a fundamental
matrix Xk corresponding to Ak for a.a. k ∈ N. Moreover, det[I−∆−Ak(t)] 6= 0 on
[a, b] for a.a. k ∈ N wherefrom, by Theorem 2.7, our claim follows.

The rest of the proof is divided into three steps. First, we prove that (3.7) is
true for t ∈ [a, τ), then for t = τ and finally for t ∈ (τ, b].

Step 1. Let α ∈ (a, τ) be given. Then by Corollary 2.19 the relation (3.7) holds
uniformly on [a, α]. Therefore (3.7) is true for any t ∈ [a, τ).

Step 2. Now we will prove that (3.7) is true also for t = τ . Note that according
to (2.21) we have

x0(τ−) = x0(τ)−∆−A(τ)x0(τ)−∆−f(τ) .

Given an arbitrary δ
′ ∈ (0, τ) and k ∈ N, we obtain

|x0(τ)− xk(τ)| ≤ |x0(τ)−∆−A(τ)x0(τ)−∆−f(τ)− x0(τ − δ
′
)|

+ |x0(τ − δ
′
)− xk(τ − δ

′
)|+ |xk(τ − δ

′
) + ∆−A(τ)x0(τ) + ∆−f(τ)− xk(τ)|

= |x0(τ−)− x0(τ − δ
′
)|+ |x0(τ − δ

′
)− xk(τ − δ

′
)|

+ |xk(τ)− xk(τ − δ
′
)−∆−A(τ) [I−∆−A(τ)]−1 x0(τ−)

− [I−∆−A(τ)]−1 ∆−f(τ)| ,

where we made use of the fact that the relation

I +B [I−B]−1 = [I−B]−1

is true whenever the matrix [I−B] is regular.
Choose ε > 0. According to (3.4) we can choose δ ∈ (0, ε) in such a way that

for each δ
′ ∈ (0, δ) there exists k1 = k1(δ

′
) ∈ N such that

|uk(τ)− uk(τ − δ
′
)−∆−A(τ) [I−∆−A(τ)]−1 x0(τ−)

−[I−∆−A(τ)]−1 ∆−f(τ)| < ε
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holds for any k ≥ k1 and for each solution uk(t) of equation (3.5) satisfying
|x0(τ−)− uk(τ − δ

′
)| ≤ δ.

Set uk(t) = xk(t) for t ∈ [τ − δ′ , τ ]. Choose δ
′ ∈ (0, δ) such that

|x0(τ−)− x0(τ − δ
′
)| < δ

2
.

Taking into account that xk(t)→ x0(t) on [0, τ) as k →∞ we get the existence of
a k0 ∈ N, k0 ≥ k1, such that

|x0(τ − δ
′
)− xk(τ − δ

′
)| < δ

2
for all k ≥ k0.

Therefore the estimate

|x0(τ−)− xk(τ − δ
′
)| ≤ |x0(τ−)− x0(τ − δ

′
)|+ |x0(τ − δ

′
)− xk(τ − δ

′
)| < δ

is true for k ≥ k0. Moreover, we have

|xk(τ)− xk(τ − δ
′
)−∆−A(τ) [I−∆−A(τ)]−1 x0(τ−)

−[I−∆−A(τ)]−1 ∆−f(τ)| < ε .

To summarize, we have

|x0(τ)− xk(τ)| < δ

2
+
δ

2
+ ε < 2 ε for all k ≥ k0 ,

i.e. xk(τ)→ x0(τ) for k →∞.

Step 3. Proof of the convergence on (τ, b] consists of two parts. First we show
that there is a δ > 0 such that xk(t) → x0(t) converges on (τ, τ + δ) as k → ∞.
Then this pointwise convergence is extended to (τ, b].

Let ε > 0 be given and let δ0 ∈ (0, ε) be such that

|x0(s)− x0(τ+)| < ε for all s ∈ (τ, τ + δ0) .

By the assumption (3.4), there is a δ ∈ (0, δ0) such that

∀ δ′ ∈ (0, δ) ∃ k1 = k1(δ
′
) ∈ N

and such that

|vk(τ + δ
′
)− vk(τ)−∆+A(τ)x0(τ)−∆+f(τ)| < ε

is true for each k ≥ k1 and for each solution vk(t) of equation (3.6) satisfying
|x0(τ)− vk(τ)| ≤ δ.



3 NONHOMOGENEOUS EQUATIONS 26

Now, for each δ
′ ∈ (0, δ) the distance between x0(τ + δ

′
) and xk(τ + δ

′
) can be

estimated. In view of the fact that

x0(τ+)− x0(τ) = ∆+A(τ)x0(τ) + ∆+f(τ)

we have

|x0(τ + δ
′
)− xk(τ + δ

′
)| ≤ |x0(τ + δ

′
)− x0(τ+)|

+ |x0(τ+)− x0(τ) + xk(τ)− xk(τ + δ
′
)|+ |x0(τ)− xk(τ)| = |x0(τ + δ

′
)− x0(τ+)|

+ |∆+A(τ)x0(τ) + ∆+f(τ) + xk(τ)− xk(τ + δ
′
)|+ |x0(τ)− xk(τ)| .

Since xk(τ) → x0(τ) for k → ∞, we get an existence of k0 ∈ N, k0 ≥ k1 such
that |x0(τ) − xk(τ)| < δ for all k ≥ k0. Since τ + δ

′ ∈ (τ, τ + δ0), we have
|x0(τ + δ

′
)− x0(τ+)| < ε. Setting vk(t) = xk(t) on [τ, τ + δ

′
], we get

|xk(τ + δ
′
)− xk(τ)−∆+A(τ)x0(τ)−∆+f(τ)| < ε for all k ≥ k0 .

Altogether, for any k ≥ k0 the estimate

|x0(τ + δ
′
)− xk(τ + δ

′
)| ≤ ε+ δ + ε < 3 ε

is valid. Consequently, we have xk(t)→ x0(t) for k →∞ on (τ, τ + δ).
Now, choose an arbitrary σ in (τ, τ + δ). Making use of Corollary 2.19 with σ

in place of a the proof of the validity of (3.7) for any t ∈ [a, b] can be completed.
The extension to the case D = {τ1, τ2, . . . , τm} with m > 1 is obvious.

3.2 Corollary. Let A, f , Ak, fk be left-continuous on (a, b] for all k ∈ N. Assume
that (3.2) and (2.6) holds. Let x̃k → x̃0 and let x0(t) denote a solution of (1.1).
Moreover, assume (3.3) and

if τ ∈ D, then ∀ ξ ∈ Rn and ∀ ε > 0 ∃ δ > 0 such that

∀ δ′ ∈ (0, δ) ∃ k0 ∈ N such that the relation

|vk(τ + δ
′
)− vk(τ)−∆+A(τ)ξ −∆+f(τ)| < ε

is satisfied ∀ k ≥ k0 and ∀ vk fulfilling (3.6)

and such that |ξ − vk(τ)| ≤ δ.

(3.8)

Then for a.a. k ∈ N the solution xk of (3.1) exists on [a, b] and (3.7) holds for
any t ∈ [a, b], where x0(t) is the solution of (1.1). Moreover, (3.7) holds locally
uniformly on [a, b] \D.

Proof. Since we have ∆−A(t) = 0 and ∆−Ak(t) = 0 for all k ∈ N and t ∈ [a, b],
the condition (3.4) reduces to (3.8).
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3.3 Corollary. Let A, f , Ak, fk be right-continuous on [a, b) for all k ∈ N. Assume
(3.2), (2.6), (2.36) and (2.12). Let x̃k → x̃0 and let x0(t) denote a solution of (1.1).
Moreover, assume (3.3) and

if τ ∈ D, then ∀ ξ ∈ Rn and ∀ ε > 0 ∃ δ > 0 such that

∀ δ′ ∈ (0, δ) ∃ k0 ∈ N such that the relation

|uk(τ)− uk(τ − δ
′
)−∆−A(τ)[I−∆−A(τ)]−1ξ

−[I−∆−A(τ)]−1∆−f(τ)| < ε

is satisfied ∀ k ≥ k0 and ∀uk fulfilling (3.5)

and such that |ξ − uk(τ − δ
′
)| ≤ δ.

(3.9)

Then for a.a. k ∈ N the solution xk of (3.1) exists on [a, b] and (3.7) holds for
any t ∈ [a, b], where x0(t) is the solution of (1.1). Moreover, (3.7) holds locally
uniformly on [a, b] \D.

Proof. Since we have ∆+A(t) = 0 and ∆+Ak(t) = 0 for all k ∈ N and t ∈ [a, b],
the condition (3.4) reduces to (3.9).

Consider initial value problems for ordinary differential equations

x′ = Bk(t)x+ gk(t), x(0) = x̃k, k ∈ Nτ , (3.10)

where 0 < τ < 1, Nτ =

{
k ∈ N, k ≥ 1

1− τ

}
,



Bk(t) = P (t) + k χ(τ,τ+ 1
k
)(t) I, gk(t) = g(t) + k χ(τ,τ+ 1

k
)(t) r

for t ∈ [0, 1], k ∈ Nτ ,

P : [0, 1]→Rn×n and g : [0, 1]→Rn are Lebesgue integrable,

P (t)P (s) = P (s)P (t) for t, s ∈ [0, 1]

r ∈ Rn, x̃k, x̃0 ∈ Rn and x̃k → x̃0.

(3.11)

3.4 Corollary. Assume 0 < τ < 1 and (3.11). Then the solutions xk of (3.10)
are defined on [0, 1] for all k ∈ Nτ and there exist functions A ∈ BVn×n[0, 1] and
f ∈ BVn[0, 1] such that (3.7) holds for any t ∈ [0, 1], where x0(t) is a solution of
the generalized differential equation (1.1). Moreover, (3.7) holds locally uniformly
on [0, 1] \ {τ}.
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Proof. For t ∈ [0, 1] and k ∈ Nτ put

Ak(t) =

∫ t

0

Bk(s) ds and fk(t) =

∫ t

0

gk(s) ds ,

A(t) =

∫ t

0

P (s) ds+ χ(τ,1](t)D
+ and f(t) =

∫ t

0

g(s) ds+ χ(τ,1](t) d
+ ,

where D+ ∈ Rn×n and d+ ∈ Rn are to be determined later.
The problems (3.10) can be equivalently reformulated in the form

x(t) = x̃k +

∫ t

0

d[Ak]x+ fk(t)− fk(0) , k ∈ Nτ , t ∈ [0, 1] .

Clearly, for each k ∈ Nτ the problem (3.10) has a unique solution xk on [0, 1].
We have

var1
0Ak ≤

∫ 1

0

|P (s)| ds+ k

∫ τ+ 1
k

τ

ds =

∫ 1

0

|P (s)| ds+ 1 <∞ for all k ∈ Nτ .

(3.12)
Furthermore,

lim
k→∞

Ak(t) =

∫ t

0

P (s) ds+ χ(τ,1](t) I ,

lim
k→∞

fk(t) =

∫ t

0

g(s) ds+ χ(τ,1](t) r

(3.13)

holds for each t ∈ [0, 1]. Moreover,

AJk ⇒ AJ and fJk ⇒ fJ holds for each compact J ⊂ [0, 1] \ {τ}

and Ak ⇒ A and fk ⇒ f on [0, τ ]. Therefore, due to Corollary 2.19, we have
xk ⇒ x0 on [0, τ ], where x0 is a solution of

x(t) = x̃0 +

∫ t

0

d[A]x+ f(t)− f(0), t ∈ [0, 1] . (3.14)

Since Bk(t)Bk(s) = Bk(s)Bk(t) holds for each t, s ∈ [0, 1] and each k ∈ Nτ , the
fundamental matrices Vk for v′ = Bk(t) v fulfilling the condition Vk(τ) = I are for
t ∈ [0, 1] and k ∈ Nτ given by

Vk(t) = exp

(∫ t

τ

Bk(s) ds

)
= Φ(t) Φ−1(τ)


1 if t ≤ τ,
ek (t−τ) if t ∈ (τ, τ + 1

k
),

e if t ≥ τ + 1
k
,

where Φ(t) = exp
( ∫ t

0
P (s)ds

)
, t ∈ [0, 1], is the fundamental matrix for the ordinary

differential equation x′ = P (t)x fulfilling Φ(0) = I.
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Now, let k ∈ Nτ , ε > 0, δ′ > 0, ξ ∈ Rn, ṽk ∈ Rn and let vk be a solution of

v′ = Bk(t) v + gk(t), v(τ) = ṽk (3.15)

on [τ, 1]. Then

vk(τ + δ′) = Φ(τ + δ′) Φ−1(τ +
1

k
) vk(τ +

1

k
) + Φ(τ + δ′)

∫ τ+δ′

τ+ 1
k

Φ−1(s) g(s) ds

and

vk(τ +
1

k
) = e Φ(τ +

1

k
) Φ−1(τ) ṽk + Φ(τ +

1

k
)

∫ τ+ 1
k

τ

e1−k (s−τ) Φ−1(s) g(s) ds

+ kΦ(τ +
1

k
)

(∫ τ+ 1
k

τ

e1−k (s−τ) Φ−1(s) ds

)
r ,

which yields∣∣vk(τ + δ′)− ṽk −∆+A(τ) ξ −∆+f(τ)
∣∣ ≤ ∣∣ [e Φ(τ + δ′) Φ−1(τ)− I

]
ṽk −D+ ξ

∣∣
+
∣∣Φ(τ + δ′)

∣∣ ∣∣∣∣∣
∫ τ+ 1

k

τ

e1−k (s−τ) Φ−1(s) g(s) ds

∣∣∣∣∣+

∣∣∣∣∣Φ(τ + δ′)

∫ τ+δ′

τ+ 1
k

Φ−1(s) g(s) ds

∣∣∣∣∣
+

∣∣∣∣∣kΦ(τ + δ′)

∫ τ+ 1
k

τ

e1−k (s−τ) Φ−1(s) ds− d+ I

∣∣∣∣∣ |r| .
It is easy to see that we can choose δ1 > 0 and k1 ∈ Nτ so that the second and
third terms on the right hand side of the above inequality are less than ε

5
for all

δ′ ∈ (0, δ1) and k ∈ Nτ ∩ (k0,∞). Furthermore, since

lim
δ′→0

Φ(τ + δ′) Φ−1(τ) = I,

we can see that when choosing D+ = (e−1) I, we can find δ2 ∈ (0, δ1) such that the
first term becomes smaller than ε

5
whenever δ′ ∈ (0, δ2) and |ṽk − ξ| < δ2. Finally,

observing that

lim
k→∞

k

∫ τ+ 1
k

τ

e1−k (s−τ) Φ−1(s) ds = e Φ−1(τ) ,

we can conclude that, when setting d+ = e, we can choose k0 ∈ Nτ ∩ (k1,∞)
and δ ∈ (0, δ0) so that also the fourth term becomes smaller than ε

5
whenever

k ∈ Nτ ∩ (k0,∞) and δ′ ∈ (0, δ). To summarize, the assumption of (3.8) is satisfied
if we define

A(t) =

∫ t

0

P (s) ds+ χ(τ,1](t) (e− 1) I ,

f(t) =

∫ t

0

g(s) ds+ χ(τ,1](t) e r

for t ∈ [0, 1]. (3.16)
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Furthermore, as

det[I +∆+A(t)] = det
(
(e− 1) I

)
= e− 1 6= 0,

by Corollary 3.2, the relation (3.7) holds for each t ∈ [0, 1], where x0 is solution of
(3.14) with A and f defined by (3.16).

4 Inverse fundamental matrices

The equation (2.17), which is satisfied by the matrix function X−1, is not a gene-
ralized linear differential equation of the type (2.10). This leads us to the consid-
eration of adjoint equations, i.e. the equations of the form

yT (t) = yT (s)− yT (t)A(t) + yT (s)A(s) +

∫ t

s

d[yT ]A . (4.1)

4.1 Theorem. ([41, Theorem 2.7]) Let A ∈ BVn×n[a, b] satisfy (2.12) and (2.13).
Then the initial value problem (4.1), yT (a) = ỹT has for every ỹ ∈ Rn a unique
solution y on [a, b]. This solution is of bounded variation on [a, b] and is given on
[a, b] by

yT (t) = ỹTX(a)X−1(t) . (4.2)

Moreover, every solution yT (t) of the equation (4.1) on [a, b] possesses the one-
sided limits yT (t+), yT (t−) where the relations{

yT (t+) = yT (t)− yT (t+) ∆+A(t) for all t ∈ [a, b) ,

yT (t−) = yT (t) + yT (t−) ∆−A(t) for all t ∈ (a, b]
(4.3)

hold.

Theorem 2.21 deals with a sequence of fundamental matrices. According to
definition, each fundamental matrix corresponding to a given matrix function A
fulfils for all s, t ∈ [a, b] the equation X(t) = X(s) +

∫ t
s

d[A]X. This fact is
essentially used in the proof of Theorem 4.2. Furthermore, we take into account
that the inverse of fundamental matrix X−1(t) satisfies on [a, b] the relation

X−1(t) = X−1(a)−X−1(t)A(t) +X−1(a)A(a) +

∫ t

a

d[X−1]A , (4.4)

which is adjoint to (2.16), cf. (2.17) and (4.1).
We want to prove assertion analogous to Theorem 2.21 for inverses of fun-

damental matrices. To this aim it is necessary to suppose also the regularity of
[I +∆+A(t)] for each t ∈ [a, b) and condition (4.5) which is a modification of (2.37).
This is the main result of this section.
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4.2 Theorem. Let the assumptions of Theorem 2.21 be satisfied. Furthermore
assume that (2.13) and the following conditions hold:

if τ ∈ D, then ∀ η ∈ Rn and ∀ ε > 0 ∃ δ > 0 such that

∀ δ′ ∈ (0, δ) ∃ k0 ∈ N such that the relations

|wTk (τ)− wTk (τ − δ′) + ηT ∆−A(τ)| < ε ,

|zTk (τ + δ
′
)− zTk (τ) + ηT [I +∆+A(τ)]−1 ∆+A(τ)| < ε

are satisfied ∀ k ≥ k0 and ∀wk, zk ∈ Rn fulfilling (4.6), (4.7)

and such that |ηT − wTk (τ − δ′)| ≤ δ, |ηT − zTk (τ)| ≤ δ ,

(4.5)

where
wTk (t) = wTk (τ − δ′)− wTk (t)Ak(t) + wTk (τ − δ′)Ak(τ − δ

′
)

+

t∫
τ−δ′

d[wTk ]Ak on [τ − δ′ , τ ] ,
(4.6)

zTk (t) = zTk (τ)− zTk (t)Ak(t) + zTk (τ)Ak(τ) +

t∫
τ

d[zTk ]Ak on [τ, τ + δ
′
] . (4.7)

Then for a.a. k ∈ N the fundamental matrices Xk corresponding to Ak and
their inverses X−1

k are defined on [a, b],

lim
k→∞

Xk(t) = X0(t) on [a, b] (4.8)

and
lim
k→∞

X−1
k (t) = X−1

0 (t) (4.9)

on [a, b], where X0 be the fundamental matrix corresponding to A. Moreover, (4.9)
holds locally uniformly on [a, b] \D.

Proof. First notice that Lemma 2.24 implies that (4.9) holds locally uniformly on
[a, b] \D and (4.8) immediately follows from Theorem 2.21.

Assume that D = {τ}, where τ ∈ (a, b); i.e. D consists of one point τ ∈ (a, b)
only and m = 1.

Recall that the existence of the fundamental matrices Xk for a.a. k ∈ N and
(4.8) immediately follows from Theorem 2.21. Since each fundamental matrix is
regular, we get the existence of X−1

k for a.a. k ∈ N.
For ỹk ∈ Rn and for a.a. k ∈ N, denote by yk the solution of the equation

yTk (t) = ỹTk − yTk (t)Ak(t) + ỹT Ak(a) +

∫ t

a

d[yTk ]Ak on [a, b] . (4.10)
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We will prove that
yk → y0 on [a, b] (4.11)

provided ỹk → ỹ0. This will be done in three steps. First, we prove that (4.11) is
true for t ∈ [a, τ), then for t = τ and finally for t ∈ (τ, b].

Step 1. Let α ∈ (a, τ) be given. Then by Lemma 2.24 the relation (4.9) holds
uniformly on [a, α]. Therefore (4.9) is true for any t ∈ [a, τ) and by Theorem 4.1
we get that yk → y0 on [a, τ).

Step 2. Now we will prove, that (4.11) is true also for t = τ . For each δ
′ ∈ (0, τ)

and k ∈ N we get using (4.3) the estimate

|yT0 (τ)− yTk (τ)| ≤ |yT0 (τ) + yT0 (τ−) ∆−A(τ)− yT0 (τ − δ′)|
+ |yT0 (τ − δ′)− yTk (τ − δ′)|+ |yTk (τ − δ′)− yT0 (τ−) ∆−A(τ)− yTk (τ)|

= |yT0 (τ−)− yT0 (τ − δ′)|+ |yT0 (τ − δ′)− yTk (τ − δ′)|
+ |yTk (τ)− yTk (τ − δ′) + yT0 (τ−) ∆−A(τ)| .

Let ε > 0 be given. According to (4.5) we can choose δ ∈ (0, ε) in such a way that
for all δ

′ ∈ (0, δ) there exists k1 ∈ N such that

|wTk (τ)− wTk (τ − δ′) + yT0 (τ−) ∆−A(τ)| < ε (4.12)

holds for any k ≥ k1 and for each solution wTk (t) of (4.6) fulfilling

|yT0 (τ−)− wTk (τ − δ′)| ≤ δ .

Set wTk (t) = yTk (t) on [τ − δ′ , τ ]. Choose δ
′ ∈ (0, δ) such that

|yT0 (τ−)− yT0 (τ − δ′)| < δ

2
.

Considering that yTk (t)→ yT0 (t) on [a, τ) as k →∞ we get the existence of a k0 ∈ N,
k0 ≥ k1 such that

|yT0 (τ − δ′)− yTk (τ − δ′)| < δ

2
for all k ≥ k0.

Therefore the estimate

|yT0 (τ−)− yTk (τ − δ′)| ≤ |yT0 (τ−)− yT0 (τ − δ′)|+ |yT0 (τ − δ′)− yTk (τ − δ′)| < δ

is true for k ≥ k0. By (4.12) we have

|yTk (τ)− yTk (τ − δ′) + yT0 (τ−) ∆−A(τ)| < ε .
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To summarize,

|yT0 (τ)− yTk (τ)| < δ

2
+
δ

2
+ ε < 2 ε for all k ≥ k0 ,

i.e. yTk (τ)→ yT0 (τ) for k →∞.

Step 3. Proof of the convergence on (τ, b] consists of two parts. First, we show
that there is a δ > 0 such that yTk (t) → yT0 (t) on (τ, τ + δ) as k → ∞. Then we
extend this result to the whole interval (τ, b].

Let ε > 0 be given and let δ0 ∈ (0, ε) be such that

|yT0 (s)− yT0 (τ+)| < ε for all s ∈ (τ, τ + δ0).

By the assumption (4.5), there exists δ ∈ (0, δ0) such that for all δ
′ ∈ (0, δ) there

exists k1 = k1(δ
′
) ∈ N and such that

|zTk (τ + δ
′
)− zTk (τ) + yT0 (τ) [I +∆+A(τ)]−1 ∆+A(τ)| < ε (4.13)

is true for each solution zTk (t) of (4.7) with the property |yT0 (τ)− zTk (τ)| ≤ δ. Now
the distance between yT0 (τ + δ

′
) and yTk (τ + δ

′
) can be estimated. In view of (4.3)

we get

|yT0 (τ + δ
′
)− yTk (τ + δ

′
)| ≤ |yT0 (τ + δ

′
)− yT0 (τ) + yT0 (τ+) ∆+A(τ)|

+ |yT0 (τ)− yTk (τ)|+ |yTk (τ)− yT0 (τ+) ∆+A(τ)− yTk (τ + δ
′
)|

= |yT0 (τ+δ
′
)−yT0 (τ+)|+ |yT0 (τ)−yTk (τ)|+ |yTk (τ)−yT0 (τ+) ∆+A(τ)−yTk (τ+δ

′
)| .

Considering that yTk (τ) → yT0 (τ) for k → ∞, we get the existence of k0 ∈ N,
k0 ≥ k1 such that |yT0 (τ) − yTk (τ)| < δ for all k ≥ k0. Since τ + δ

′ ∈ (τ, τ + δ0),
we have |yT0 (τ + δ

′
)− yT0 (τ+)| < ε. Setting zTk (t) = yTk (t) on [τ, τ + δ

′
], we get by

(4.13) the relation

|yTk (τ)− yT0 (τ+) ∆+A(τ)− yTk (τ + δ
′
)| < ε for all k ≥ k0 .

To summarize, for any k ≥ k0 the estimate

|yT0 (τ + δ
′
)− yTk (τ + δ

′
)| ≤ ε+ δ + ε < 3 ε

is valid, as well. Therefore yTk (t)→ yT0 (t) on (τ, τ + δ) as k →∞.
Now, choose an arbitrary σ in (τ, τ + δ). Making use of Lemma 2.24 with σ in

place of a the proof of this step can be completed.

Having in mind that yTk (t) = ỹTk Xk(a)X−1
k (t) on [a, b] hold for all k ∈ N0,

we can see that for each i ∈ {1, 2, . . . , n} it is always possible to choose ỹTk in
such a way that yTk (t) is the i-th row of X−1

k (t) and ỹTk → ỹT0 . This consideration
completes the proof of the validity of (4.9) for any t ∈ [a, b].

The extension to the case m > 1 is obvious.
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5 Approximated solutions

5.1 Introduction

Let A ∈ BVn×n[a, b], f ∈ Gn[a, b] and x̃0 ∈ Rn. Consider the equation

x(t) = x̃0 +

∫ t

a

d[A]x+ f(t)− f(a). (5.1)

The aim of this section is to find conditions which enable to approximate the
solutions of GLODE (5.1) by solutions of linear ordinary differential equations.

Let us recall some basic properties of matrix exponentials. Considering the
norm | · | on Rn×n, it is well known that for each matrix B ∈ Rn×n the series

I +
∞∑
i=1

Bi

i!

converges and the matrix exponential of B

exp(B) = I +
∞∑
i=1

Bi

i!

is defined for each B ∈ Rn×n.
Obviously, exp(0) = I. Furthermore, for each B ∈ Rn×n

| exp(B)| ≤ exp(|B|).

If A ∈ Rn×n is such that AB = BA, then

exp(A) exp(B) = exp(B + A) = exp(B) exp(A).

This implies that for each B ∈ Rn×n the matrix exp(B) has its inverse [exp(B)]−1

and
[exp(B)]−1 = exp(−B).

5.1 Lemma. Let C, D ∈ Rn×n, then

| exp
(
C
)
− exp

(
D
)
| ≤ |C −D| exp

(
max(|C|, |D|)

)
.

Proof. Without loss of generality we can assume that |C| > |D|. Denote ∆ =
C −D. According to definition of matrix exponential we have

exp(C) = I +
∞∑
k=1

Ck

k!
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and

exp(D) = exp(C −∆) = I +
∞∑
k=1

(C −∆)k

k!
.

Subtracting the previous formulas, we obtain

exp(C)− exp(D) = ∆ +
∞∑
k=2

Ck − (C −∆)k

k!
.

Since ∣∣Ck − (C −∆)k
∣∣ ≤ k |∆| |C|k−1 for k = 2, 3, . . .

we get

| exp(C)− exp(D)| ≤ |∆|+
∞∑
k=2

k |∆| |C|k−1

k!

= |∆|+ |∆|
∞∑
k=1

|C|k

k!
= |∆| exp(|C|) ,

from which assertion of lemma follows.

The next assertion which seem not to be available in the literature will be useful
for our purposes.

5.2 Lemma. Let A ∈ BVn×n[a, b]. Then
lim
s→t−

1

t− s

(∫ t

s

exp

(
[A(t)−A(s)]

t− r
t− s

)
dr

)
= lim

s→t−

1

t− s

(∫ t

s

exp

(
∆−A(t)

t− r
t− s

)
dr

)
if t∈ (a, b]

(5.2)

and 
lim
s→t+

1

s− t

(∫ s

t

exp

(
[A(s)−A(t)]

s− r
s− t

)
dr

)
= lim

s→t+

1

s− t

(∫ s

t

exp

(
∆+A(t)

s− r
s− t

)
dr

)
if t ∈ [a, b).

(5.3)

Proof. (i) Let t ∈ (a, b], s ∈ [a, t) and let ε > 0 be given. Then there is a δ > 0
such that

|A(t−)−A(s)| < η whenever t− s < ε.

Now, using Lemma 5.1 we get∣∣∣∣ 1

t− s

∫ t

s

[
exp

(
[A(t)−A(s)]

t− r
t− s

)
− exp

(
∆−A(t)

t− r
t− s

)]
dr

∣∣∣∣
≤ 1

t− s
|A(t−)− A(s)|

∫ t

s

exp
(
|∆−A(t)|

)
dr

= ε |A(t−)− A(s)| exp
(
|∆−A(t)|

)
≤ ε exp

(
|∆−A(t)|

)
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for t− s < δ, wherefrom the validity of (5.2) immediately follows.

(ii) Similarly we would justify the relation (5.3).

5.3 Notation. In what follows, for k ∈ N we denote by Dk a division of [a, b] given
by Dk =

{
αk0, α

k
1, . . . , α

k
2k

}
, where

αki = a+ i (b−a)
2k for i = 0, 1, . . . , 2k.

(5.4)

For A ∈ BVn×n[a, b], f ∈ Gn[a, b] and k ∈ N, we define

Ak(t) =


A(t) if t ∈ Dk,

A(αki−1) +
A(αki )− A(αki−1)

αki − αki−1

(t− αki−1) if t ∈ (αki−1, α
k
i ),

(5.5)

and

fk(t) =


f(t) if t ∈ Dk,

f(αki−1) +
f(αki )− f(αki−1)

αki − αki−1

(t− αki−1) if t ∈ (αki−1, α
k
i ).

(5.6)

Then, obviously, {Ak}⊂ACn×n[a, b] and {fk}⊂ACn[a, b]. Moreover, we have

5.4 Lemma. Let sequences {Dk} ⊂ D[a, b] and {Ak}⊂ACn×n[a, b] be defined by
(5.4) and (5.5), respectively. Then

varbaAk ≤ varbaA for all k ∈ N.

Proof. Since

var
αk

`

αk
`−1

Ak =
∣∣A(αk` )− A(αk`−1)

∣∣ ≤ var
αk

`

αk
`−1

A

for each k ∈ N and ` = 1, 2, . . . , 2k, we have

varbaAk =
2k∑
`=1

var
αk

`

αk
`−1

Ak ≤
2k∑
`=1

var
αk

`

αk
`−1

A = varbaA.

Equations

x(t) = x̃k +

∫ t

a

d[Ak]x+ fk(t)− fk(a) (5.7)

with Ak and fk given by (5.5) and (5.6) are just initial value problems for linear
ordinary differential systems

x′ = A′k(t)x+ f ′k(t), x(a) = x̃k. (5.8)

In this view, the next Theorem 5.5 says that the solutions of (5.1) can be uniformly
approximated by solutions of linear ordinary differential equations with piecewise
constant coefficients provided the functions A and f are continuous.
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5.5 Theorem. Assume that A ∈ BVn×n[a, b]∩Cn×n[a, b] and f ∈ Cn[a, b]. Let
x̃0 and x̃k ∈ Rn, k ∈ N, be such that (2.30) holds. Furthermore, let the se-
quence {Dk} of divisions of the interval [a, b] be given by (5.4) and let sequences
{Ak}⊂ACn×n[a, b], {fk}⊂ACn[a, b] be defined by (5.5) and (5.6), respectively.

Then equation (5.1) has a unique solution x on [a, b]. Furthermore, for each
k ∈ N, equation (5.7) has a solution xk on [a, b] and (2.31) holds.

Proof. Step 1. Since A is uniformly continuous on [a, b], we have:
for each ε > 0 there is a δ > 0 such that

|A(t)− A(s)| < ε
2

holds for all t, s ∈ [a, b] such that |t− s| < δ .

(5.9)

Let 1
2k0

<δ and let t be an arbitrary point of [a, b]. Furthermore, let

α`−1, α` ∈ Pk0 = {α0, α1, . . . , αpk0
} and t ∈ [α`−1, α`].

Then

|α` − α`−1| =
1

2k0
< δ

and, according to (5.4), (5.5) and (5.9), we get for k ≥ k0

|Ak(t)− A(t)| = |Ak(t)− Ak(α`−1) + A(α`−1)− A(t)|

≤ |Ak(t)− Ak(α`−1)|+
ε

2

≤
∣∣∣∣A(α`−1) + [A(α`)− A(α`−1)]

[
t−α`−1

α`−α`−1

]
− A(α`−1)

∣∣∣∣+
ε

2

= |A(α`)− A(α`−1)|
[
t−α`−1

α`−α`−1

]
+
ε

2

≤ ε

2
+
ε

2
= ε.

As k0 was chosen independently of t, we can conclude that (2.7) is true.

Step 2. Analogously we can show that (2.29) holds for {fk} and f.

Step 3. By Lemma 5.4, (2.6) holds. Moreover, as A and Ak, k ∈ N, are continu-
ous, by Theorem 2.10 the equations (5.1) and (5.7), k ∈ N, have unique solutions
and we can complete the proof using Theorem 2.18.
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5.2 Approximated solutions

In this section we will continue the consideration of the topics mentioned at
the close of the previous section. Our aim is to disclose the relationship between
solutions of generalized linear differential equation and limits of solutions of corre-
sponding approximating sequences of linear ordinary differential equations.

We start by introducing the notions of piecewise linear approximation and ap-
proximated solution to the generalized linear differential equation (5.1). Recall that
the divisions Dk occurring below have been introduced in Notation 5.3. Further-
more, in addition to (2.1) we will use the following notations.

5.6 Notation. For given A ∈ BVn×n[a, b], f ∈ Gn[a, b] and k ∈ N, we denote
S+(f ; [a, b]) = {t ∈ [a, b] : ∆+f(t) 6= 0} ,
S−(f ; [a, b]) = {t ∈ [a, b] : ∆−f(t) 6= 0} ,
S(f ; [a, b]) = S+(f ; [a, b]) ∪S−(f ; [a, b]),

S(A, f ; [a, b]) = S(A; [a, b]) ∪S(f ; [a, b]).

and 

U+(A, k; [a, b]) = {t ∈ [a, b] : |∆+A(t)| ≥ 1
k
},

U−(A, k; [a, b]) = {t ∈ [a, b] : |∆−A(t)| ≥ 1
k
},

U(A, k; [a, b]) = U+(A, k; [a, b]) ∪ U−(A, k; [a, b]),

U+(f, k; [a, b]) = {t ∈ [a, b] : |∆+A(t)| ≥ 1
k
},

U−(f, k; [a, b]) = {t ∈ [a, b] : |∆−A(t)| ≥ 1
k
},

U(f, k; [a, b]) = U+(f, k; [a, b]) ∪ U−(f, k; [a, b]),

U(A, f, k; [a, b]) = U(A, k; [a, b]) ∪ U(f, k; [a, b]).

5.7 Remark. In particular, we have

S(A; [a, b]) =
∞⋃
k=1

U(A, k; [a, b]).

5.8 Definition. Let A ∈ BVn×n[a, b], f ∈ Gn[a, b] and let Dk ∈ D[a, b] be given
by (5.4). We say that the sequence {Ak, fk}⊂ACn×n[a, b]×ACn[a, b] is a piece-
wise linear approximation (p `-approximation) of (A, f) if there exists a sequence
{Pk} of divisions of the interval [a, b] such that

Pk ⊃ Dk ∪ U(A, f, k; [a, b]) for k ∈ N (5.10)

and Ak, fk are for k ∈ N defined by (5.5) and (5.6).
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5.9 Remark. Let {Ak, fk} be a p `-approximation of (A, f). Then (2.6) is true
due to Lemma 5.4. Furthermore, as Ak are continuous, due to (2.22), we have
cAk

= 1 for k ∈ N. Hence, Corollary 2.15 yields

varba (xk − fk) ≤ α∗ (|x̃0|+ 2‖fk‖) for all k ∈ N

and, by Helly’s Theorem, there is a subsequence {xkm − fkm} of {xk− fk} and
y ∈ Gn[a, b] and such that

lim
m→∞

(xkm(t)− fkm(t)) = y(t) + f(t) for each t ∈ [a, b].

In particular,
lim
m→∞

xkm(t) = w(t) + f(t)

for all t ∈ [a, b] such that limm→∞ fkm(t) = f(t).
Notice that if the set S(f ; [a, b]) has at most a finite number of elements, then

lim
k→∞

fk(t) = f(t) for all t ∈ [a, b]. (5.11)

5.10 Definition. Let A ∈ BVn×n[a, b], f ∈ Gn[a, b] and x̃0 ∈Rn. We say that
y : [a, b] → Rn is an approximated solution to equation (5.1) on the interval [a, b]
if there is a p `-approximation {Ak, fk} ∈ ACn×n[a, b] ×ACn[a, b] of (A, f) such
that

lim
k→∞

xk(t) = y(t) on [a, b] (5.12)

holds for solutions xk, k ∈ N, of the corresponding approximating initial value
problems (5.8).

5.11 Remark. Notice that, using the language of Definitions 5.8 and 5.10, we can
translate Theorem 5.5 into the following form:

Assume that A ∈ BVn×n[a, b] ∩ Cn×n[a, b] and f ∈ Cn[a, b]. Then, the equation
(5.1) has a unique approximated solution y on [a, b] and y coincides on [a, b] with
the solution of (5.1).

In the rest of this section we consider the case when the set S(A, f ; [a, b]) of
discontinuities of the coefficients A, f is non empty. We will start with the simplest
case S(A, f ; [a, b]) = {b}.

5.12 Lemma. Let A ∈ BVn×n[a, b] and f ∈ Gn[a, b] be continuous on [a, b) and
such that

|∆−A(b)| |∆−f(b)| = 0 (5.13)

and let x̃0 ∈Rn.
Then the equation (5.1) has a unique approximated solution y on [a, b]. Fur-

thermore, y is continuous on [a, b)

y(b) = exp
(
∆−A(b)

)
y(b−) + ∆−f(b) (5.14)

and y coincides with the solution of (5.1) on [a, b).
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Proof. Step 1. Let {Ak, fk} be an arbitrary p `-approximation of {A, f} and
let {Pk} be the corresponding sequence of divisions of [a, b] fulfilling (5.5) and (5.6).
Notice that, under our assumptions, Pk =Dk for k ∈N. For k ∈ N, put

τk = max{t ∈ Dk : t < b}.

By (5.4) we have b− b−a
2k < τk < b for k ∈ N, and hence

lim
k→∞

τk = b. (5.15)

For k ∈ N and t ∈ [a, b], define

Ãk(t) =


Ak(t) if t∈ [a, τk],

A(τk) +
A(b−)−A(τk)

b− τk
(t− τk) if t∈ (τk, b],

f̃k(t) =


fk(t) if t∈ [a, τk],

f(τk) +
f(b−)− f(τk)

b− τk
(t− τk) if t∈ (τk, b].

Furthermore, let

Ã(t) =

A(t) if t∈ [a, b),

A(b−) if t= b,
f̃(t) =

f(t) if t∈ [a, b),

f(b−) if t= b.
(5.16)

We have Ãk ∈ ACn×n[a, b], f̃k ∈ ACn[a, b] for k ∈ N, Ã ∈ BVn×n[a, b]∩Cn×n[a, b]

and f̃ ∈ Cn[a, b].
Consider problems (5.1), (5.8) and

u′k = Ã′k(t)uk + f̃k
′(t), uk(a) = x̃0, k ∈ N, (5.17)

and

u(t) = x̃0 +

∫ t

a

d[Ã]u+ f̃(t)− f̃(a). (5.18)

Let {xk} and {uk} be the sequences of solutions on [a, b] of problems (5.8) and
(5.17), respectively. We can see that, for each k ∈ N, uk coincides with xk on
[a, τk]. Furthermore, by Theorem 2.10, equation (5.18) possesses a unique solution
u on [a, b] a u is continuous on [a, b]. It’s easy to see that the relations

Ãk ⇒ Ã and f̃k ⇒ f̃ on [a, b]

are true. Therefore, by Theorem 2.18, we get

uk ⇒ u on [a, b]. (5.19)
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Since xk = uk on [a, τk], and due to (5.15), we have

lim
k→∞

xk(t) = u(t) for t ∈ [a, b). (5.20)

Step 2. Next we will prove that

lim
k→∞

xk(τk) = u(b). (5.21)

Indeed, let ε > 0 be given and let δ > 0 be such that

|u(t)− u(b)| < ε

2
for t ∈ [b− δ, b]

Further, by (5.19), there is a k0 ∈ N such that

τk ∈ [b− δ, b) and ‖uk − u‖ <
ε

2
whenever k ≥ k0.

Consequently,

|xk(τk)− u(b−)| ≤ |xk(τk)− u(τk)|+ |u(τk)− x(b−)|

= |uk(τk)− u(τk)|+ |u(τk)− x(b−)| < ε

2
+
ε

2
= ε.

holds for k ≥ k0. This completes the proof of (5.21).

Step 3. On the intervals [τk, b], the equations from (5.8) reduce to the equations
with constant coefficients

x′k = Bk xk + ek,

where

Bk =
Ak(b)−Ak(τk)

b− τk
and ek =

fk(b)− fk(τk)
b− τk

.

Their solutions xk are on [τk, b] given by

xk(t) = exp (Bk (t− τk))xk(τk) +

(∫ t

τk

exp (Bk (t− r)) dr

)
ek.

In particular,

xk(b) = exp (A(b)−A(τk))xk(τk)

+
1

b− τk

(∫ b

τk

exp

(
[A(b)−A(τk)]

b− r
b− τk

)
dr

)
[fk(b)− fk(τk)].

By Lemma 5.2, we have

lim
k→∞

1

b− τk

(∫ b

τk

exp

(
[A(b)−A(τk)]

b− r
b− τk

)
dr

)
[fk(b)− fk(τk)]

= lim
k→∞

1

b− τk

(∫ b

τk

exp

(
∆−A(b)

b− r
b− τk

)
dr

)
∆−f(b).



5 APPROXIMATED SOLUTIONS 42

In particular, having in mind (5.21), we obtain

lim
k→∞

xk(b) =

exp (∆−A(b))u(b) if ∆−f(b) = 0,

u(b) + ∆−f(b) if ∆−A(b) = 0.

So, in view of the assumption (5.13), we can conclude that the relation

lim
k→∞

xk(b) = exp
(
∆−A(b)

)
u(b) + ∆−f(b) (5.22)

is true.

Step 4. Define

y(t) =

u(t) if t ∈ [a, b),

exp (∆−A(b))u(b) + ∆−f(b) if t = b.

Then y(b−) =u(b), y(t) = lim
k→∞

xk(t) for t∈ [a, b) due to (5.21) and y(b) = lim
k→∞

xk(b)

due to (5.22). Therefore, y is a p `-approximated solution of (5.1). Since it does not
depend upon the choice of the approximating sequence {Ak, fk}, we can see that
y is also the unique approximated solution of (5.1). This completes the proof.

The following assertion can be related to Lemma 5.12 by introducing new in-
dependent variable s by a substitution s = a + b − t. Nevertheless, we prefer to
give here its direct proof, though little bit more concise.

5.13 Lemma. Let A ∈ BVn×n[a, b] and f ∈ Gn[a, b] be continuous on (a, b] and
such that

|∆+A(a)| |∆+f(a)| = 0 (5.23)

and let x̃0 ∈Rn.
Then the equation (5.1) has a unique approximated solution y on [a, b]. Fur-

thermore, y is continuous on (a, b],

y(a+) = exp
(
∆+A(a)

)
x̃0 + ∆+f(a)

and y coincides on (a, b] with the solution of the equation

y(t) = ỹ +

∫ t

a

d[Ã] y + f̃(t)− f̃(a), (5.24)

where

ỹ = exp
(
∆+A(a)

)
x̃0 + ∆+f(a),

and

Ã(t) =

A(a+) if t= a,

A(t) if t∈ (a, b]
and f̃(t) =

f(a+) if t= a,

f(t) if t∈ (a, b].
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Proof. Step 1. On the intervals [a, τk], the equations from (5.8) reduce to
equations with constant coefficients

A′k(t) =
Ak(τk)−Ak(a)

τk− a
, f ′k(t) =

fk(τk)− fk(a)

τk− a
.

Their solutions xk are on [a, τk] given by

xk(t) = exp

(
Ak(τk)−Ak(a)

τk− a
(t− a)

)
x̃0

+

(∫ t

a

exp

(
Ak(τk)−Ak(a)

τk− a
(t− r)

)
dr

)
fk(τk)− fk(a)

τk− a
.

In particular,

xk(τk) = exp (A(τk)−A(a))xk(τk)

+
1

τk− a

(∫ τk

a

exp

(
[A(τk)−A(a)]

τk− r
τk− a

)
dr

)
[fk(τk)− fk(τk)].

By Lemma 5.2, we have

lim
k→∞

1

τk− a

(∫ τk

a

exp

(
[A(τk)−A(a)]

τk− r
τk− a

)
dr

)
[fk(τk)− fk(a)]

= lim
k→∞

1

τk− a

(∫ τk

a

exp

(
∆+A(a)

τk− r
τk− a

)
dr

)
∆+f(b).

Thus,

lim
k→∞

xk(a) =

exp (∆+A(a)) x̃0 if ∆+f(a) = 0,

x̃0 + ∆+f(a) if ∆+A(a) = 0.

With respect to the assumption (5.13), we can conclude that the relation

lim
k→∞

xk(τk) = exp
(
∆+A(a)

)
x̃0 + ∆+f(a) = ỹ (5.25)

is true.

Step 2. Let {Ak, fk} be an arbitrary p `-approximation of {A, f} and let {Dk}
be the corresponding sequence of divisions of [a, b] fulfilling (5.5) and (5.6). Let
{xk} be a sequence of solutions of the approximating initial value problems (5.8)
on [a, b]. Consider equation (5.24). By Theorem 2.10, it has a unique solution u
on [a, b], u is continuous on [a, b] and, by an argument analogous to that used in
Step 1 of the proof of Lemma L3.6, we can show that the relation

lim
k→∞

xk(t) = u(t) for t ∈ (a, b] (5.26)
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is true. Finally, notice that, with respect to (5.25), we have also

lim
k→∞

xk(τk) = u(a).

Step 3. Analogously to Step 4 of the proof of Lemma 5.12, we can complete
the proof by showing that the function

y(t) =

{
x̃0 if t = a,

u(t) if t ∈ (a, b],

is the unique approximated solution of (5.1).

5.14 Remark. First, let us notice that if a < c < b and the functions y1 and y2

are respectively p `-approximated solutions to

x(t) = x̃1 +

∫ t

a

d[A]x+ f(t)− f(a), t ∈ [a, c]

and

x(t) = x̃2 +

∫ t

c

d[A]x+ f(t)− f(c), t ∈ [c, b],

where x̃2 = y1(c), then the function

y(t) =

{
y1(t) if t ∈ [a, c],

y2(t) if t ∈ (c, b]

is a p `-approximated solution to (5.1).

The main result of this section is the following Theorem 5.15.

5.15 Theorem. Assume that A ∈ BVn×n[a, b], f ∈ Gn[a, b], s1, s2, . . . , sm ∈ (a, b),
S(A, f ; [a, b]) = {s1, s2, . . . , sm} andS−(A; [a, b]) ∩S−(f ; [a, b]) = ∅,

S+(A; [a, b]) ∩S+(f ; [a, b]) = ∅.
(5.27)

Then, for each x̃0 ∈ Rn, there is exactly one approximated solution y of equation
(5.1) on [a, b]. Furthermore, S(y; [a, b]) = {s1, s2, . . . , sm} and

y(t) = exp
(
∆−A(t)

)
y(t−) + ∆−f(t) if t∈{s1, s2, . . . , sm},

y(t+) = exp
(
∆+A(t)

)
y(t) + ∆+f(t) if t∈{s1, s2, . . . , sm},

y(t) = y(si−1+) +

∫ t

si−1

d[Ã[i]] y + f(t)− f(si−1+) if t ∈ (si−1, si),
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hold for t ∈ [a, b] and i = 1, 2, . . . ,m+ 1, where s0 = a, sm+1 = b and

Ã[i](t) =


A(si−1+) if t = si−1,

A(t) if t ∈ (si−1, si),

A(si−) if t = si .

Proof. Having in mind Remark 5.14, we deduce the assertion of Theorem 5.15
by a successive use of Lemmas 5.12 and 5.13. To this aim it is sufficient to
choose a division D = {α0, α1, . . . , αr} of [a, b] such that for each subinterval
[αk−1, αk], k = 1, 2, . . . , r, either the assumptions of Lemma 5.12 or the assump-
tions of Lemma 5.13 are satisfied with with αk−1 in place of a and αk in place of
b.

5.16 Remark. It is natural to expect that Theorem 5.15 can be also obtained as
a Corollary of our Theorem 3.1. However, at this moment we are able to justify
such a hypothesis only assuming that f ∈ BVn[a, b].
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Part II

Singular Periodic Impulse
Problems

Part II is devoted to periodic impulse problems for nonlinear second order impulsive
differential equations of the form

u′′ = f(t, u, u′), (6.1)u(ti+) = u(ti) + Ji(u, u
′),

u′(ti+) = u′(ti) +Mi(u, u
′), i = 1, 2, . . . ,m,

(6.2)

u(0) = u(T ), u′(0) = u′(T ) (6.3)

where the function f : [0, T ]× R2 → R fulfils the Carathéodory conditions,

0<t1<t2< . . . < tm<T are fixed points of the interval [0, T ] (6.4)

and the functionals Ji, Mi : G[0, T ]×G[0, T ] → R, i = 1, 2, . . . ,m, are continuous.

6 Preliminaries

In this part we establish an existence principle suitable for solving singular impul-
sive periodic problems.

6.1 Notation. Throughout this part we keep the following notation and conven-
tions: for a real valued function u defined a.e. on [0, T ], we put

‖u‖∞ = sup esst∈[0,T ] |u(t)| and ‖u‖1 =

∫ T

0

|u(s)| ds.

For a given interval J ⊂ R, by C(J) we denote the set of real valued functions which
are continuous on J. Furthermore, C1(J) is the set of functions having continuous
first derivatives on J and L1(J) is the set of functions which are Lebesgue integrable
on J.

Any function x : [0, T ]→ R which possesses finite limits

x(t+) = lim
τ→t+

x(τ) and x(s−) = lim
τ→s−

x(τ)
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for all t ∈ [0, T ) and s ∈ (0, T ] is said to be regulated on [0, T ]. The linear space of
functions regulated on [0, T ] is denoted by G[0, T ]. It is well known that G[0, T ]
is a Banach space with respect to the norm x∈G[0, T ]→‖x‖∞ (cf. [14, Theorem
I.3.6]).

Let m ∈ N and let 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T be a division of
the interval [0, T ]. We denote D = {t1, t2, . . . , tm} and define C1

D[0, T ] as the set of
functions u : [0, T ]→ R such that

u(t) =



u[0](t) if t ∈ [0, t1],

u[1](t) if t ∈ (t1, t2],

...
...

u[m](t) if t ∈ (tm, T ],

where u[i] ∈ C1[ti, ti+1] for i = 0, 1, . . . ,m. In particular, if u ∈ C1
D[0, T ], then u′

possesses finite one-sided limits

u′(t−) := lim
τ→t−

u′(τ) and u′(s+) := lim
τ→s+

u′(τ)

for each t ∈ (0, T ] and s ∈ [0, T ). Moreover, u′(t−) = u′(t) for all t ∈ (0, T ] and
u′(0+) = u′(0). For u ∈ C1

D[0, T ] we put

‖u‖D = ‖u‖∞ + ‖u′‖∞.

Then C1
D[0, T ] becomes a Banach space when endowed with the norm ‖.‖D. Fur-

thermore, by AC1
D[0, T ] we denote the set of functions u ∈ C1

D[0, T ] having first
derivatives absolutely continuous on each subinterval (ti, ti+1), i = 1, 2, . . . ,m+ 1.

We say that f : [0, T ] × R2 7→ R satisfies on [0, T ] × R2 the Carathéodory
conditions if

(i) for each x ∈ R and y ∈ R the function f(., x, y) is measurable on [0, T ];

(ii) for almost every t ∈ [0, T ] the function f(t, ., .) is continuous on R2;

(iii) for each compact set K ⊂ R2 there is a function mK(t) ∈ L[0, T ] such that
|f(t, x, y)| ≤ mK(t) holds for a.e. t ∈ [0, T ] and all (x, y) ∈ K.

The set of functions satisfying the Carathéodory conditions on [0, T ]×R2 is denoted
by Car([0, T ]× R2).

Given a subset Ω of a Banach space X, its closure is denoted by Ω. As usual,
the symbol I stands for the identity operator or the identity matrix. Finally, we

will write ē instead of
1

T

∫ T

0

e(s) ds and ∆+u(t) instead of u(t+)− u(t).
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If f ∈ Car([0, T ]×R2), problem (6.1)–(6.3) is said to be regular and a function
u∈AC1

D[0, T ] is its solution if

u′′(t) = f(t, u(t), u′(t)) holds for a.e. t ∈ [0, T ]

and conditions (6.2) and (6.3) are satisfied. If f /∈ Car([0, T ] × R2), problem
(6.1)–(6.3) is said to be singular.

In this part we will deal with rather simplified, however the most typical, case
of the singular problem with

f(t, x, y) = c y+ g(x) + e(t) for x ∈ (0,∞), y ∈ R and a.e. t ∈ [0, T ],

where

c ∈ R, g ∈ C(0,∞), e ∈ L1[0, T ]. (6.5)

6.2 Definition. A function u∈AC1
D[0, T ] is called a solution of problem

u′′ + c u′ = g(u) + e(t), (6.2), (6.3) (6.6)

if u > 0 a.e. on [0, T ],

u′′(t) + c u′(t) = g(u(t)) + e(t) for a.e. t ∈ [0, T ],

and conditions (6.2) and (6.3) are satisfied.

7 Operator representation for impulsive prob-

lems

For our purposes an appropriate choice of the operator representation of (6.1)–(6.3)
is important. To this aim, let us consider the following impulsive problem with
nonlinear two-point boundary conditions

u′′ + a2(t)u
′ + a1(t)u = f(t, u, u′) a.e. on [0, T ], (7.1)

∆+u(ti) = Ji(u, u
′), ∆+u′(ti) = Mi(u, u

′), i = 1, 2, . . . ,m, (7.2)

P

(
u(0)
u′(0)

)
+Q

(
u(T )
u′(T )

)
= R(u, u′), (7.3)

and its linearized version

u′′ + a2(t)u
′ + a1(t)u = h(t) a.e. on [0, T ], (7.4)

∆+u(ti) = di, ∆+u′(ti) = d ′i, i = 1, 2, . . . ,m, (7.5)

P

(
u(0)
u′(0)

)
+Q

(
u(T )
u′(T )

)
= δ, (7.6)
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where 

Ji and Mi : G[0, T ]×G[0, T ]→R, i= 1, 2, . . . ,m,

are continuous mappings,

Ji(u, u
′) = Mi(u, u

′) = 0, i= 1, 2, . . . ,m,

if u(t) ≡ u(0) on [0, T ]

(7.7)

and 

a1, h ∈ L[0, T ], a2 ∈ C[0, T ], f ∈ Car([0, T ]× R2),

δ ∈ R2, di, d
′
i ∈ R, i = 1, 2, . . . ,m,

P, Q are real 2× 2−matrices, rank(P,Q) = 2,

R : G[0, T ]×G[0, T ]→R2 is a continuous mapping.

(7.8)

Solutions of problems (7.1)–(7.3) and (7.4)–(7.6) are defined in a natural way quite
analogously to the above mentioned definition of regular periodic problems. Prob-
lem (7.4)–(7.6) is equivalent to the two-point problem for a special case of gene-
ralized linear differential systems of the form

x(t)− x(0)−
∫ t

0

A(s)x(s) ds = b(t)− b(0) for t ∈ [0, T ], (7.9)

P x(0) +Qx(T ) = δ, (7.10)

where

x(t) =

(
x1(t)
x2(t)

)
=

(
u(t)
u′(t)

)
, A(t) =

(
0 1

−a1(s) −a2(s)

)
, (7.11)

b(t) =

∫ t

0

(
0

h(s)

)
ds+

m∑
i=1

(
di
d ′i

)
χ(ti, T ](t), t ∈ [0, T ],

and χ(ti, T ](t) = 1 if t∈ (ti, T ], χ(ti, T ](t) = 0 otherwise. Solutions of (7.9), (7.10)

are 2-vector functions of bounded variation on [0, T ] satisfying the two-point con-
dition (7.10) and fulfilling the integral equation (7.9) for all t ∈ [0, T ], cf. e.g. [42].
Assume that the homogeneous problem

u′′ + a2(t)u
′ + a1(t)u = 0, P

(
u(0)
u′(0)

)
+Q

(
u(T )
u′(T )

)
= 0 (7.12)

has only the trivial solution. Then, obviously, the homogeneous problem corre-
sponding to (7.9), (7.10) has also only the trivial solution. In view of [51, Theo-
rems 4.2 and 4.3] (see also [41, Theorem 4.1]), problem (7.9), (7.10) has a unique
solution x and it is given by

x(t) = X(t)D−1 δ +

∫ T

0

Γ(t, s) d[b(s)], t ∈ [0, T ], (7.13)
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where X is the fundamental matrix solution of the homogeneous equation x′ −
A(t)x = 0 fulfilling the condition X(0) = I, D = P X(0) +QX(T ) and

Γ(t, s) = (γi,j(t, s))i,j=1,2

is Green’s matrix for the problem

x′ − A(t)x = 0, P x(0) +Qx(T ) = 0.

Recall that, for each s ∈ (0, T ), the matrix function t → Γ(t, s) is absolutely
continuous on [0, T ] \ {s} and

∂

∂ t
Γ(t, s)− A(t) Γ(t, s) = 0 for a.e. t ∈ [0, T ],

P Γ(0, s) +QΓ(T, s) = 0,

Γ(t+, t)− Γ(t−, t) = I for t ∈ (0, T ).

Moreover, the component γ1,2 of Γ is absolutely continuous on [0, T ] for each s ∈
(0, T ) and

∂

∂ t
γ1,2(t, s) = γ 2,2(t, s) for a.e. t ∈ [0, T ].

Denote G(t, s) = γ1,2(t, s). Then G(t, s) is Green’s function of (7.12). Furthermore,
we have

∂

∂s
Γ(t, s) = −Γ(t, s)A(s) for all t ∈ (0, T ) and a.e. s ∈ [0, T ].

In particular,

γ1,1(t, s) = − ∂

∂s
G(t, s) + a1(s)G(t, s) for all t ∈ [0, T ] and a.e. s ∈ [0, T ].

Inserting (7.11) into (7.13) we get that, for each h ∈ L[0, T ], c, di, d
′
i ∈ R and

i = 1, 2, . . . ,m, the unique solution u of problem (7.4)–(7.6) is given by

u(t) = U(t) δ +

∫ T

0

G(t, s)h(s) ds

+
m∑
i=1

(
− ∂

∂s
G(t, ti) + a1(t)G(t, ti)

)
di +

m∑
i=1

G(t, ti) d
′
i

for t ∈ [0, T ],

(7.14)

where U(t) =
(
u11(t), u12(t)

)
is the first row of the matrix X(t)D−1. Now, choose

an arbitrary w ∈ C1
D[0, T ] and put

h(t) = f(t, w(t), w′(t)) for a.e. t ∈ [0, T ],

di = Ji(w,w
′), d ′i = Mi(w,w

′), i = 1, 2, . . . ,m,

δ = R(w,w′).
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Then h ∈ L[0, T ], c, di, d
′
i ∈ R, i = 1, 2, . . . ,m, and there is a unique u ∈

AC1
D[0, T ] fulfilling (7.4)–(7.6) and it is given by (7.14). Therefore, we conclude

that u ∈ C1
D[0, T ] is a solution to (7.1)–(7.3) if and only if

u(t) = U(t)R(u, u′) +

∫ T

0

G(t, s) f(s, u(s), u′(s)) ds

+
m∑
i=1

(
− ∂

∂s
G(t, ti) + a1(t)G(t, ti)

)
Ji(u, u

′)

+
m∑
i=1

G(t, ti)Mi(u, u
′) for t ∈ [0, T ].

(7.15)

Let us define operators F1 and F2 : C1
D[0, T ]→ C1

D[0, T ] by

F1(u)(t) =

∫ T

0

G(t, s) f(s, u(s), u′(s)) ds, t ∈ [0, T ]

and

F2(u)(t) = U(t)R(u, u′) +
m∑
i=1

(
− ∂

∂s
G(t, ti) + a1(t)G(t, ti)

)
Ji(u, u

′)

+
m∑
i=1

G(t, ti)Mi(u, u
′), t ∈ [0, T ].

The former one, F1, is a composition of the Green type operator

h ∈ L1[0, T ]→
∫ T

0

G(t, s)h(s) ds ∈ C1[0, T ],

which is known to map equiintegrable subsets2 of L1[0, T ] onto relatively compact
subsets of C1[0, T ] ⊂ C1

D[0, T ], and of the superposition operator generated by
f ∈ Car([0, T ] × R2), which, similarly to the classical setting, maps bounded
subsets of C1

D[0, T ] to equiintegrable subsets of L1[0, T ]. Therefore, it is easy to see
that F1 is completely continuous. Furthermore, since R, Ji, Mi, i = 1, 2, . . . ,m,
are continuous mappings, the operator F2 is continuous as well. Having in mind
that F2 maps bounded sets onto bounded sets and its values are contained in
a 2(m+1)-dimensional subspace3 of C1

D[0, T ], we conclude that the operators F2

and F = F1 + F2 are completely continuous as well.
So, we have the following assertion.

7.1 Theorem. Assume (6.4), (7.7) and (7.8). Furthermore, let problem (7.12)
have Green’s function G(t, s) and let U ∈ AC1

D[0, T ] have the same meaning as in

2i.e. sets of functions having a common integrable majorant
3i.e. spanned over the set

{u11, u12, δ, G(., ti),
(
− ∂

∂s G(., ti) + a1G(., ti)
)

; i = 1, 2, . . . ,m}
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(7.16). Then u ∈ AC1
D is a solution to (7.1)–(7.3) if and only if u = F (u), where

F : C1
D[0, T ]→ C1

D[0, T ] is the completely continuous operator given by

F (u)(t) =U(t)R(u, u′)

+

∫ T

0

G(t, s) (f(t, u(s), u′(s))−a1(s)u(s)−a2(s)u
′(s)) ds

+
m∑
i=1

(
− ∂

∂s
G(t, ti)+a1(t)G(t, ti)

)
Ji(u, u

′)

+
m∑
i=1

G(t, ti)Mi(u, u
′), t ∈ [0, T ].

(7.16)

In particular, if a1(t) = a2(t) = 0 on [0, T ],

P =

(
1 0
0 0

)
and Q =

(
0 0
1 0

)
,

then problem (7.12) reduces to the simple Dirichlet problem

u′′ = 0, u(0) = u(T ) = 0

and its Green’s function is well-known:

G(t, s) =


s (t− T )

T
if 0 ≤ s < t ≤ T,

t (s− T )

T
if 0 ≤ t ≤ s ≤ T

(7.17)

and

∂

∂s
G(t, s) =


T − t
T

if 0 ≤ s < t ≤ T,

− t

T
if 0 ≤ t ≤ s ≤ T.

Furthermore, it is easy to verify that

X(t) =

(
1 t
0 1

)
for t ∈ [0, T ], D−1 =

1

T

(
T 0
−1 1

)
and

U(t) =
1

T
(T − t, t) for t ∈ [0, T ].

Consequently,

U(t) δ = d holds for each d ∈ R and δ =

(
d
d

)
.
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Now, notice that the periodic boundary conditions (6.3) can be reformulated as

u(0) = u(0) + u′(0)− u′(T ), u(T ) = u(0) + u′(0)− u′(T ),

i.e., in the form (7.3), where

R(u, v) =

(
u(0) + v(0)− v(T )
u(0) + v(0)− v(T )

)
for u, v ∈ G[0, T ].

In particular,

U(t)R(u, u′) = u(0) + u′(0)− u′(T ) for each t ∈ [0, T ] and each u ∈ G[0, T ].

To summarize, the following assertion is a corollary of Theorem 7.1:

7.2 Proposition. Assume (6.4) and (7.7). Let f ∈ Car([0, T ] × R2) and let the
function G(t, s) be given by (7.17). Then u ∈ AC1

D is a solution to (6.1)–(6.3) if
and only if u = F (u), where F : C1

D[0, T ]→ C1
D[0, T ] is the completely continuous

operator given by
F (u)(t) =u(0) +u′(0)−u′(T ) +

∫ T

0

G(t, s) f(t, u(s), u′(s)) ds

−
m∑
i=1

∂

∂s
G(t, ti) Ji(u, u

′) +
m∑
i=1

G(t, ti)Mi(u, u
′), t ∈ [0, T ].

(7.18)

7.3 Remark. Similarly, u ∈ AC1
D is a solution to the impulsive Dirichlet problem

(6.1), (6.2), u(0) = u(T ) = c if and only if u = Fdir u, where
Fdir(u)(t) = c+

∫ T

0

G(t, s) f(t, u(s), u′(s)) ds

−
m∑
i=1

∂

∂s
G(t, ti) Ji(u, u

′) +
m∑
i=1

G(t, ti)Mi(u, u
′), t ∈ [0, T ].

8 Existence principle

8.1 Theorem. Let assumptions (6.4), (6.5) and (7.7) hold. Furthermore, assume
that there exist r ∈ (0,∞), R ∈ (r,∞) and R ′ ∈ (0,∞) such that

(i) r < v < R on [0, T ] and ||v′||∞ < R ′ for each λ ∈ (0, 1] and for each positive
solution v of the problem

v′′(t) = λ (−c v′(t) + g(v(t)) + e(t)) for a.e. t ∈ [0, T ], (8.1)

∆+v(ti) = λ Ji(v, v
′), i = 1, 2, . . . ,m, (8.2)

∆+v′(ti) = λMi(v, v
′), i = 1, 2, . . . ,m, (8.3)

v(0) = v(T ), v′(0) = v′(T ); (8.4)
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(ii) (g(x) + ē = 0) =⇒ r < x < R;

(iii) (g(r) + ē) (g(R) + ē) < 0.

Then problem (6.6) has a solution u such that

r <u<R on [0, T ] and ‖u′‖∞<R ′.

Proof. Step 1. For λ ∈ [0, 1] and v ∈ C1
D[0, T ] denote

Ξλ(v) =

∫ T

0

g(v(s)) ds+T ē

+
m∑
i=1

Mi(v, v
′) +λ c

m∑
i=1

Ji(v, v
′).

(8.5)

Notice that

Ξλ(v) = 0 holds for all solutions v ∈ C1
D[0, T ] of (8.1)−−(8.4). (8.6)

Indeed, let v ∈ C1
D[0, T ] be a solution to (8.1)–(8.4). Then∫ T

0

v′′(s) ds =
m∑
i=0

∫ ti+1

ti

v′′(s) ds =
m∑
i=0

[
v′(ti+1)− v′(ti+)

]
= v′(T )− v′(0)−

m∑
i=1

∆+v′(ti) = −λ
m∑
i=1

Mi(v, v
′)

and ∫ T

0

c v′(s) ds = c
m∑
i=0

∫ ti+1

ti

v′(s) ds = c

m∑
i=0

[
v(ti+1)− v(ti+)

]
= c
[
v(T )− v(0)−

m∑
i=1

∆+v(ti)
]

= −λ c
m∑
i=1

Ji(v, v
′).

Thus, integrating (8.1) over [0, T ] gives (8.6).

Step 2. Consider system (8.7), (8.2), (8.4), where (8.7) is the functional-
differential equation

v′′ = λ [−c v′ + g(v) + e(t)] + (1−λ)
1

T
Ξλ(v). (8.7)

Due to (8.6), we can see that for each λ∈ [0, 1] the problems (8.1)–(8.4) and (8.7),
(8.2)–(8.4) are equivalent. Moreover, for λ= 1, problem (8.7), (8.2), (8.4) reduces
to the given problem (6.6) (with u replaced by v).
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Now, notice that in view of (7.17) we have∫ T

0

G(t, s) ds =
1

2
t (t− T ) for t ∈ [0, T ]

and define for λ ∈ [0, 1], u ∈ C1
D[0, T ], u > 0 on [0, T ], and t ∈ [0, T ]

Fλ(u)(t) = u(0) + u′(0)− u′(T )

+λ

∫ T

0

G(t, s) [− cu′(s) + g(u(s)) + e(s)] ds

+(1−λ)
t (t− T )

2T
Ξλ(u)

−λ
m∑
i=1

∂

∂s
G(t, ti) Ji(u, u

′) + λ
m∑
i=1

G(t, ti)Mi(u, u
′).

(8.8)

In particular, if λ = 0, then

F0(u)(t) = u(0) + u′(0)− u′(T ) +
t (t− T )

2T
Ξ0(u) for t ∈ [0, T ].

Let us put

Ω = {u ∈ C1
D[0, T ] : r < u < R on [0, T ] and ‖u′‖∞ < R ′ }.

Arguing similarly to the regular case (see Proposition 7.2), we can conclude that for
each λ ∈ [0, 1] the operator Fλ : Ω ⊂ C1

D[0, T ]→ C1
D[0, T ] is completely continuous

and a function v ∈ Ω is a solution of (8.7), (8.2)–(8.4) if and only if it is a fixed
point of Fλ. In particular,

u∈Ω is a solution to (6.6) if and only if F1(u) =u. (8.9)

Step 3. We will show that

Fλ(u) 6= u for all u ∈ ∂ Ω and λ ∈ [0, 1]. (8.10)

Indeed, for λ ∈ (0, 1] relation (8.10) follows immediately from assumption (i), while
for λ = 0 it is a corollary of assumption (ii) and of the following claim.

Claim. u ∈ Ω is a fixed point of F0 if and only if there is x ∈ R such that u(t) ≡ x
on [0, T ], x ∈ (r, R) and

g(x) + ē = 0. (8.11)

Proof of Claim. Let u ∈ Ω be a fixed point of F0, i.e.

u(t) = u(0) + u′(0)− u′(T ) +
t (t− T )

2T
Ξ0(u) for all t ∈ [0, T ]. (8.12)
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Inserting t = 0 into (8.12), we get u(0) = u(0) + u′(0)− u′(T ), which implies that
u′(0) = u′(T ). Similarly, inserting t = T we get u(T ) = u(0). Furthermore,

u′(t) =
2 t− T

2T
Ξ0(u) for t ∈ [0, T ].

Since u′(0) = u′(T ), it follows that Ξ0(u) = 0. This means that u is constant on
[0, T ]. Denote x = u(0). Then 0 = Ξ0(u) = T (g(x) + ē), i.e., (8.11) is true. On the
other hand, it is easy to see that if x ∈ R is such that (8.11) holds and u(t) ≡ x
on [0, T ], then u ∈ Ω is a fixed point of F0. This completes the proof of Claim.

Step 4. By Step 3 and by the invariance under homotopy property of the
topological degree, we have

deg(I−F1,Ω) = deg(I−F0,Ω). (8.13)

Step 5. Let us denote

X = {u ∈ C1
D[0, T ] : u(t) ≡ u(0) on [0, T ]} and Ω0 = Ω ∩ X.

Notice that Ω0 = {u ∈ X : r <u(0)<R} and Ω0 = {u ∈ X : r≤u(0)≤R} . By
Claim in Step 3, all fixed points of F0 belong to Ω0. Hence, by the excision
property of the topological degree we have

deg(I−F0,Ω) = deg(I−F0,Ω0). (8.14)

Step 6. DefineF̃µ(u)(t) = u(0) +
[
1− µ+

µ

2
t (t− T )

] (
g(u(0) + ē

)
for t ∈ [0, T ], u ∈ Ω0 and µ ∈ [0, 1].

(8.15)

We have

F̃0(u) = u(0) + g(u(0)) + ē and F̃1(u) = F0(u) for each u ∈ X.

Similarly to Fλ, the operators F̃µ, µ ∈ [0, 1], are also completely continuous and,
by Claim in Step 3, we have

F̃1(u) 6= u for all u ∈ ∂ Ω0.

Let i and i−1 be respectively the natural isometrical isomorphism R → X and its
inverse, i.e.

i(x)(t) ≡ u for x∈R and i−1(u) = u(0) for u∈X,

and assume that µ ∈ [0, 1), x ∈ (0,∞), u = i(x) and F̃µ(u) = u. Then[
1− µ+

µ

2
t (T − t)

] (
g(x) + e

)
= 0 for all t ∈ [0, T ].
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If t = 0, this relation reduces to g(x) + e = 0, which is due to assumption (ii)
possible only if x ∈ (r, R). To summarize, we have

F̃µ(u) 6= u for all u ∈ ∂ Ω0 and all µ ∈ [0, 1].

Hence, using the invariance under homotopy property of the topological degree
and taking into account that dim X = 1, we conclude that

deg(I−F0,Ω0) = deg(I−F̃1,Ω0) = dB(I−F̃0,Ω0), (8.16)

where dB(I−F̃0,Ω0) stands for the Brouwer degree of I−F̃0 with respect to the set
Ω0 (and the point 0).

Step 7. Define Φ: x ∈ (0,∞)→ g(x) + ē ∈ R. Then

(I−F̃0)(i(x)) = i(Φ(x)) for each x ∈ (0,∞).

In other words, Φ = i−1 ◦ (I−F̃0) ◦ i on (0,∞). Consequently,

dB(I−F̃0,Ω0) = dB(Φ, (r, R)). (8.17)

Now, put

Ψ(x) = Φ(r)
R− x
R− r

+ Φ(R)
x− r
R− r

.

We can see that Ψ has a unique zero x0 ∈ (r, R) and

Ψ′(x0) =
Φ(R)− Φ(r)

R− r
.

Hence, by the definition of the Brouwer degree in R we have

dB(Ψ, (r, R)) = sign Ψ′(x0) = sign (Φ(R)− Φ(r)) .

By the homotopy property and thanks to our assumption (iii), we conclude that

dB(Φ, (r, R)) = dB(Ψ, (r, R)) = sign (Φ(R)− Φ(r)) 6= 0. (8.18)

Step 8. To summarize, by (8.13)–(8.18) we have

deg(I−F1,Ω) 6= 0,

which, in view of the existence property of the topological degree, shows that F1 has
a fixed point u∈Ω. By Step 1 this means that problem (6.6) has a solution.
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[12] Z. Halas and M. Tvrdý. Singular Periodic Impulse Problems. Nonlinear Oscillations 11
(2008), No. 1, 32–44.
Institute of Mathematics, Acad. Sci. Czech Rep., Preprint 171/2007 [available as http:
//www.math.cas.cz/~tvrdy/171.pdf].

[13] T. H. Hildebrandt. On systems of linear differentio-Stieltjes-integral equations. Illinois
J. Math. 3 (1959), 352–373.

[14] Ch. S. Hönig. Volterra Stieltjes-Integral Equations. North Holland and American Elsevier,
Mathematics Studies 16, Amsterdam and New York, 1975.

[15] Hu Shouchuan and V. Laksmikantham. Periodic boundary value problems for second
order impulsive differential systems. Nonlinear Anal. 13 (1989), 75–85.

[16] J. Kurzweil and Zd. Vorel.О непрерывной зависимости решений дифференциальных
уравнений от параметра. Czechoslovak Mathematical Journal. 7(82) (1957), 568–583.

[17] J. Kurzweil. Generalized Ordinary Differential Equations and Continuous Dependence on
a Parameter. Czechoslovak Mathematical Journal. 7(82) (1957), 418–449.

http://www.math.cas.cz/preprint/pre-141.pdf
http://www.math.cas.cz/~tvrdy/171.pdf
http://www.math.cas.cz/~tvrdy/171.pdf


REFERENCES 59

[18] J. Kurzweil. Generalized Ordinary Differential Equations. Czechoslovak Mathematical
Journal. 8(83) (1958), 360–388.

[19] Lee Yong-Hoon and Liu Xinzhi. Study of singular boundary value problem for second
order impulsive differential equations. J, Math. Anal. Appl. 331 (2007), 159–176.

[20] E. Liz and J. J. Nieto. Periodic solutions of discontinuous impulsive differential systems.
J. Math. Anal. Appl. 161 (1991), 388–394.

[21] E. Liz and J. J. Nieto. The monotone iterative technique for periodic boundary value
problems of second order impulsive differential equations. Comment. Math. Univ. Carolin.
34 (1993), 405–411.
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[43] M. Tvrdý. Boundary value problems for generalized linear differential equations and their
adjoints. Czechoslovak Math. J. 23 (98) (1973), 183–217.
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