KARLOVA UNIVERZITA
MATEMATICKO-FYZIKALNI FAKULTA

DOKTORSKA DISERTACNI PRACE

Tomas Tichy

Aproximacni a online
algoritmy

Praha, 2008

Matematicky tstav Akademie véd Ceské Republiky
Institut teoretické informatiky
Matematicko—fyzikélni fakulta
Univerzita Karlova v Praze

Skolitel: Doc. RNDr. Jiti Sgall, DrSc.
Obor: 14 - Diskrétni modely a algoritmy






CHARLES UNIVERSITY
FACULTY OF MATHEMATICS AND PHYSICS

DOCTORAL THESIS

Tomas Tichy

Approximation and Online
Algorithms

Prague, 2008

Institute of Mathematics of the Academy of Sciences
of the Czech Republic
Institute for Theoretical Computer Science
Faculty of Mathematics and Physics
Charles University in Prague

Advisor: Doc. RNDr. Jifi Sgall, DrSc.
Branch: I4 — Discrete Models and Algorithms






Diserta¢ni préce byla vypracovana v ramci doktorského studia, které
uchazec absolvoval na Matematicko—fyzikalni fakulté Univerzity Karlovy
v Praze v letech 2001-2008.

Doktorand: RNDr. Tomas Tichy
Skolitel: Doc. RNDr. Jifi Sgall, DrSc.
Skolici pracovisté: Matematicky ustav AV CR

Zitna 25
115 67 Praha 1






PREFACE vii

Preface

The area of approximation and online algorithms and problems is a
wide area of computer science. The nature of the problems arises from the
optimization problems of the real world—they are mostly logistical, trans-
portation, task scheduling, load balancing and similar problems. Together
with them there are also purely theoretical applications in areas like graph
theory or theory of complexity.

The first well-known researcher in the area is R. L. Graham who pub-
lished results on scheduling problems in sixties of the 20th century. Various
results on scheduling problems were published before him, but Graham
is considered to be pioneer of the approximation and online algorithms
area. Althrough the area has been studied intensively almost fifty years,
we still study simple abstractions of the real problems and the area is
rich on the interesting open problems remaining to be solved. On the
other hand there are also practical applications of the theoretical results.
The most important practical applications are in the area of computer net-
works, for example, algorithms for network switches, network routing,
packet scheduling, buffer management, guaranting of quality of service
etc. Because of these practical applications and lots of interesting and nat-
ural open problems with very simple definitions the area has been popular
and intensively studied in recent years. Nevertheless it seems there is a lot
of hard work for many years.

This thesis is focused on variants of the online scheduling problems.
First the thesis gives an overview of basic definitions, common methods
and variants of studied problems. Remaining chapters are based on my
research. Most of the introduced results were already published, see List
of publications. Some of the published papers are joint papers which are
compilations of results of a few coauthors or joint research. The chap-
ters consist of detailed description of my results and also they separately
introduce other results from joint papers.

I am grateful to my advisor and coauthor, Jifi Sgall, for his guidance
through my Ph.D. studies and his advice regarding my research, publish-
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ing and thesis writing. I am also grateful to my coauthors, especially
to my advisor Jifi Sgall and colleagues from Riverside University Marek
Chrobak and Wojtek Jawor for their great cooperation, exchanging ideas
and productive discussions. I would like to thank Institute for Theoretical
Computer Science (ITI) of the Charles University in Prague and Mathemat-
ical Institute of the Academy of Sciences of the Czech Republic for their
great support during my studies.

As required by the Charles University, I hereby declare I wrote this
thesis on my own and that the references include all the sources of infor-
mation which I exploited. I also authorize the Charles Univerity to lend
this thesis to other institiutions or individuals for academic and research
purposes.

Prague, April 2008 Tomas Tichy
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ABSTRACT 1

Abstract

This thesis presents results of our research in the area of optimization
problems with incomplete information—our research is focused on the
online scheduling problems. Our research is based on the worst—case
analysis of studied problems and algorithms; thus we use methods of the
competitive analysis during our research.

Althrough there are many “real-world” industrial and theoretical ap-
plications of the online scheduling problems there are still so many open
problems with so simple description. Therefore it is important, interesting
and also challenging to study the online scheduling problems and their
simplified variants as well.

In this thesis we have shown the following our results of our research
on the online scheduling problems:

e A 1.58-competitive online algorithm for the problem of randomized
scheduling of unit jobs on a single processor, where the jobs are ar-
riving over time and the total weight of processed jobs is maximized.

e A lower bound 1.172 on the competitive ratio for the problem of
randomized scheduling of 2—uniform unit jobs on a single processor,
where the jobs are arriving over time and the total weight of processed
jobs is maximized.

e A lower bound 1.25 on the competitive ratio for the problem of ran-
domized scheduling of s—uniform unit jobs on a single processor
where s is tending to infinity, the jobs are arriving over time and the
total weight of processed jobs is maximized.

e A 1.5—competitive online algorithm for the problem of deterministic
scheduling of equal-length jobs on a single processor, where restarts
of jobs are allowed, the jobs are arriving over time and the total
weight of processed jobs is maximized.

e There is no online 1-competitive algorithm with speed—-up s < 2
for the problem of deterministic scheduling of tight jobs on a single
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processor, where the preemptions of jobs are allowed, the jobs are ar-
riving over time and the total weight of processed jobs is maximized.

e There is no 1-competitive k—relaxed online algorithm for any £ for
the problem of deterministic scheduling of jobs arriving over time
with maximizing total weight of processed jobs.

e A lower bound 1.05099 on the competitive ratio for the problem of
1-relaxed deterministic scheduling of jobs arriving over time with
maximizing total weight of processed jobs. We have shown a gener-
alized lower bound for k-relaxed algorithms.

We present also some other results related to studied problems that are
products of a joint work with other researchers.

Outline of this thesis

In the first part of the thesis—“Introduction” —we provide an overview
of the methods of the competitive analysis in the context of various on-
line scheduling problems and algorithms. We discuss the importance,
advantages and disadvantages of the competitive analysis and its exten-
sive usage by researchers. We also discuss extensions of the competitive
analysis—especially we mention the resource augmentation framework
because some of our results are developed under this framework.

Except the mentioned discussion on variants of scheduling problems
and algorithms we also provide a detailed taxonomy of the online schedul-
ing problems—including problems that we do not study.

The second part of the thesis—“Problems and results”—enumerates
the problems that are studied in this thesis and the problems that are
closely related to studied problems. For each problem we always provide
detailed description and it’s formal description—according to introduced
taxonomy as well.

For each problem we also attach a list of previously best known results,
we show our results and separately we show a list of results of our joint
research with other co—authors. The problems presented in this thesis are
mostly focused on scheduling problems running jobs on a single machine,
where jobs arrive over time and are specified by their release times and
deadlines, using the total weight of processed jobs as the objective function,
considering deterministic and randomized computational model, usually
using standard measure model. Often we consider additional restrictions
on jobs—jobs with unit processing times or equal processing times.
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The types of presented results follow from the methods of the com-
petitive analysis. The main general goal is to find the exact competitive
ratio of studied problems or algorithms. Usually we develop at least an
approach for this general goal—a lower bound or an upper bound on the
exact competitive ratio. The lower bound on the competitive ratio usually
follows from the properties of some hard input instance. The upper bound
on the competitive ratio of an problem usually follows from the properties
of some algorithm.

The third part of the thesis presents our results. The overview of the nec-
essary common preliminaries and terminology is presented in the chapter
“Preliminaries”. Our results are presented in the chapters “Scheduling”,
“Resource augmentation” and “Online scheduling of equal-length jobs”.
Parts of these chapters are taken from the existing papers presenting these
results.

Some results have been published in joint papers with other co—authors
and are presented in a context of these papers. What are our original results
and what are the joint results is exactly mentioned in the chapter “Problems
and results”. Most of the presented results in this thesis have been already
published.
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Chapter 1

Introduction

Our area of interest arises from a traditional combinatorial area—the
area of optimization problems. The optimization problems are widely
studied for a very long time, but there are many pretty hard and famous
problems. Because of the huge scope of the optimization problems there
arise some subareas like scheduling which try to solve some classes of
optimization problems.

We focus on variants of the optimization problems with incomplete
information. In such problems, the information about the problem arrives
in steps and we are forced to make decisions while the information is still
incomplete.

In the usual definition of the optimization problems it is assumed that
the whole information is known and fixed. However it is not the case of
the real world, where information arrives incrementally in time and we
have to make decisions continuously. This is exactly the case when the
online algorithms can help us. The reason is that they are defined to make
decisions using partial knowledge of their input instance.

In the next sections we discuss basic definitions, methods and the cur-
rent state of art. We also give an overview of the studied problems.

1.1 Optimization and approximation

Let us describe what an optimization problem is. Consider an input
instance for the problem. This input instance together with the problem
definition gives a set of discrete objects. These objects are feasible solutions
of the problem for a given input instance. An objective (cost or profit)
function of the problem measures the quality of any particular solution.
The goal is to find an optimal solution among the feasible solutions for a
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tixed input instance, such that it minimizes its cost or maximizes its profit.

For many interesting optimization problems it is really hard to find an
optimal solution in reasonable time or space, because of huge complexity
in time or space. Interesting optimization problems are mostly NP-hard.

In practice there are many industrial applications of the optimization
problems like making plans, working or logistic schedules etc. The advan-
tage of practice is that we usually do not need an optimal solution but it is
enough to find a sufficiently reasonable feasible solution.

One of the methods to find a reasonable solution is a method of ap-
proximation algorithms. The approximation algorithms are fast (with low
complexity) and are provably close to the optimum.

1.2 Online algorithms

The concept of an online algorithm formalizes the real-world scenario,
where a real algorithm does not know the whole input instance while
offline algorithms do. Instead of this the online algorithm gets pieces of
the input instance in steps (in time) and the algorithm has to react to the
new requests with only partial knowledge of the input.

Moreover, many heuristical or approximation algorithms applied on
hard optimization problems are actually online algorithms. The main
reason is that we need to design simple algorithms because of realizable
analysis and implementation. Simple algorithms are usually unable to use
the complete information of the input instance. They split input instance
into smaller pieces, for example they sort objects of the input instance and
process it one by one.

In the offline world we are usually interested in the time and/or space
complexity of the studied algorithms. Instead, in the online world we
are interested in the quality of the produced solution. When we have
sufficient time and space resources in the offline world, we always find the
optimal solution. But this does not hold in the online world because of the
important role of the partial knowledge of the input instance. Moreover,
online algorithms are usually simple and fast, hence there is much more
interesting challenge in the quality of produced solutions than in their
complexity.

The online algorithms are usually quite simple heuristical algorithms
with very low time and space complexity. Nevertheless the analysis of
the online algorithms is sometimes really complicated. Let us take a look
on the common methods used for measuring the quality of the online
algorithms.
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1.2.1 Competitive analysis

The competitive analysis was introduced by Sleator and Tarjan [57] and
it is a variation on the traditional worst—case analysis of optimization algo-
rithms. The worst—case analysis studies the performance of an algorithm
in the worst case. We have to define what does it mean exactly.

We measure the cost of an online algorithm on an input instance by a
cost function. The cost function is unbounded and we are interested in
the behaviour on all input instances. Therefore we compare the cost to the
cost of another algorithm for each fixed input instance. We want to bound
the ratio of these costs over all input instances.

We are interested in how much worse is the online algorithm against the
optimal solution. Since we give no restrictions on time or space complexity
we can assume that the offline algorithm always produces an optimal
solution. Hence in the competitive analysis it is natural to compare the
cost of the online algorithm to the cost of the offline algorithm on the same
input instances.

According to the worst—case analysis we look for the comparison of an
online algorithm and an offline algorithm on the worst instance. Formally
we define this by the competitive ratio as follows.

We consider minimization or maximization problems. In the mini-
mization problems an algorithm minimizes cost which it has to pay. In
the maximization problems an algorithm maximizes profit which it gets.
Let us denote an online algorithm as A, an input instance as ¢ and the
cost or profit of the algorithm on the instance as .A(c). Let OPT denote an
(arbitrary fixed) offline (optimal) algorithm and OPT(¢) the optimal cost
or profit on the instance.

For minimization problems we define the competitive ratio (over all
possible input instances) as follows:

R(A) = inf {R: (Vo),A(c) < R-OPT(0)}

ReR

and similarly for the maximization problem as follows:

R(A) = Igel}% {R:(Vo),R-A(c) > OPT(0)}.

Because of these definitions, the competitive ratio is always greater
than or equal to 1. The best online algorithm is the online algorithm with
the lowest possible competitive ratio. An online algorithm is an optimal
algorithm for the problem if and only if its competitive ratio is exactly 1.
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When we consider a fixed scheduling problem then we also define the
competitive ratio of the problem as

R = inf R(A),
A

which is going over all online algorithms for the problem.

Obviously, the competitive ratio is a worst-case measure of online al-
gorithms. It shows the strong influence of uncertain input instance (partial
knowledge of instance) on the profit. Another userful feature of the mea-
sure is the following claim. Let us consider an algorithm 4 with the
competitive ratio ¢ = R(.A) and any other better d—competitive algorithm
B for some d < c. Then there exists an input instance such that the better
algorithm is at least ¢/d-times better on the instance. Obviously the worst
case input instance of the algorithm A proves this claim.

On the other hand the disadvantage of the method is that it some-
times gives competitive ratio which does not correspond to the empirical
performance of some algorithms which perform very well in practice.

Let us consider two well-known algorithms for the paging problem—
the LRU algorithm and the FIFO algorithm. A paging algorithm is a
strategy which chooses which page may be evicted from the cache in the
case of a fault in the cache. The LRU—least recently used—algorithm al-
ways evicts the page whose last access was earliest. The FIFO—first in,
tirst out—algorithms always evicts the page that has been in the cache
for the longest time. This pair of LRU and FIFO algorithms is such an
example that the competitive ratio of both is the same, but the LRU algo-
rithm is much better then the FIFO algorithm. When we denote k as a
number of pages in the paging problem then both algorithms are exactly
k—competitive. In practice the results produced by the FIFO algorithm
are approximately k-times worse than the optimum but the results pro-
duced by the LRU algorithm are much better than k-times the optimum.
These two algorithms can be distinguished using the access graphs for the
analysis—one of extensions of the competitive analysis.

This example illustrates the known defect of the competitive analysis
and shows an effective way how to bypass this defect—using some exten-
sion of the competitive analysis. We should not consider this as a general
method how to distinguish between algorithms with the same competi-
tive ratio but different results in practice. This example shows the method
which can help but does not have to.
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1.2.2 Randomization in competitive analysis

Randomization is a standard extension of the competitive analysis. It
gives us ways of significant improvement of the competitive performance
of our algorithms while we remain in the worst-case world. The basic
idea of randomization is to allow the algorithm to use random bits in
its decision process. Instead of the objective function on a fixed input
instance we consider the expectation of the objective function on the fixed
input instance.

The competitive ratio for a minimization problem is defined as

R(A) = érelIfR {R: (Vo),E[A(0)] < R-OPT(0)}

and similarly for the maximization problem as follows:
R(A) = mIfR {R: (Yo),R-E[A(c)] > OPT(0)}.
Re

The important aspect is that we do not consider randomization over in-
put instances but we consider randomization for each fixed input instance
separately.

Therefore the nature of the analysis remains worst-case. The random-
ized computation model is stronger than deterministic model, hence the
algorithm is more powerful. The model can significantly improve the
competitive ratio of some problems.

1.2.3 Resource augmentation in competitive analysis

The resource augmentation is one of the common techniques used in the
competitive analysis. Generally, results deloped under this technique al-
low us to better understand the studied problems—give use more complex
view on the problems—and possibly allow us to design better algorithms
for the problems.

For the first time, this technique was already used in 1966 by Graham
in [32]. The technique was officially introduced and entitled in 1995 by
Kalyanasundaram and Pruhs [37]. They demonstated this method on a
certain scheduling problem.

The basic idea of the resource augmentation technique is to allow more
resources to the online algorithm than to the corresponding offline algo-
rithm on the same problem. For example, the online algorithm can be
allowed to use more processors, faster processors, later deadlines, etc. Un-
der this technique we study the problems from the point of view of the
sufficiency of resources. We study changes of the competitive ratio when
we break some of the resource constraints.
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Motivation

In the following lines we describe the basic reasons why this technique
was developed. When we study a problem using the competitive analysis
then we always compare results of an online algorithm and an optimal
offline algorithm for the same problem. Both have the same resources like
memory, number of processors, speed of procesors, weights, profits, etc.
But the online algorithm has an important handicap—the uncertainty of
the input instance.

Let us recall the goal of the competitive analysis—we strongly prefer
the online algorithms with a competitive ratio bounded by a constant. It
means that we do not want to be dependent on any parameters of studied
problems. But for some of the studied problems it can be really hard to
find such an online algorithm or such an algorithm does not exist.

When it is hard to find a constant competitive online algorithm for a
studied problem then this technique simplifies the problem, gives us better
understanding of the problem and moves us closer to the solution of the
more general problem.

The most imporatant application of this technique is when the constant
competitive online algorithm does not exist. Then this technique shows
us which resources it is necessary to break to get a constant-competitive
online algorithms for the studied problem.

Kalyanasundram and Pruhs in [37] show this technique on a certain
scheduling problem. This problem has been extensively studied earlier us-
ing “common” methods—Koren and Shasha introduced an non—constant
competitive online algorithm which is optimal for the problem. When-
ever we prove that there is no constant-competitive algorithm and we still
insist on the “constant-competitiveness” then we must break some con-
straints of the studied problem. In their problem the objective function
was the total flow time. Kalyanasundram and Prush broke the speed of
the processor—their online algorithm uses s—times faster processor than
the offline algorithm. They showed that the competitive ratio of the online
algorithm is significantly improved when the speedup s is slightly greater
than 1 for their scheduling problem.

Under the resource augmentation technique we are interested in:

e the behaviour of the competitive ratio of an online algorithm when
we slightly break a resource constraint,

e sufficient amount of resources to obtain an 1-competitive online al-
gorithm for the problem.
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With respect to the second interest—Kalyansundram and Pruhs
showed an 1-competitive online algorithm using 32—-times faster processor
for the studied problem.

1.2.4 Probabilistic analysis

In practice we are usually satisfied with algorithms which are good
on average and we do not care so much about the performance of such
algorithms in the worst cases. It means that we are satisfied with an
algorithm which performs well on the most of the input instances and
performs badly only occasionally—on some singular input instances.

One of the possible approaches how to get a practically usable algorithm
is to use the probabilistic analysis method. This method provides weaker
and not so interesting results. Thus we must be aware with the limitations
of this method.

When we want to develop an algorithm for practice we are able to
imagine probabilistic assumptions on the input instances. Also we can
formalize our ideas and define the probabilistic distribution on the input
instances for the problem. Then we can design some heuristical online
algorithm according to the probabilistic distribution. Then we study the
performance of the algorithm on the average over the probabilistic distri-
bution of the input instances.

It is not easy to find a good probabilistic distribution of input instances.
Actually it is really hard problem to define a distribution that does not
suppress bad singular cases—such cases that are important in the worst
case analysis. Althrough the performance of our heuristical algorithm is
good on average there can remain some hard cases on which the heuristical
algorithm performs badly. We must be very careful when we want to claim
something on the performance of our algorithm.

These assumptions are quite different from our assumptions in prob-
lems which we study. We consider that such assumptions are too strong.
Results based on such assumptions can look very nice and strong, but
they tell nothing about behaviour of studied algorithms in bad cases. In
this model we can get an algorithm usable in applications in real world—
usually called good on average. Such an algorithm works fine but for
some special input instances it returns very bad solutions. Instead our
philosophy is that an algorithm should always return results with some
guaranties on its quality. Therefore this thesis does not present results
based on average assumptions.
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1.2.5 Adversaries

Let us view the online problems as a game. The first player of the game
is the online algorithm, its goal is to find good solution while it has partial
knowledge of the input instance. Its opponent generates the input instance
“on the fly” and gives the pieces to the first player. The opponent is called
an adversary in the terminology of the online algorithms. We distinguish
the following types of adversaries according to their power:

e Oblivious adversary—he gives pieces of the input instance according
to his strategy ignoring the real actions of the online algorithm, he
chooses the strategy in advance;

e Online adaptive adversary—he gives pieces of the input instance us-
ing his knowledge of the all previous answers of the online algorithm
in the game, continuously generates his own answers;

e Offline adaptive adversary—he gives pieces of the input instance
using his knowledge of the all previous answers of the online algo-
rithm in the game. He gives his, obviously optimal, solution when
the whole input instance is generated.

We can view the randomized online algorithms as the games for two
players as we do for the deterministic online algorithms. In such a case
we never allow reading random bits of the algorithms to the adversaries.
According to the method of randomization in the competitive analysis—
which we presented above—we can consider the oblivious adversary only.
It means that we fix the input instance (it is the the strategy of the oblivious
adversary) and then we are interested in the expected objective.

1.3 Overview of online scheduling problems

In this section we show a taxonomy of online scheduling problems. Of
course the taxonomy cannot cover all such problems but it covers most of
them except some unusual ones. First we classify the problems according
to basic concepts of the algorithms—the online paradigm, the objective
function and the computational model. Second we show some variants—
the problems with additional various constraints or extentions.

1.3.1 Basic classification

The online scheduling problems are classified from the four points of
view:
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e machine environment,

e the paradigm in which the problem is online,

e objective function to maximize/minimize,

e computational model—deterministic/randomized.

First for all we distinguish the online scheduling problems according
to the machine environment—number of available machines working on
given jobs. There are big differences in scheduling problems using single
machine and scheduling problems using more than one machine.

The online scheduling problems are online in the paradigm how the
algorithm gets information about arriving jobs. In all of the paradigms
the algorithm does not know the future jobs. Each paradigm gives some
restrictions on the processing of arriving jobs.

There are these basic paradigms for the online scheduling problems:

e Arriving one by one. The jobs arrive one by one in steps. In each
step the algorithm picks an arriving job. The algorithm gets complete
information about the arriving job. The algorithm schedules the
job earlier than it picks the next job. The schedule is generally an
assignment of jobs to machines and time slots. These assignments
cannot be changed later. Note that it is usually allowed to assign a
job to some future time slots.

e Arriving over time. The jobs arrive over time, each job arrives at
its release time. The algorithm gets complete information about the
arriving job. The algorithm does not need to schedule jobs immedi-
ately. The algorithm maintains a set of available jobs and schedules
available jobs over time independently of their arrivals. There can be
allowed preemptions or restarts of already running jobs.

e Unknown running times. This is same as “Arriving over time”, but
the algorithm does not get information about the running times of
jobs on their arrival. The algorithm gets the running time when the
job is finished.

e Interval scheduling. In this paradigm the jobs arrive over time or
one by one. The imporatant difference to the other paradigms is
that the algorithm does not need to process all jobs. The objective is
the number of processed jobs or the total weight of processed jobs
according to the studied problem. There is a restriction that jobs are
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tight, which means that for each job the length of the interval between
its deadline and its release time is equal to its processing time.

e Real-time scheduling. Modern operating systems need to schedule
periodic and aperiodic tasks in real time. Each execution of a task
is called a job. Each task is specified by its offset, period, worst
case execution time and (relative) deadline. In such a problem we
study the feasibility of input instances (whether all deadlines can be
satisfied).

The objective function measures the operational expenses or the satis-
faction of the owner of the system. There most usual objective function for
scheduling problems is makespan. The most common objective functions
are:

e makespan, the time when the last job is completed;

e total completion time, the sum of the completion times of all jobs,
the completion time is the time when the job is completed;

o total flow time, the sum of flow time of all jobs, flow time is the
completion time minus the release time;

e total waiting time, the sum of the waiting times of all jobs, the waiting
time is the flow time minus the running time;

e number of jobs, the number completed jobs;
o total weight of jobs, the sum of weights of all completed jobs.

There are also other more complicated objective function which are usu-
ally problem specific. Such objective function can minimize e.g. number
of preemptions, give some penalties for rejections etc.

The third basic classification of the online scheduling problems is the
computational model. We choose between deterministic and random-
ized algorithms. Each deterministic online scheduling problem can be
naturally extended to its randomized version—allowing randomized al-
gorithms and using expected objective value instead of the deterministic
one.
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1.3.2 Variants

In this section we shortly introduce some variants of the online schedul-
ing problems. Some of these variants are of course also variants of the
(offline) scheduling problems.

e Job constraints—the additional constraints which must be consid-
ered by the online algorithm while it makes schedule. There can be
specified release time (when the job becomes to be available the first
time), deadline (must be finished before deadline or thrown away),
dependecies of jobs (a job becomes available when all its predecesors
are finished), conflicts of jobs (some jobs cannot be processed at the
same time).

e Preemptions and restarts—in some problems a running job can
be preempted—it can be stopped and resumed or restarted later.
Restarts are interesting for the problems where we cannot allow in-
terruptions of a running job.

e Parallel jobs—such jobs can be processed simultaneously on a few
processors. We use parallel processing because of reducing the com-
pletion times. Usually the parallel processing splits the processing
time of a job to a few processors. There are two basic types of parallel
jobs. The non-malleable jobs are in the first type—such jobs specify
the maximal number of processor that can be used simultaneously.
The rest are the malleable jobs—that can be simultaneously processed
on an exact number of processors.

e Different speeds—machines may have different speeds, there are
two variants—fixed speeds for all machines (uniformly related ma-
chines) and different speeds for different jobs (unrelated machines).

¢ Job consists of tasks—there is a set of tasks in the problem and each
job consists of several tasks on different machines. In “open shop”
the order of processing tasks is arbitrary. In “flow shop” the jobs are
processed according to one fixed ordering of tasks for all jobs. In “job
shop” the ordering is fixed for each job separately.

Note that there are also lots of minor variants of scheluding problems,
which are not shown here.
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1.3.3 Standard vs. metered model

Whenever we consider the scheduling problems and we allow to the
algorithm to use preemptions of running jobs then we may also think about
the model of the computation of the profit in the problem. The important
factor which affects the model of the computation is the motivation of the
studied problem. We distinguish two models:

e Standard model—In the standard model the algorithm obtains whole
profit for each completed job. The algorithm does not obtain any
profit for preempted jobs.

e Metered model—In the metered model the algorithm obtains at least
partial profit for each job. For each job the obtained profit is propor-
tional to the size of processed part of the job. We always assume that
the profit grows linearly—that the ratio of obtained profit over whole
profit is equal to the ratio of the size of processed part of the job over
the whole size (processing time) of the job.

Note that the first one—the standard model is applicable in some
scheduling problems like the packet scheduling, network switching, etc.
In these problems the uncompleted (especially preempted) jobs cannot be
used for later processing because of the nature of these problems. Therefore
the algorithm does not obtain any profit for preempted jobs.

On the other hand—the metered model is applicable in some other
scheduling problems like scheduling computational tasks on processors,
realtime scheduling or planning of manufacturing in factories, etc. In such
problems the jobs can be suspended and also resumed later or already
processed work on uncompleted jobs can be efficiently used later.
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Chapter 2

Problems and results

The basic purpose of this chapter is to show a compact overview of all
problems studied in this thesis. This overview also includes enumeration
of our results related to the studied problems.

We do not intend this thesis to be a detailed description of a new entire
consistent theory on scheduling and approximation algorithms. The area
of the approximation and online algorithms is so wide and contains lots of
interesting open problems that are waiting for their resolution. We focused
our research effort on some of these problems and we tried to solve them
or at least to solve its subproblems. We were successful in some cases and
of course in some cases we were not successful. Instead of developing a
consistent theory we are helping to assemble the mosaic of open problems
of the online and approximation algorithms by providing our fragments
of the mosaic—we provide a set of various results of our research.

When we look at the problems which we study we will see that we are
solving similar scheduling problems for various special cases. Basically
there are two reasons:

e the general case is usually too hard to be solved directly, we are
getting closer by solving special cases,

e thegeneral caseisalready solved, but the results are not satisfactory—
they are too weak to be used in practice, then we are solving special
cases to get stronger results for reasonable restrictions.

In the introduction we have described and discussed the taxonomy
of scheduling problems. Let us continue the discussion. But now the
discussion will be focused on our research, especially on the problems
studied in this thesis.

We show a detailed overview on these problems, we mention related
problems and known related results from other authors—the current state
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of art—and also results of our research. Of course, we bind these problems
to the formal classes of the described taxonomy of the scheduling problems.

2.1 Online scheduling of unit jobs

As the importance of the Internet is growing, people are searching for
improvements of the general performance of the global network. In the
network the packets are forwarded by network routers and switches. Un-
fortunatelly, the most of them implements the First-In—First-Out (FIFO)
strategy for packet forwarding. However the communication protocols
based on IP (Internet Protocol) are sufficiently robust—assumes unpre-
dictable packet flows and heterogenous networks as well. Thus the re-
search of the strategies based on QoS (Quality of Service) for network
routers snad switches become more important.

We discuss the problem of online scheduling of unit jobs which arises
from the area of buffer management problems in this section. In the buffer
management problems we study how to manage buffers for storing net-
work packets in the QoS networks. In such networks packets arrive and
are buffered at network switches. Each packet has its QoS value which is
the profit gained by forwarding the packet. The network switch works in
steps—the switch can receive and transmit only one packet at each step.
When the system is overloaded then some packets will not be delivered be-
fore their deadline (dropped packets). Such a buffer management problem
can be formally described at the following problem of online scheduling
of unit jobs.

2.1.1 Problem description

In the model the processing time of each job is equal to 1. Each job
is specified by its release time, deadline and weight, where release times
and deadlines are integral values and weight is a non—negative real value.
These jobs are processed on a single processor—at most one job can be
processed at each integral time. It is allowed to drop jobs which cannot be
processed before their deadline. The profit is the total weight of all jobs
completed before their deadline. The goal is to maximize the obtained
profit.
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2.1.2 Classification

According to the taxonomy of the online scheduling problems we can
describe the problem of the online scheduling of the unit jobs as follows:

Machines: m =1,

Online paradigm: Arriving over time,

Objective function: Maximized total weight of jobs,
Computational model: Deterministic or randomized,
Measure: Standard model,

Variants:

— Job constraints—processing time of each job is equal to 1.

2.1.3 Previous results

We consider the problem in the randomized computational model, thus
the deterministic lower bounds apply for the problem. We also mention
the deterministic upper bound—the best randomized algorithm must be
better (or equal) than the deterministic algorithm.

Upper bound for deterministic algorithms—The best known upper
bound was recently presented in [24]—the 1.828—competitive deter-
ministic algorithm. For a long time the best upper bound was a
2—competitive deterministic algorithm presented in [39]. This result
was improved in our joint paper [8]—the 1.939—competitive algo-
rithms, the first algorithm with the ratio strictly below 2. This was
recently improved in two independent papers. The first was men-
tioned as the best known, the second one is the 1.854—competitive
algorithm which is presented in [48].

Upper bound for memoryless deterministic algorithms—The best
known upper bound for memoryless deterministic algorithms is the
1.893—competitive algorithm presented in [24]. It is the first algo-
rithm with the competitive ratio strictly below 2 for the memoryless
algorithms for the problem.
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e Lower bound for deterministic algorithms—The best known de-
terministic lower bound on the competitive ratio for the problem is
the ¢ ~ 1.618—this lower bound is based on the 2-bounded input
instances and is presented in [4] and [20].

e Lower bound for randomized algorithms—The best known lower
bound on the competitive ratio for the problem in the randomized
model is 1.25, it has been shown in [20] and also based on the 2-
bounded instances.

e Upperbound forrandomized algorithms—There are none, bounded
by the deterministic upper bounds.

2.1.4 Our results

We have shown in Section 4.5.1 the following result for the studied
problem, this result is published in [Pub-2]:

e Upper bound for randomized algorithms—We have improved the
upper bound for the problem in the randomized model. We have
shown the % ~ 1.58-competitive algorithm which is still the best
known upper bound for the problem in the randomized model. This
result is published in a joint paper [Pub-2] together with other results
of other co—authors. This result is proven in Theorem 4.5.1.

2.2 Online scheduling of uniform jobs

The problem of the online scheduling of uniform jobs arises from the
buffer management problems as the problem of the online scheduling of the
unit jobs—the problems are closely related and have the same motivation.

This problem introduces a restriction on the input instances for the
problem which can be considered as reasonable for practical point of view.
Thus it is natural that we can develop stronger algorithms—with better
competitive ratio than in the general case. In the considered problem the
attribute “uniform jobs” means that the input instances are restricted—
these consist of s—uniform jobs, where s is a parameter of considered
problem, this means that the span of each of the jobs is equal to s.
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2.2.1 Problem description

The problem of the online scheduling of uniform jobs is about the
online scheduling of s—uniform input instances of unit jobs, where s is a
fixed integer—the parameter of the considered problem. Each job has its
span (difference of its deadline and release time) equal to s. Each job is
specified by its release time and weight. Jobs are processed on a single

processor, some jobs can be dropped. The objective is the total weight of
scheduled jobs.

2.2.2 Classification

According to the taxonomy of the online scheduling problems we can
describe the problem of the online scheduling of s—uniform jobs as follows:

e Machines: m =1,

Online paradigm: Arriving over time,

Objective function: Maximized total weight of jobs,

Computational model: Deterministic or randomized,

Measure: Standard model,

Variants:

— Job constraint: Processing time is equal to 1,

— Job constraint: Span is equal to s.

The span s is a fixed positive integer—it is a parameter of the problem.

2.2.3 Previous results

Because of the parameter s for the problem we can consider the problem
in two ways—we can consider the problem for some values of s and we
can consider the problem in general—the worst case over all possible
values of s as well. Naturally, we are interested in both cases. Thus we
distinguish the lower and upper bounds according according to these two
cases. Obviously, a lower bound for a special case applies in the general
case.
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e Upper bound for deterministic algorithms on general input

instances—The best known general upper bound in the determin-
istic model is the 1.75—competitive algorithm and it was shown in

[6].

Upper bound for deterministic algorithms on 2-uniform input
instances—The best known upper bound in the deterministic model
for input instances restricted on 2-uniform jobs is the v2 ~ 1.41-
competitive algorithm and it was shown in [4].

Lower bound for deterministic algorithms on 2-uniform input
instances—The best known lower bound in the deterministic model
for the 2—uniform instances is approximately 1.366, this result was
shown in [4].

Lower bound for deterministic algorithms on general input
instances—The currently best known upper bound is 1.36. This re-

sult follows from the lower bound for the 2—uniform instances shown
in [4].

2.2.4 Our results

We have shown in Section 4.6.1 the following results for the studied

problem:

e Lower bound for randomized algorithms on 2-uniform input

instances—We have shown in [Pub-2] a lower bound 1.172 on the
competitive ratio for the problem for 2—uniform instances in the ran-
domized model. This is still the best known lower bound in random-
ized model. This result is proven in Theorem 4.6.2.

Lower bound for randomized algorithms on general input
instances—We have shown a lower bound 1.25 on the competitive
ratio for the problem with the s—uniform instances, where the span s
is tending to infinity. We have presented this result in [Pub-2]. This
result is proven in Theorem 4.6.3.

2.2.5 Joint results

The following interesting results are the products of our joint research

on the problem with other co—authors. These results were shown in paper
[Pub-2] and [Pub-3]. There results are presented in Section 4.6.2.
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e Matching lower bound on the competitive ratio for determinis-
tic algorithms on 2—uniform input instances—We have shown that
there is no deterministic online algorithm for the problem of on-
line scheduling of 2—uniform input instances with competitive ratio
smaller than approximately 1.376. This result is presented in Theo-
rem 4.6.5 and matches the following upper bound.

e Upper bound on the competitive ratio for deterministic algorithms
on 2—uniform input instances—We have shown 1.377-competitive
algorithm for the problem of online scheduling of 2—uniform input
instances in deterministic model. This is presented in Theorem 4.6.6.

2.3 Online scheduling of bounded jobs

The problem of online scheduling of bounded jobs is very similar to the
previous problem of online scheduling of uniform jobs. This problem is
also parametrized—again the parameter s restricts the span of jobs in the
input instances. The difference is that in the problem with uniform jobs the
span must be equal to the parameter s and in the problem with bounded
jobs the span must be at most s.

2.3.1 Problem description

The problem of online scheduling of bounded jobs is about online
scheduling of s-bounded input instances of unit jobs, where s is a fixed
integer—the parameter of the considered problem. Each job has its span
(difference of its deadline and release time) at most s. Each job is specified
by its release time and weight. Jobs are processed on a single processor,
some jobs can be dropped. The objective is the total weight of scheduled
jobs.

2.3.2 Classification

According to the taxonomy of online scheduling problems we can de-
scribe the problem of the online scheduling of s—uniform jobs as follows:

e Machines: m =1,

e Online paradigm: Arriving over time,
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Objective function: Maximized total weight of jobs,

Computational model: Deterministic or randomized,

Measure: Standard model,

Variants:

— Job constraint: Processing time is equal to 1.

— Job constraint: Span is at most s.

The maximal span s is a fixed positive integer—it is a parameter of the
problem.

2.3.3 Previous results

For the problem of the online scheduling of uniform jobs we consider
the problem from two points of view—as the worst case over all possible
values of the parameter s of the problem and the problem for a fixed
parameter s. Observe that in the studied problem of the online scheduling
of bounded jobs the set of input instances for a parameter s contains also all
input instances for all parameters smaller than s. Thus the worst case over
all possible values of the parameter s is given by the parameter s tending
to infinity.

Moreover the problem for the parameter s tending to infinity colapses to
the previously described problem of online scheduling of unitjobs because
with growing parameter s we lose boundaries.

e Upper bound for deterministic algorithms on general input
instances—the best known general deterministic upper bound for the
problem—for unlimited value of parameter s—is the 2—competitive
algorithm that has been shown in [39].

e Upper bound and lower bound for deterministic algorithms on 2-
bounded input instances—The optimal algorithm is known for the
problem for the 2-bounded instances—this algorithm is ¢ ~ 1.618-
competitive. This algorithm was introduced in [39] and correspond-
ing lower bound was shown independently in [4] and [20].

e Lower bound for randomized algorithms on 2-bounded input
instances—The best known lower bound on the competitive ratio
in the randomized model is 1.25 and was shown in [20].
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2.3.4 Joint results

The following interesting results are the products of our joint research
on the problem with other co—authors. These results were shown in paper
[Pub-2]. There results are presented in Section 4.7.

e Upper bound for deterministic algorithms on s-bounded input
instances—We have shown an algorithm for the problem in the
deterministic model, its competitive ratio is given by formula
2—2/s4o0(1/s). The competitive ratio tends to general upper bound
2 for the growing parameter s. Presented in Theorem 4.7.5.

e Upper bound for deterministic algorithms on 4-bounded input
instances—We have shown the approximately 1.732-competitive al-
gorithm for the problem with 4-bounded input instances in the de-
terministic model. Presented in Theorem 4.7.4.

e Upper bound for deterministic algorithms on 3-bounded input
instances—We have shown the ¢ = 1.618—competitive algorithm for
the problem with 3-bounded input instances in the deterministic
model. Presented in Theorem 4.7.2.

e Upper bound for randomized algorithms on 2-bounded input
instances—We have shown the 1.25-competitive algorithm for the
problem with 2-bounded input instances in the randomized model.
This upper bound matches the best known lower bound mentioned
above thus the algorithm is optimal for the case of 2-bounded in-
stances in the randomized model. Presented in Theorem 4.7.1.

2.4 Online scheduling of equal-length jobs

The problem of online scheduling of equal-length jobs is one of the fun-
damental problems in the area of real-time scheduling. The motivation for
the problem is in the real-time scheduling of jobs in overloaded systems
where the matching deadlines is very important. We can find practical ap-
plication in packet switched networks (with and without preemptions)—
various streaming and processing applications, when weights are allowed
the problem is related to quality of service problems. Our motivation is
that the studied problem is a simplified version of fundamental scheduling
problem where only a little is known about its competitiveness.
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The jobs in the considered problem are almost the same—the jobs have
equal processing times and equal weights (weights are not specified). The
goal is to maximize the total number of jobs completed before their dead-
lines.

2.4.1 Problem description

The studied problem is about online scheduling of jobs where the pro-
cessing time of each job is equal to p where p is a parameter of the problem.
Each job is specified by its release time, deadline, where release times and
deadlines are integral values. Weights are not specified. The jobs are
processed on a single processor. It is allowed to drop jobs that cannot be
processed before their deadlines. The considered profit is the total num-
ber of jobs completed before their deadlines. The goal is to maximize the
obtained profit.

The resulting schedule—produced by the offline and online
algorithms—has to be non-preemptive. Althrough we allow preemptions
with restarts to the online algorithm in one of studied cases the require-
ment on the non-preemptive resulting schedule is still satisfied, because
we obtain profit only for such a job that is completed before its deadline
and its processing was not preempted because of the nature of restarts.

2.4.2 C(Classification

e Machines: m =1,

Online paradigm: Arriving over time,

Objective function: Maximized total number of completed jobs,

Computational model: Deterministic or randomized,

Measure: Standard model,

Variants:

— Job constraint: Processing time is equal to p.

The processing time p is a fixed positive integer—it is a parameter of
the problem.
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2.4.3 Previous results

Because of the importance of the problem for the area of real-time
scheduling, the problem was extensively studied also in its offline version.
The feasibility version of the problem was studied in [28]—to goal is to
check whether it is possible to schedule all jobs of given input instance.
They have shown a deterministic algorithm for the feasibility problem
with time complexity O(n logn). The maximization version of the problem
was studied in [21] and [7]—they have shown polynomial but very slow
algorithm.

The following results are known for the topic of our interest—the online
version of the problem:

e Upper bound for deterministic algorithms—In the paper [13] and
[12] it was shown that the Greedy algorithm for the studied problem
is 2—competitive. The shown result is more stronger—there was
shown that any non—preemptive deterministic algorithm that never
idles when jobs are available is also 2—competitive.

e Lower bound for deterministic algorithms—The fact that the
Greedy algorithm is optimal was shown in [29], they have shown
a lower bound 2 on the competitive ratio for the studied problem in
the deterministic model.

e Lower bound for randomized algorithms—The lower bound 4/3 ~
1.333 on the competitive ratio for the studied problem in the random-
ized model was shown in [29].

e Upper bound for deterministic algorithms on input instances with
large slack—The lower bound 2 on the competitive ratio for the
problem in the deterministic model can be beaten when we require
sufficiently large slack of jobs. In the paper [29] was shown a 1.5—
competitive algorithm for input instances consisting of jobs with
slack at least p, it means that each job j satisfies d; — r; > 2 - p.
An improvement of this result is presented in [30]—a (1 + 1/))—
competitive algorithm for input instances consisting of jobs such that
each job j satisfies d; — 7, > X - p.

2.4.4 Our results

We have presented the following results for the studied problem in
[Pub-1], these results are presented in Section 6.5:
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e Upper bound on deterministic algorithms allowed to restart jobs—

We have shown a 1.5—competitive algorithm for the studied problem
such that it is an online scheduling algorithm for the problem which
is allowed to restart jobs. Allowed restarts means that the algorithm
is allowed to preempt running jobs and the preempted jobs can be
completed later—the processing of the job cannot be continued but
the job can be again processed from scratch. This result is presented
in Theorem 6.5.2.

Lower bound on deterministic algorithms allowed to restart jobs—
We have shown a lower bound 1.5 on the competitive ratio of de-
terministic algorithms allowed to restart jobs. Thus our algorithm is
optimal for the studied problem. This result is presented in Theo-
rem 6.5.4.

Lower bound on randomized algorithms allowed to restart jobs—
We have shown a lower bound 1.2 on the competitive ratio of ran-
domized algorithms allowed to restart jobs. This result is presented
in Theorem 6.5.4.

2.4.5 Joint results

The following interesting results are the products of our joint research

on the problem with other co—authors. These results were shown in paper
[Pub-1].

e Upper bound for randomized non-preemptive algorithms—We

present a barely random algorithm which uses only one random bit to
choose between two deterministic non—preemptive algorithms. We
show that this algorithm is 5/3 ~ 1.667—-competitive for the studied
problem. This result is presented in Theorem 6.6.1.

Lower bound for barely random algorithms—We show a lower
bound on the competitive ratio of barely random algorithm such that
randomly chooses between two deterministic algorithms. The com-
petitive ratio of such an algorithm is at least 1.5. Moreover when the
algorithm chooses between the deterministic algorithms with equal
probability, then its competitive ratio is at least 1.6. These two results
are presented in Theorem 6.6.5 and Theorem 6.6.6.
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2.5 Overloaded systems

In this section we focus on preemptive online scheduling problems for
overloaded systems. Recall that there are two types of task scheduling
problems—first the minimization problems where we have to schedule all
jobs and minimize objective like makespan and second the maximization
problems where we do not need to schedule all jobs but our goal is to max-
imize our profit. This problem is about the second case—in the overloaded
systems the number of jobs and their processing times exceeds the capacity
of machines which we use to process these jobs and thus not all jobs can
be completed.

2.5.1 Problem description

In the problem each job is specified by its release time, deadline, pro-
cessing time and its weight which represents corresponding profit rate.
We allow preemptions—the online algorithms are allowed to split each job
into several pieces—arbitrary number of pieces with arbitrary granularity.
There is only one machine, which can be used for processing of these jobs.
The goal is to find schedule for 1 processor, that maximizes the total profit.

We studied the problem in two models with different measures—the
standard model and the metered model. In the standard model we get
the whole profit for completed tasks only. In the metered model we get
the proportional part of the whole profit—given by the fraction of the
execution time and processing time.

We study this problem in the deterministic model. For the analysis of
the problem we used the methods of the competitive analysis including
resource augmentation.

2.5.2 Classification

According to the taxonomy of the online scheduling problems we can
describe the problem of the online scheduling in overloaded systems as
follows:

e Machines: m =1,
e Online paradigm: Arriving over time,
e Objective function: Maximized total weight of processed jobs,

e Computational model: Deterministic,
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e Measure: Standard model or metered model,
e Variants:

— Job constraint: Preemptions are allowed, each job can be di-
vided into arbitrary number of pieces (disjoint intervals) and
granularity.

— Resource augmentation: When we study the problem under the
resource augmentation, then the online algorithms are allowed
to use faster processor—with a speed—up s. It means that the
online algorithm uses s times faster processor than the offline
algorithm.

2.5.3 Previous results
Standard model

The problem in the standard profit model has been extensively studied.
It was shown in [44] and [14] that there is no constant competitive online
algorithm for the problem because the shown lower bound depends on so
called importance factor—the ratio of jobs with maximum and minimum
weights which is unbounded for general input instances. Since there is no
constant competitive online algorithm it is natural to study the problem
under the resource augmentation framework.

The following results related to the studied problem in the standard
profit model were published:

e Upper bound on the competitive ratio in the standard model—
The (v/€ + 1)*~competitive online algorithm for the studied problem,
where { = max; w;/ min; w; is called the importance factor, was shown
in [44].

e Lower bound on the competitive ratio in the standard model—It
was shown in [44] and [14] that the algorithm showing the upper
bound is optimal algorithm for the studied problem.

e Upper bound on speed—up in the standard model—The first online
algorithm with constant competitive ratio with speed—up 32 for the
problem in the standard model was shown in [37].

e Upper bound on speed—up in the standard model for 1-
competitiveness—A 1-competitive online algorithm with speed-up
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O(&) was shown in [46]. The parameter ¢ is again the importance
factor.

e Upper bound on speed-up in the standard model for 1-
competitiveness and tight jobs—A 1-competitive online algorithm
with speed—up O(1) was shown in [43].

e Lower bound on speed-up in the standard model for 1-
competitiveness and tight jobs—A lower bound ¢ ~ 1.618 on the
competitive ratio was shown in [45].

Metered model

The problem in the metered profit model has been studied in [17], how-
ever, in a different terminology. They studied the problem in the context of
thinwire visualization—user is viewing a low-resolution image and uses
cursor to generate requests for higher resolution at specified positions. The
problem is overloaded because of limited network bandwidth (thinwire).
This is a good example of practical application where the partial processing
of jobs is benefical for the user.

The following results related to the studied problem in the metered
profit model were published:

e Upper and lower bound on FIRSTFIT and ENDFIT algorithms in the
metered model—In the paper [17] was shown that the online schedul-
ing algorithms known as FIRSTFIT and ENDFIT are both 2—competitive.

e Lower bound on the competitive ratio in the metered model—A
lower bound on the competitive ratio for the problem was shown in
[17]—there is no online algorithm with better competitive ratio than
2(2 —2) ~ 1.17.

2.5.4 Our results

We have shown the following result for the studied problem, which
we has been published in [Pub—4] and which we present in this thesis in
Section 5.4.2:

e Lower bound on speed—up for tight jobs in the standard model—
We have shown that in the standard profit model there is no online
1-competitive algorithm with speed—up s < 2 for the problem with
the input instances consisting of tight jobs only. Presented in Theo-
rem 5.4.1.
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2.5.5 Joint results

The following interesting results are the products of our joint research
on the problem with other co—authors. These results were shown in paper
[Pub—4] and also these results are mentioned in Section 5.4.3.

e Upper bound in the metered model—We have shownae/(e — 1) ~
1.58—competitive algorithm for the problem in metered profit model.
Presented in Theorem 5.4.2.

e Lowerbound in the metered model—We have shown a lower bound
V5 — 1 2 1.236 on the competitive ratio for the problem in metered
profit model. Presented in Theorem 5.4.3.

e Lower bound on speed—up in the metered model for 1-
competitiveness—We have shown that there is no 1-competitive
online algorithm with speed—up better than Q(loglog¢). Presented
in Theorem 5.4.4.

e Lower bound in standard for 1-competitiveness—Another resource
augmentation result for the model where the online algorithm is al-
lowed to use more machines than the offline algorithm. We have
shown that the competitive ratio of online algorithms is at least
Q( ¥/€/m) where m is number of machines used by the online al-
gorithm even if all jobs are tight. Presented in Theorem 5.4.5.

As we have shown that the online algorithms in the standard model
cannot achieve the competitive ratio 1 using constant number of machines
but these algorithms can achieve the competitive ratio 1 using constant
speed—up. Thus the speed—up is more powerful than increasing of number
of machines.

2.6 Resource augmentation in online scheduling
problems

In this section we consider online scheduling problems with resource
augmentation. The resources can be augmented in various ways—usually
in time, speed, number of processors or simply by breaking or weaking
some other constraints.

The resource augmentation techniques we use when we study interest-
ing or important problems and we are not satisfied with the competitive



2.6 RESOURCE AUGMENTATION IN ONLINE SCHEDULING PROBLEMS 33

ratio of the studied problem. It can happen that the competitive ratio is
unbounded for some scheduling problems—then we are searching for the
“strong” constraint which is forcing the unboundness of the competitive
ratio. Or the competitive ratio is too high—altrough we have proven that
the problem is constant competitive but the competitive ratio is too big that
it cannot be applied in practice. Especially in the practical applications we
need online algorithms because of their simplicity and we require similar
quality of results like it is provided by the offline algorithms. Thus we
are only satisfied with competitive ratio really close to 1. Therefore it is
necessary to break or make weaker some of not so important constraints.
Then the result is usually an online algorithm applicable in practice with
very good performance, but breaking some minor constraints.

In previous section on equal-length jobs we have presented an online
scheduling problem with resource augmentation—augmentation of speed
of processors used by the online algorithm. In this section we present the
augmentation of deadlines—this means that the online algorithm has more
time for processing given jobs.

2.6.1 Problem description

In this problem we study the influence of the resource augmentation
on the competitive ratio of one of common scheduling problems - the
problem with equal processing times of jobs. The problem is a single
processor online scheduling problem and the problem is considered in the
deterministic computational model. The time axisis assumed to be integral
and jobs arrive one by one in time. In the problem each job is specified by
its integral release time and integral deadline and non—negative weight.
The processing times of all jobs are equal to a constant.

In this problem we allow augmentation of time—we break the con-
straints given by deadlines. We consider some constant £ and the dead-
lines for the online algorithm are shifted by k time units to the future while
the offline algorithm must process the jobs before their deadlines.

As it is usual in the problems with allowed resource augmentation
we are interested in the influence of the resource augmentation on the
competitive ratio of the problem.

2.6.2 Classification

Fixed integral constant—the relaxation & > 0.

e Machines: m =1,
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Online paradigm: Arriving over time,

Objective function: Maximized total weight of jobs,
Computational model: Deterministic,

Measure: Standard model,

Variants:

— Job constraint: Consider job j, then

* for offline algorithm the deadline is d;,
* for online algorithm the deadline is d; + k.

2.6.3 Previous results

Very similar problem was studied in [3], which is almost the same
problem but in different terminology. They studied the problem of packet
buffering and the problem matches our problem for unbounded buffers.

Upper bound for greedy algorithm with FA-time faster
transmissions—They shown that the greedy algorithm is (1 + 1/k)—
competitive when such a resource augmentation of speed is consid-
ered.

2.6.4 Our results

We present the following results for the studied problem in Section 5.3:

e Lower bound for 1-competitiveness—We have shown that there is

no online 1-competitive k—relaxed algorithm for any k. Presented in
Theorem 5.3.2.

Lower bound on the competitive ratio for 1-relaxed—We have
shown a lower bound ~ 1.05099 on the competitive ratio for 1-
relaxed online algorithms for the studied problem. Presented in
Theorem 5.3.3.

Lower bound on the competitive ratio—We have shown a general
lower bound 1 + m for the online k-relaxed algorithms for
the problem. Presented in Theorem 5.3.4.
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2.7 List scheduling—Previous research

The topic of this thesis—the scheduling and optimization problems—
arises from my Master’s thesis. Althrough some problems that are pre-
sented to in this thesis are very similar to problems studied in the Master’s
thesis it is not just an extension of the Master’s thesis. We are still in the
same are but we are solving more more complicated and more general
problems.

Let us mention some of the main differences of Master’s thesis and
this thesis in the area of the scheduling problems—in Master’s thesis there
are no deadlines, weights of jobs, and there are no other features like
preemptions, restarts which can be applied in the studied problems, etc.

We can conclude that we are interested in the same area but we are
working on quite different problems.

2.7.1 Problem description

My Master’s thesis is focused on randomized online scheduling prob-
lem, where jobs arrive one by one. Each job is specified by its release
time (time of arrival). Each job is scheduled on one of m processors. The
objective is the makespan function (length of the obtained of schedule).

2.7.2 Classification

e Machines: arbitrary m > 0,

Online paradigm: Arriving one by one,

Objective function: Minimized makespan,

Computational model: Deterministic,

Measure: Standard model.

2.7.3 Our results

The most important result is a negative result, which disproves an old
conjecture on the competitive ratio of the problem. Chen, van Vliet and
Woeginger [18] and Sgall [54] proved a simple general lower bound of

(2.1)
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on the competitive ratio for the randomized online scheduling of jobs on
m > 2 processors.

It seemed natural and reasonable to believe that this lower bound of o,,
on the competitive ratio for m processors indeed is the optimal competitive
ratio for every m > 2. There are at least two facts that support this
conjecture: First, for m = 2 processors this lower bound of o, = 4/3 has
been proved to be the optimal competitive ratio (Bartal, Fiat, Karloff and
Vohra [10]). Secondly, for any number m > 2 of processors the bound o,,
describes the optimal competitive ratio for the problem variant where job
preemption is allowed (Chen, van Vliet and Woeginger [18]). This conjecture
on o, was well-known in the online algorithms community.

We have shown that the conjecture does not hold for m = 3 processors.
This result was published in [Pub-7], [Pub-9].

Some published algorithms for the online scheduling problem are re-
stricted because of their simplicity—they schedule an arriving job on a
processor with the smallest load or on a processor with the second small-
est load. Hence in the rest of the Master’s thesis we focused on this class
of algorithms and we have shown some lower bounds. These results have
been published in [Pub-10].
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Chapter 3

Preliminaries

This thesis is focused on the approximation and online algorithms, es-
pecially on the online scheduling problems and algorithms. We introduce
terminology, definitions and notations in the following lines. We state
some basic observations related to these topics as well.

This chapter is an overview thus all necessary definitions, notations,
etc. are repeated in the following chapters in the context of presented
results.

3.1 Jobs

Whenever we consider any scheduling problem then the job is the most
important thing which we are thinking about. Sometimes we use the term
“task” in the equivalent meaning as the term job.

In the scheduling problems there is one or more machines which are
able to process given jobs. As we already discussed in the introduction of
this thesis there can be considered lots of variants or constraints to model
various scheduling problems.

Usually we define the sequence of jobs as 1, . .., n. Then a single job is
denoted as j. Each job j is specified by some other quantities—we denote
the release time of the job as r;, the deadline of the job as d;, its processing
time p,; and the weight of the job as w;. Often the job is specified by such a
quadruple (r;, d;, pj, w;).

In some problems the job j can be specified for example by a triple.
Usually it is the case that processing time or weight is equal for all jobs in
studied problem. These are the problems when we consider the scheduling
of unit jobs or we consider scheduling when we do not care about weights
of jobs.
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Release time

The release time r; is the first time when the processing of the job j can
be started. In the online variant of the scheduling problems it is usually
the time, when the job occurs for the online algorithm, as well.

Deadline

Similarly, the deadline d; is the latest time when the processing of the
job can be finished. After this moment the job may not be scheduled. In
scheduling problem with the standard profit model we do not get any profit
for jobs that are not finished up to its deadline. Similarly in scheduling
problems with the metered profit model we do not get any profit for
processing a job after its deadline.

Processing time

The processing time p; is the amount of processing time, which is
necessary to process the job j. Whenever there is p; = 1 for each job then
we consider scheduling of unit jobs. Whenever there is a constant p such
that p; = p for each job then we consider scheduling of equal-length jobs.

Span

The difference between the deadline and release time is called span. It
is sometimes denoted as s;. Formally, it is defined as s; = d; — r;. Itis
exactly the gap in which the job can be processed.

Weight

The weight w; is the weight of the job j. It is exactly the profit which
we gain for the processing of the job—when the job is finished up to the
deadline d;.

Sometimes a job is identified by its weight to simplify the terminology
and notation. Thus we can say “job w” meaning “the job with weight w”.
When there are more jobs with the same weight it is clear from the context
which job we refer to or it does not matter.

It is useful for us to define some ordering of the jobs according to their
weights. But we need to break ties between jobs with the same weight.
Formally we say that a job j is heavier than a job ;' it either w; > w; or
w; = wjand j < 7.



CHAPTER 3: PRELIMINARIES 39

Weight rate

When we study scheduling problems with allowed preemptions in the
metered profit model then it is better to use weight rates of jobs instead
of weights of jobs. The notation and usage is almost the same as for
weights. The basic difference is the computation of the gained profit for
the processing of jobs.

The weight of job j specifies the profit gained for the processing of the
whole job j. Opposite to this the weight rate of the job j specifies the profit
gained for the processing of the job j for one unit of time. Thus the profit
for the whole for job j is w; - p; (product of weight rate and processing
time).

Tight jobs

Sometimes it is useful to mark a job j as a tight job when the scheduling
of the job is strongly restricted by given its release time r;, its deadline d;
and its processing time p;. The idea is to mark the job whenever the
intersection of all possible scheduling intervals of the job j is not empty.
This can be formalized as follows: the job j is tight whenever

dj_'rj<2'pj-

Expiration time

The expiration time is considered in the scheduling problems without
preemptions. The expiration time of a job j is the latest moment when the
job j can be started to be finished before its deadline.

We denote the expiration time as z; and it is defined as:

l‘j = dj _pj-

Slack of job

The slack of a job j specifies the strongness of scheduling constraints
given by its release time, deadline and processing time. When the gap
between release time and deadline is much larger than the processing time
then we have large freedom for scheduling of the job. When size of the
gap is equal to the processing time then we have no freedom—we must
decide to schedule or not to schedule the job, we cannot postpone the start
of processing of the job.
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Formally, the slack of the job j can be defined as:
dj —rj = pj.

The slack of j is zero if and only if we have no freedom for scheduling
of the job.

Admissible jobs

Let us consider the scheduling problem without preemptions. We can
refer a job j as admissible job at time ¢ whenever it was already released
and it is not expired yet. Formally the job j is admissible whenever it
satisfies:

r; <t <uxj.

Earliest-deadline job

Let us consider a set of jobs J. We mark a job j as earliest-deadline in
J when the deadline is minimal deadline in jobs in .J. Because of technical
reasons it is important to break ties between jobs with the same minimal
deadline. It means that there is always just one earliest-deadline job for
arbitrary non—-empty set of jobs. Formally the earliest-deadline job is
defined as:

min {j;d; = gr/lelgl(dj/)}
Sometimes we use the abreviation “ED job” instead of the earlist-
deadline job.

3.2 Schedules

A schedule S specifies which jobs are executed and at what time they
are executed. We can consider such a schedule in several contexts like:

e a description of the behaviour of an online or offline scheduling
algorithm on an input instance,

e an optimal schedule on an input instance,

e another schedule in a normalized form—we apply some rules to
modify a schedule, the resulting schedule is almost equivalent (im-
proved or worsen according to its purpose) but better to analyze.
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3.2.1 The schedule

In the case of a single processor problem the schedule S is a partial
mapping from a set of real numbers to a set of integers. The set of real
numbers represents the time axis and the set of integers represents set of
jobs.

For a real number ¢ we define the schedule S as follows:

e S : R — N—the mapping from reals to integers,
e S(t) = j—when the processor is processing the job j at time ¢,

o S(t) = undefined—when the processor is idling at time t—the proces-
sor is not processing any job at time ¢.

We also require that the schedule must satisfy all constraints given
by the definition of studied problem. Especially it must satisfy the ba-
sic constraints given by release times, deadlines, processing times, al-
lowed/denied preemptions, etc.

Observations

The definition denies simultaneous processing of two jobs at the same
time on the same processor, because of the nature of the mapping.
Let us consider the preimage of the job j—the image S~'(j) is

e empty—when the job j was not scheduled in S,

e time interval of length p,—when the job was scheduled in § in a
scheduling problems without preemptions, we usually denote this
interval as [S;; C}),

e union of time intervals—when the job was scheduled in S in a
scheduling problem with preemptions.

Multiprocessor schedules

Recall that in the area of scheduling we do not distinguish between
terms a processor and a machine.

In the case of studying scheduling problems with multiple processors
we must use more complicated notation and definition. In this case the
schedule S represents a collection of mappings—there is a separate map-
ping for each of the processors.

We use the following notation:
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m—the number of the processors, this notation comes obviusly from
the term “machine”,

S = {S1,...,S,}—the collection of schedules—one mapping for
each processor,

e S;(t) = j—when the i—th processor is processing the job j at time ¢,
o S;(t) = undefined—when the i-th processor is idling at time ¢.

Obviously, there is an alternative to look at the schedule S for the
multiple processors as on the mapping from the product of integers (rep-
resenting the set of processors) and real numbers (representing the time
axis) to the integers (representing the set of jobs).

The schedule & must satisfy the additional constraints following from
the problem definition. Except the constraints considered for the problems
with a single processor we must also consider parallel processing of jobs—
whether it is allowed or denied. When parallel processing of jobs is not
allowed, then the schedule S has to satisfy:

(Vt,i,1') i # i = Si(t) # Sy(t),

which exactly means that simultaneous execution of the same job at the
same time ¢ on two different processors i and ¢’ is not allowed.

3.2.2 Jobs in schedules

Let us introduce a few terms related to jobs in the context of our con-
sideration on schedules. We describe the terms on a schedule S.

Starting time

We denote the first moment of the scheduling of the job j in the schedule
S as Sj—the starting time of the job j. Formally we define the start time
as:

S. = min (t).
i t:;r(ltl)gj()

Completion time

We denote the last moment of the scheduling of the job j in the schedule
S as (. In the scheduling problems without preemptions it is exactly
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the moment when the job j becomes to be completed—its processing is
finished. Formally we define the completion time as:

C; = sup (t).
t:S(t)=j

Execution time

For the schedule S and a job j we define the execution time of the job
j as the amount of time which is spent during the processing of the job j.

In the case of studying problems without preemptions the value of
execution time of the job j is equal to 0 when the job is not scheduled, or
the processing time p; when the job is scheduled. In the problems with
allowed preemptions the execution time of job j is obviously between 0
and the processing time p; according to the spent time. In the problems
with allowed restarts of jobs we can get executaion time greater than p,.

Formally, the execution time is defined as the size of interval (or set of
intervals with preemptions) S7!(j).

Pending jobs

We mark a job j at time ¢ for a schedule S as a pending job or as an
available job whenever it can be scheduled at time ¢. The job j can be
scheduled at time ¢ is it is allowed by contraints given by release times,
deadlines, etc. and the job was not scheduled before time ¢ in s.

The explicit formal definition based on the release time, the deadline,
and the processing time is different for different problems. For example
when we allow or deny preemptions it is obvious that we obtain quite
different definitions.

In a simple case—in an online scheduling problem without
preemptions—the job j can be marked as a pending job when ¢ > 7,
and ¢ + p; < d; and the job j was not scheduled in S before ¢.

Sometimes we refer to the pending jobs—then we mean the set of jobs
which are pending at time ¢ in the schedule S.

When we consider scheduling problems with weighted jobs then we
can assume without loss of generality that there always exists a pending job
with weight equal to 0 in the input instance. Obviously, this assumption
cannot change the profit of the optimal schedule and cannot change the
profit which can be obtained by an online algorithm as well.
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Feasible sets of jobs

Sometimes during the analysis we are interested in analyzing some sets
of jobs. For this purpose we define this term—feasible jobs. Some set of
jobs is feasible when it is possible to schedule all its jobs with respect to all
the constraints given by the studied scheduling problem.

Let us assume for a while a scheduling problem without preemptions
and some set of jobs .J. We say that the set .J is feasible at time ¢t when there
exists a schedule S such that all jobs of J are completed in S, do not start
before ¢ in S and § is a valid schedule for the studied scheduling problem.

Flexible jobs

Again we consider the set of jobs .J where the processing time of each
job is equal to p and we are interested in the feasibility of the set of jobs.
We consider the set J that is feasible at time ¢t and we analyse whether it is
kept feasible in near future.

The motivation arises in the scheduling problems without
preemptions—in such problems we must consider that some heavy (big
profit) jobs can arrive in near future. So we postpone the processing for
the longest time without losing any of known jobs.

For our purposes it is sufficient to define the term for the scheduling
problems where the processing time of all jobs is equal to p. In this case
we denote that the set of jobs is flexible at time ¢ if and only if the set is
feasible at time ¢ + p.

We mark a job j as a flexible job at time ¢t when the set of pending jobs
is flexible at time ¢. Otherwise we mark the job j as an urgent job.

3.2.3 Throughput

In the scheduling problem there is some objective which we want to
optimize—maximize or minimize—the main reason for spending our effort
during the scheduling.

When we discuss a scheduling problem we usually refer to this objec-
tive. People use the following terms for this objective:

e throughput,
e benefit,
e profit,

e gain.
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All these terms are really used in the same meaning—to represent the
objective. This is simply the profit which is payed to the owner of the
algorithm. This payment is our motivation to make the best schedule as
we are able to do.

As we mentioned in the taxonomy of the online scheduling problems,
there is a lot of common objective functions. But in the problems which
we study we use only the following:

o Total weight of jobs—The sum of weights of all completed jobs. For
the scheduling problems with preemptions in the metered model we
use the weight rates and we gain the profit proportionally to the
processed part of each job.

e Makespan—The time when the last job is completed (the latest com-
pletion time). We use this objective in the scheduling problems where
the weights of jobs are not specified.

3.2.4 Earliest-deadline schedules for equal-length sched-
ules

We define earliest-deadline schedules for the scheduling problems re-
stricted on the input instances with equal-length jobs. This restriction
follows from the definition of flexible jobs where we assume jobs with
equal lengths (processing times).

During the analysis of some scheduling problems it is useful to assume
that the studied schedule is in some special form. Thus we define the
normal schedule—each schedule can be simply transformed into such
form.

We assume a scheduling problem of equal-length jobs on a single pro-
Cessor.

Equivalent schedules

Let us assume two schedules S and S’ for an input instance .J. These two
schedules are considered to be equivalent when the following conditions
are satisfied for each time t:

e S starts ajob at t if and only if S’ starts a job at ¢,

e Suppose that S starts a job j at time ¢ and S’ starts a job j’ at time ¢.
Then j is flexible in S if and only if j’ is flexible in &’. Moreover, if
the schedules are both flexible then j = j'.
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When S, §’ are equivalent, then it is obvious that their profits are equal.

Normal schedule or EDF

A schedule S is normal if it satisfies the following two properties:

e when the schedule S starts a job, it chooses the earliest-deadline job
from the set of jobs which are scheduled in S and pending at time ¢,

e when the set of all pending jobs (from the scheduled jobs) in S at
some time ¢ is not flexible, then some job is running at ¢.

It is obvious that an arbitrary schedule can be simply transformed into
an equivalent normal schedule. This observation can be proven by math-
ematical induction. We always find the first job which breaks the earliest-
deadline condition and we switch this job with another job (scheduled
later) which satisfies this condition. This step can be repeated until we get
normal schedule.

3.2.5 Time-sharing

The time-sharing is one of useful metods which can help us with anal-
ysis of studied online scheduling problems. Especially it is very useful for
online scheduling problems with allowed preemptions.

This technique provides generalization of the schedule which is pro-
duced by the online and offline algorithms. Recall that in the standard
schedule, we always have to specify the running job—for each time mo-
ment and each processor.

The basic principle of this technique is the generalization of scheduling
of a job by allowing simultaneous running of two or more jobs in the same
time unit. These jobs share the same time unit. Naturally, the performace
of considered processors is limited, thus while we consider sharing of time
unit we also need to consider sharing of this performance. For each job
and each time moment we also specify the running speed. The sum of
speeds of all jobs for each fixed time moment and considered processor
cannot exceed the speed of the processor.

Let us consider an online scheduling problem on a single processor
and real time axis. Then the generalized schedule can be defined as the
following mapping: V (j, ) is the running speed of the job j at time ¢ and
satisfies following conditions. For each time moment the total speed of all
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jobs cannot exceed the speed of the processor:
(V)Y V(i <1
J

The speed cannot be negative:
V5,V (1) = 0.

For each job the total processing time cannot exceed the processing time of
the job:

) [ Vi<,
0
Each job can be scheduled between release time and deadline only:

(V5,6) V(j.t) > 0=t € [r;;d;).

3.3 Competitive analysis

The competitive analysis has been already widely discussed in this the-
sis. Let us remind the basic facts and definitions related to the competitive
analysis and the competitive ratio.

The competitive analysis is a variation of the traditional worst—case
analysis applied on the online scheduling problems. The method allows
us to reasonably compare the performace of the online algorithms for the
online scheduling problems and also compare them to the optimal offline
algorithms.

The “competitive ratio” is the measure used for comparing the perfor-
mance of the algorithms. The competitive ratio is the ratio of the quality
of the results produced by an online algorithm and the optimal offline
algorithm. The competitive ratio of the algorithm is the worst competitive
ratio over all input instances. We distinguish the definitions for the min-
imalization and maximalization problems. The competitive ratio for the
minimalization problem is defined as:

R(A) = in& {R: (Vo),A(c) < R-OPT(0)}

Re
and similarly for the maximization problem as follows:
R(A) = inf {R: (Vo),R - A(c) > OPT(0)},

ReR



48 CHAPTER 3: PRELIMINARIES

where A denotes objective of the algorithm, OPT denotes the objective
of the optimal offline algorithm.

When we consider a fixed scheduling problem then we also define the
competitive ratio of the problem as

R = inf R(A),
A

which is going over all online algorithms for the problem.

There are some extensions of the competitive analysis. One of the
most important extensions is the randomized version of the competitive
analysis. When we consider the randomized online scheduling algorithms,
then we can define the competitive ratio for the minimalization problem
as follows:

R(A) = in{g {R: (Vo),E[A(c)] < R-OPT(0)}
Re
and similarly for the maximization problem as follows:

R(A) = ;nIfR {R: (Vo),E[A(c)] > R-OPT(0)}.
€

Recall the important fact that we do not consider the randomization
over input instances but we consider randomization over random bits
provided to the randomized online algorithms. Thus we do not study
“average behaviour in average cases” of the online algorithms but we
study the real expected worst case behaviour of the randomized online
algorithms.
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Chapter 4

Scheduling

In this chapter we study restrictions of the traditional scheduling prob-
lems. First of all we study the problem of scheduling of unitjobs—the input
instances contain jobs with processing time equal to 1, each job is specified
by its release time, deadline and non—negative weight. We consider this
problem in the deterministic and randomized computational model.

In the second part of this chapter we study the problem of scheduling
of uniform jobs. It is another restriction of the traditional scheduling
problems—again the input instances are restricted on unit jobs, moreover
the span (difference of deadline and release time) is fixed and equal for all
jobs. For example, the problem of scheduling of s—uniform jobs means the
problem of scheduling of jobs with span equal to s.

The third part of this chapter is about the problems of scheduling of
s-bounded jobs. This is very similar to previous problem of scheduling
of s—uniform jobs. In the uniform case there is given the span exactly as s
but in the bounded case the span is bounded by s—it means that span is
at most s.

4,1 Results overview

This chapter is divided into three parts as we mentioned above. Ac-
cording to this we also divide results—we separate our results and joint
results and we also separate results of research on the problem of online
scheduling of unit jobs, uniform jobs and bounded jobs. We have selected
only the most interesting joint results.
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Our results

Here we mention results which are products of our own research.

Scheduling of unit jobs

We have shown in Theorem 4.5.1 a randomized online scheduling algo-
rithm for the problem of online scheduling of unit jobs in standard profit
model. This algorithm is ¢/(e — 1) ~ 1.58-competitive and this has been
published in [Pub-2].

Scheduling of s—uniform jobs

In the case of online scheduling of s—uniform jobs we are focused on the
randomized again. We have shown two lower bounds and both of these
results have been published in [Pub-2]. We have shown in Theorem 4.6.2
a lower bound 1.172 on the competitive ratio for the problem of online
scheduling of 2—uniform jobs in the randomized model.

Regarding the general case we have shown a lower bound for random-
ized algorithms 1.25 on the competitive ratio, again in the standard profit
model. See Theorem 4.6.3.

Joint results

Here we mention results which are products of joint research with co—
authors in the studied areas.

Scheduling of s—uniform jobs

The following results were published in [Pub-2] and [Pub-3]. As a
product of joint research we have shown upper bound and matching lower
bound on the competitive ratio of the online algorithms for the problem of
online scheduling of 2—uniform jobs in deterministic model.

In Theorem 4.6.5 we have shown a lower bound on the competitive
ratio approximately 1.376. And also in Theorem 4.6.6 we have shown a
matching deterministic online algorithm for the problem of scheduling
of 2—uniform jobs. Thus the problem for 2—uniform jobs have been fully
solved.
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Scheduling of s-bounded jobs

The following results were publised in [Pub-2] and [Pub-3] and are the
products of joint research. In Theorem 4.7.5 we have shown a deterministic
algorithm on general s-bounded input instances with competitive ratio
2—2/s+0(1/s).

Except the general case we were interested also in the special cases.
In Theorem 4.7.4 we are focused on the special case for s = 4, we are
focused on online deterministic scheduling of 4-bounded input instances.
We have shown approximately 1.732—competitive algorithm for this case.
In Theorem 4.7.2 we have shown approximately 1.618—competitive online
deterministic algorithm for 3-bounded instances.

We were also working on the randomized model. In Theorem 4.7.1
we have shown a 1.25—-competitive online algorithm for 2-bounded in-
put instances. This results matches the lower bound for 2—uniform input
instances (2—-uniform instance is also 2-bounded). Thus the problem of
2-bounded online scheduling in the randomized model is solved.

4.2 Introduction

We are focused on problems of online scheduling of unit jobs that arise
from the buffer management problems. The online bounded delay buffer
problem has been introduced in [39, 4] to model the trade—offs arising in
managing buffers for storing packets in QoS networks. In the problem
the packets arrive to network switches and can be buffered at the network
switches. At each step several packets can be received (e.g. on different
ports) but at most one packet can be transmitted. Each packet has its QoS
value—this is the profit gained by forwarding it. The delay between the
endpoints of communication is limited, therefore a deadline is specified
for each packet. The deadline specifies the latest time when packet can be
transmitted. Obviously, each network switch can be easily overloaded by
received packets—packets arrive faster than can be transmitted. Due to
the overloading conditions the switch is allowed to drop jobs. The goal is
to maximize the profit—gained QoS values of packets transmitted before
their deadlines.

The following problem of online scheduling of unit jobs is equivalent
to the described buffer management problem. The packets correspond to
jobs—each job is specified by its release time, deadline and weight, where
release times and deadlines are integers and weight is a non—negative
value, the processing time of each job is equal to 1. The switch is rep-
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resented by a single processor (at most one job can be processed at each
integral time). The profit is the total weight of all jobs completed before
their deadlines. The natural goal is to schedule jobs in such a way to
maximize the profit.

Note that we focus on online scheduling problems but it is possible to
consider an offline variant of the scheduling problem and buffer manage-
ment problem as well.

In the online variant of the scheduling of unit jobs each job arrives at
its release time. The algorithm performs in steps and the online algorithm
has to schedule one of pending jobs without any knowledge of the jobs
that will arrive in the future.

This problem of online scheduling of unit jobs is also closely related
to other QoS problems. One such related problem is online scheduling
of jobs in the metered model, where each job is specified by its release
time, deadline, processing time and weight. Preemptions are allowed in
the problem. Unlike in the standard model each non-completed job gains
proportionally—it means that when the algorithm processes p percents of
scheduled job then the algorithm gains p percents of profit assigned to the
job. Itis easy to see that both problems are equivalent. Applications of the
problem arise from transfering large images over slow networks (with low
bandwidth) or imprecise computations in the real-time systems, where
tasks can be completed partially (it can cause worse quality of result).

4.3 Previous work

Although the problem of scheduling of unit jobs was widely studied,
the best known algorithm for the general deterministic and randomized
computational model was the Greedy algorithm. The Greedy algorithm
for the problem is naturally defined—it always schedules the heaviest job.

It is easy to show that the competitive ratio of the Greedy algorithm
is equal to 2. The worst input instance showing the lower bound of the
competitive ratio is really simple—the Greedy algorithm prefers heaviest
job even if the input instance contains more urgent job with almost the
same weight. When we consider such an instance with two jobs where the
smaller job must be processed immediately otherwise it is lost, then the
Greedy algorithm loses almost half of optimal profit.

A lower bound of ¢ ~ 1.618 for the problem in determinitic model was
shown in [4, 20, 5].

Some restrictions on instances of the problem have been studied in the
literature [38, 39, 4, 20, 48]. Let the span of a job be the difference between
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its deadline and the release time. In s—uniform instances the span of each
job is equal exactly s. In s—bounded instances, the span of each job is at
most s. The lower bound of ¢ ~ 1.618 in [4, 20, 5] applies even to 2-
bounded instances. A matching upper bound for the 2-bounded case was
presented in [38, 39]. Algorithms for 2—uniform instances were studied by
Andelman et al. [4], who established a lower bound of %(\/§+1) ~ 1.366 and
an upper bound of v/2 ~ 1.414. This upper bound is tight for memoryless
algorithms [8], that is, algorithms which base their decisions only on the
weights of pending jobs and are invariant under scaling of weights. Finally,
the first deterministic algorithms with competitive ratio lower than 2 for
the s-bounded instances appear in [8]. These ratios, however, depend on
s, and approach 2 as s increases. Kesselman et al. [40] gave an algorithm
for s—uniform instances with ratio 1.983, independent of s.

Kesselman et al. [38, 39, 40] consider a different model related to the
s—uniform case: packets do not have individual deadlines, but instead
they are stored in a FIFO buffer of capacity s (i.e., if a packet is served, all
packets in the buffer that arrived before the served one are dropped). Any
algorithm in this FIFO model applies also to s—uniform model and has
the same competitive ratio [40]. Bansal et al. [6] gave a deterministic 1.75-
competitive algorithm in the FIFO model; this implies a 1.75—competitive
algorithm for the s—uniform case.

We say that jobs are similarly ordered if r; < r; implies d; < d; for all
jobs 7, j. Note that this includes s—uniform and 2-bounded instances, but
not s-bounded ones for s > 3. Recently, Li et al. [48] gave a p—competitive
algorithm for instances with similarly ordered jobs; this matches the lower
bound for 2-bounded instances, and thus it is an optimal algorithm for
this case. (Li et al. [48] use a different terminology for the same restriction
on inputs and say that the jobs have agreeable deadlines.)

4.4 Preliminaries

We present our results in terms of scheduling of unit jobs, as explained
in the introduction. A schedule S specifies which jobs are executed, and
for each executed job j it specifies an integral time ¢, r; < ¢ < d;, when
it is scheduled. (When we say that j is scheduled at time ¢, we mean
that j is started at time ¢, and thus it occupies the processor through the
time interval [¢,¢ + 1).) Only one job can be scheduled at any time ¢. The
throughput or profit of a schedule S is the total weight of the jobs executed
in S. If A is a scheduling algorithm, by profit ,(I) we denote the profit of
the schedule computed by A on an instance /. The optimal profit on I is
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denoted by opt(I). A job i is pending in S at time ¢t if r; < t < d; and i
has not been scheduled in S before ¢. (Thus all jobs released at time ¢ are
considered pending.) An instance is s—bounded if d; — r; < s for all jobs j.
Similarly, an instance is s—uniform if d; — r; = s for all j. The difference
d; — r; is called the span of a job j. An instance is similarly ordered if the
release times and deadlines are similarly ordered, that is r; < r; implies
d; < d; for any two jobs 7 and j.

Given two jobs i, j, we say that i dominates j if either (i) d; < d;, or (ii)
d; = d; and w; > wj, or (iii) d; = d;j, w; = wj and 7 < j. (Condition (iii) only
ensures that ties are broken in some arbitrary but consistent way.) Given
a non—-empty set of jobs J, the dominant job in J is the one that dominates
all other jobs in J; it is always uniquely defined as ‘dominates’ is a linear
order.

A schedule S is called canonical earliest—deadline if for any jobs i and
j in S, where i is scheduled at time ¢ and j is scheduled later, either
J is released strictly after time ¢, or ¢ dominates j. In other words, at
any time, the job to be scheduled dominates all pending jobs that appear
later in S. Any schedule can be easily converted into a canonical earliest—
deadline schedule by rearranging its jobs. Thus we may assume that offline
schedules are canonical earliest-deadline.

We often view the behavior of an online algorithm A as a game be-
tween 4 and an adversary. Both algorithms schedule jobs released by the
adversary whose objective is to maximize the ratio opt(I)/profit ,(I). Sev-
eral of the upper bound proofs are based on a potential function argument.
In such proofs, we define a potential function ¢ that maps all possible
configurations into real numbers. (In general, a configuration at a given
step may include all information about the computation before and after
this step, both for the algorithm and the adversary. In most arguments,
however, it is sufficient to include only the set of pending jobs in both
schedules.) Intuitively, the potential represents A’s savings at a given step.
At each time step, an online algorithm and the adversary execute a job.
The proofs are based on the following lemma which can be proven by a
simple summation over all steps.

Lemma 4.4.1 Let A be an online algorithm for scheduling unit jobs. Let ® be a
potential function that is 0 on configurations with no pending jobs, and at each
step satisfies

R - Aprofit , > Aado + AP, (4.1)

where AD represents the change of the potential, and Aprofit ,, Aadv represent
A’s and the adversary profit in this step. Then A is R—competitive.
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The lemma above applies to randomized algorithms as well. In that case
we need to prove the inequality on average with respect to the algorithm’s
random choices at the given step, i.e., to prove that Exp[R- Aprofit , — A®]| >
Aadv, as both the profit of the algorithm and the change of the potential
are influenced by the random choices.

In some proofs, in particular for deterministic algorithms, we use a
different approach called charging. In a charging scheme, the weight of
each of the jobs in the adversary schedule is charged to some time in our
schedule, in such a way that for each time ¢ the weight of all jobs charged to
t is at most R times the total profit of the job(s) scheduled in our schedule
at ¢. If such a charging scheme exists, by simple summation over all time
steps, it implies that our algorithm is R—-competitive. A charging scheme
can be transformed into a potential method argument, with the potential
function at a given time equal to the sum of the charges going backward
in time across this time minus the sum of the charges going forward.
However, proofs based on charging schemes tend to be more illuminating.

4.5 Unitjobs scheduling

In this section we focus on unrestricted version of the problem of online
scheduling of unitjobs. In this problem, eachjob j is specified by (r;, d;, w;),
release time 7 is integer, deadline d, is integer, weight w; is non—negative
real, unit processing time p; = 1. Jobs are processed on a single processor.

4.5.1 Randomized model

We develop a randomized algorithm called RMIX for the problem of
scheduling of unitjobs described below. We will prove that the competitive
ratio of this algorithm is e/(e — 1) ~ 1.582. This is the first algorithm with
the competitive ratio smaller than 2. Previously the best known algorithm
was the Greedy algorithm, its competitive ratio is 2. The lower bound for
the Greedy algorithm obviously follows from the fact that the algorithm
always schedules the heaviest job.

The basic principle of our algorithm RMIX is based on similar ideas
as the algorithm MIXED presented in our joint paper [Pub—4]. But the
algorithm MIXED is a scheduling algorithm for quite different problem—
the problem of scheduling of metered jobs in a single processor system
which can run simultaneously several jobs (the performance is split among
running jobs in according to specified speeds).
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The only way to improve the competitive ratio is to break this Greedy
rule. We found during our considerations on the lower bound of the
Greedy algorithm that sometimes it is better to prefer a more urgent job
over another heavier job. Thus our algorithm balances between heavy jobs
and urgent jobs. We were considering scheduling of an earliest-deadline
pending job among some heavy jobs. We used this idea to develop our
algorithm EDF, for the deterministic model, this algorithm schedules the
earliest-deadline job among jobs with weight at least a—times weight of
the heaviest pending job. The EDF, improves the competitive ratio for
s-bounded instances.

We consider the randomized computational model thus randomization
can help us to improve the competitive ratio. We have to define probabili-
ties for each of pending jobs. Algorithm RMIX works in steps and in each
step it randomly chooses a job from a set of pending jobs where each job
has assigned its probability. The algorithm considers sequence of heavy
pending jobs such that the deadlines of jobs are decreasing and weight of
each job is at least 1/e ~ 0.368 times weight of the heaviest job and each
job is the heaviest job among the pending jobs with same or smaller dead-
line. Non-zero probability is assigned to jobs in the sequence according
to their weights. The probability of other pending jobs is zero. Obviously
the sequence tries to balance between urgency and weight. The next job
in the sequence is always more urgent because of smaller deadline but
has still reasonable weight—in comparison with the weight of the heaviest
pending job. Formally we define the RMIX algorithm as follows:

Algorithm RMIX. At each step, we inductively select a set of jobs
hi,...,hy as: h; is the heaviest pending job, h;;; is the heaviest pend-
ing job such that wy,,, > wy, /e (limited weight) and d,,,, < ds, (earlier
deadline). We define v; = wy,, and vi11 = wy, /e. The algorithm executes
one of hy, ... h, it executes h; with probability In(v;) — In(v;41).

Theorem 4.5.1 Let us consider the problem of online scheduling of unit jobs in
the randomized model with the standard profit model. Above we described the
randomized algorithm RMIX for considered problem.

Then the algorithm RMIX is -4 ~ 1.58-competitive.

Proof. We prove the competitive ratio of the algorithm using one of
the methods of the competitive analysis—we use the potential function
to prove algorithm’s competitive ratio. The basic idea of this method
is to analyze the algorithm in steps. When we want to prove that the
competitive ratio is ¢ then we must show that the adversary gains at most
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c times more than the algorithm gains and we can help us by lending some
“credit” from the potential function. Of course the potential function must
be well-defined—must start and end with the same value, usually zero.

It is obvious that any schedule can be modified to earliest-deadline
schedule. In the earliest-deadline schedule whenever two jobs are pending
at the same time then they occure in the schedule in the order given by their
deadlines—a job with later deadline cannot be processed before another
job with earlier deadline in such schedule. Every schedule can be modified
to be earliest-deadline without change of its profit and without breaking
constraints given by release times, deadlines. Thus we assume without
loss of generality that the adversary’s schedule is earliest-deadline.

Let M be the set of pending jobs in RMIX. Also, by A we denote the
set of pending jobs in the adversary schedule. The jobs are removed from
A either when they are executed, or when a job with a later deadline is
executed.

Define the potential function

i€A-M

Job arrivals and expirations cannot increase the potential. So we only need
to analyze how the potential changes after job execution.
Note a fact foralla > b > 0

a(lna —1Inb) > a—b. (4.2)
Consider a time step ¢t when the adversary executes a job j. The expected
weight gained by RMIX is

k
w= thi(lnvi —Inwviy).

i=1

Notice that (4.2) implies
e

Why S o _ 1w.
Suppose first that j € A — M. Executing j by the adversary, decreases
the potential function by w;. At the same time, one of hy, ..., h; can be

added to A — M, h; with probability Inv; — Inv;;4, increasing the potential
by at most w.
So AP < —w; + w. It follows that

w; + AP <w < w.

e—1
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Now assume that j € M. If w; < wy, /e, then

e

w; + AP <wy, fe+w <wletw= |

w.

So we can assume that w; > wy, /e. Since j € M there exists p such that
Up > Wj > Upt1,
hence
dp, < dj.

By the assumption on the adversary, he will not execute h,, ... h; in the
future, so these are removed from A. The expected potential increase is

then at most
p—1

Z wp, (Inv; — Inwiq).
i=1

Note that
Wp,; (hl Vi — In ’UZ‘Jrl) — (Ui — viJrl) > 0

and obviously

(Vi = Vig1).
So
p—1
w; + Ad < wy, + thi(lnvi —Invy,) =
i=1
p—1
Z (wp, (Inv; —Inwvipq) — (v; —vig1)) + 01
=1
p—1 p—1
= Z wh hl Vi — lnvi+1) — (Ui — ’UZ‘+1>> -+ (’UZ‘ - U@'Jrl) + whp
=1 i=1
p—1 e k
= (Inwv; = Inviy1) — (v; —v; i — Ui
; wp,(Inv; —Inwig) — (v U+1))+6_1;(U Vit1)
e & e
< | 2whi(lnv,~ —Invy,) = Ll
completing the proof.

We have shown that whenever the adversary schedules any job denoted
as w; the profit of adversary plus the average change of potential function
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(loan or refund) denoted as A® is not more then _4; times the average profit
of the RMIX algorithm denoted as w. Obviously the potential function ®
starts end ends with zero value. Thus we have shown that the competitive
ratio of RMIX is —% ~ 1.58.

]

4.6 Uniform jobs scheduling

We consider the following online scheduling problem of unitjobs. Each
job j is specified by (7;,w;), release time r; is integer, weight w; is non—
negative real, unit processing time p; = 1. Deadline d; = r; + s for the
s—uniform jobs.

4.6.1 Randomized lower bounds

In this section we consider s—uniform instances, where d; = r; + s
for each job j. We first prove a lower bound on the competitive ratio of
randomized algorithms which increases with s and tends to 1.25 for large
s. This improves the (deterministic) lower bound of 4 — 21/2 ~ 1.172 from
[38] for s — .

Moreover this implies lower bound 4 — 2v/2 on the competitive ratio
for 2—uniform instances.

Theorem 4.6.1 Let us consider a fixed integer s > 0 and the problem of online
scheduling of s—uniform instances of unit jobs in the randomized model with the
standard profit model.
We define
s—1

2s —1+2Vs2 — s

Then there is no algorithm solving this problem better than R,—competitive.

Ry = 1+

Proof: We use Yao’s minimax principle, in the form applicable to the lower
bounds on the competitive ratios [15]. Following this principle, it is suf-
ficient to give a distribution on instances for which the ratio between the
expected profit of any deterministic online algorithm and the expected
optimal profit is no better than R..

We generate an instance randomly as follows. Fix a large integer n and
leta =1+ /s/(s—1)and p = 1/a. (Note that a = 1 4+ /2 for s = 2 and

a — 2 for s — 00.) Each instance consists of stages 0,1, ..., where in stage
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i we have s jobs of weight o’ released at time si and s — 1 jobs of weight
a'*! released one by one at times si + 1, si + 2, ..., si + s — 1. After each
stage i < n, we continue with probability p or stop with probability 1 — p.
After stage n, if the process has not yet terminated, then at time (s + 1)n,
we release s jobs of weight a"*! and stop.

Fix a deterministic online algorithm A. We compute the expected profit
of Aand the adversary in stage ¢ < n, conditioned on stage 7 being reached.
More precisely, in stage ¢ we include the contributions of jobs scheduled
at times si, si + 1, ..., si + s — 1 plus the expected profit of the jobs that
remain pending at time s(i + 1) in case this is the last stage.

Suppose that A reaches stage i. Let x be the number of jobs with weight
a' executed by A. Then the profit of A is za’ + (s — z)a’t!. In addition,
there are x — 1 pending jobs of weight a*! at the end of the stage, which
contribute if the instance ends by this stage, i.e., with probability 1 — p.
Since the probability of reaching stage i is p’, the expected profit for stage
iis

paa + (s —z)a™ + (1= p)(& = Da"")
= z4+sa—xza+(a—1)(x—1) = 14+ (s—1)a.

Note that this is independent of x and .

We now calculate the expected adversary profit in stage ¢. If we stop
after this stage, the contribution of stage ¢ towards adversary’s profit is
sa'+(s—1)a't!, otherwise itis a' + (s — 1)a’*, so the expected contribution
of stage i is

Pla 4 (s = D™+ (L= p)(s = Da) = 1+ (s = Dfa+1-p).

Summarizing, for each stage, except the last one, the contributions towards
the expected value are constant. The contributions of stage n + 1 are
different, but they are also constant (independent of n). So the overall ratio
will be, in the limit for n — oo, the same as the ratio of the contributions of

stages 0, ..., n, which is (after some calculation)
I+ (s=1)(a+1—-p) R (s —1)(1—p) _ R.
1+(s—1)a 1+(s—1)a

O

Theorem 4.6.2 Let us consider the problem of online scheduling of 2—uniform
instances of unit jobs in the randomized model with the standard profit model.

Then there is no algorithm solving this problem better than ~ 1.172—
competitive.
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Proof: This theorem is special case of Theorem 4.6.1 for s = 2. In this case
we compute Ry ~ 1.172. O

In the following theorem we consider the generalization of the prob-
lem of online scheduling of s—uniform instances of unit jobs, we consider
scheduling of uniform instances of unit jobs. Naturally an instance of unit
jobs is uniform if there exists s such that the instance is s—uniform. Ob-
viously we are looking for the worst competitive ratio over all possible
s.

Theorem 4.6.3 Let us consider the problem of online scheduling of uniform
instances of unit jobs in the randomized model with the standard profit model.
Then there is no algorithm solving this problem better than 1.25—competitive.

Proof: This theorem is special case of Theorem 4.6.1 where we maximize
the competitive ratio over all possible s. Simply we compute

sup Ry = 1.25.
seN

Obviously for any ¢ < 1.25 there exists s such that R, > c. Thus there is no
algorithm for general uniform instances with better competitive ratio than
1.25. O

4.6.2 2-Uniform jobs in deterministic model

We completely solve the 2—uniform case: we give an algorithm with
competitive ratio ~ 1.377 and a matching lower bound. This ratio is strictly
in-between the previous lower and upper bounds from [4]. Our algorithm
is rather technical, which is not really surprising, given the lower bound
of /2 for memoryless algorithms [8]. To our knowledge, the lower bound
of = 1.377 is the best lower bound for the s—uniform case for any s.

We consider 2—uniform instances—in such instances each job j satisfies
d; = r; + 2. Let Q ~ 1.377 be the largest root of Q* + Q* —4Q + 1 = 0.
First, we prove that no online algorithm for this problem can be better than
()—competitive. Next, we show that this lower bound is in fact tight.

Lower bound

The proof is by constructing an appropriate adversary strategy. Given
an online algorithm A, the adversary releases a sequence of jobs on which
the profit of A is less than () times the optimal profit.



62 CHAPTER 4: SCHEDULING

At each step ¢, we distinguish old pending jobs, that is, those that were
released at time ¢t — 1 but not executed, from the newly released jobs. We
can always ignore all the old pending jobs except for the heaviest one, as
only one of the old pending jobs can be executed. To simplify notation,
we identify jobs by their weight. Thus “job ” means the job with weight
z. Such a job is usually uniquely defined by the context, possibly after
specifying if it is an old pending job or a newly released job.

For simplicity, we assume first that the additive constant in the defini-
tion of competitiveness is 0. We show later how this assumption can be
eliminated.

Fix some 0 < € < 2Q) — 2. We define a sequence V¥;, ¢ = 1,2,..., as
tollows. Fori =1, ¥; = @) — 1 — e. Inductively, for i > 1, let

2-QV;— (@—1)
22— Q-w,

\I’z‘+1 =

Lemma 4.6.4 For all i, we have |V;| < ) — 1. Furthermore, the sequence {\W,}
converges to 1 — Q).

Proof: Substituting z; = ¥; + () — 1, we get a recurrence z;; = %
Note that z; = 2Q) — 2 — eand that 0 < z; < 2Q) — 2 — e implies

Thus, by induction, 0 < z; < 2Q—2—eforalliand, furthermore, lim; . z; =
0. The lemma follows immediately. O

Theorem 4.6.5 Let us consider the problem of online scheduling of 2—uniform
instances of unit jobs in the deterministic model with the standard profit model.

Then there is no algorithm solving this problem better than () ~ 1.377—
competitive.

Proof: Let A be some online algorithm for the 2—uniform case. We develop
an adversary strategy that forces A’s ratio to be bigger than ) — e.
Let U, be as defined before Lemma 4.6.4. For : > 1 define
1 - RE2-Q-)

a; = and b, =

Q-1 (@Q—1)

By Lemma 4.6.4, for all i, b; > a; > 1 and, for large i, a; ~ 3.653 and
b; ~ 9.688.
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Our strategy proceeds in stages. It guarantees that at the beginning of
stage © = 1,2, ..., both A and the adversary have one or two old pending
job(s) of the same weight z;. Note that it is irrelevant if one or two old
pending jobs are present, and also if they are the same for A and the
adversary.

Each stage ¢ > 1 except last consists of three time steps. The last stage
can consist of one, two, or three steps. We will also have an initial stage
numbered 0 that consists of one time step.

Initially, in stage 0, we issue two jobs of some arbitrary weight z; > 0 at
time 0. Both A and the adversary execute one job z;, and at the beginning
of stage 1 both have an old pending job with weight x;.

At the beginning of stage i > 1, A and the adversary start with an old
pending job x;. The adversary now follows this procedure:

issue one job a;x;
(A) if Aexecutes a;r; t hen execute z;, a;x; and halt
el se (A executes x;)
at the next time step issue b;x;

(B) i f Aexecutes b;z; t hen execute z;, a;x;, b;z;, and halt
el se (A executes a;r;)
©) at the next time step issue two jobs ;1 = b;z;

execute a;x;, b;x;, b;x;

If A executes first x; and then a,;z;, then after step (C) it executes one
job b;x;, either the old pending one or one of the two newly released jobs.
After this, both A and the adversary have one or two newly released jobs
b;z; pending, and the new stage starts with x;; = b;z;.

A single complete stage of the adversary strategy is illustrated in Fig-
ure 4.1.

If the game reaches stage i, then define profit, and adv; to be the total
profit of A and the adversary, respectively, in stages 0, 1, ..., ¢ — 1. By p
we denote the sequence of all jobs released by the adversary.

Claim A: For any i, either the game stops before stage i and the al-
gorithm fails to be () — €¢)—competitive on the input sequence p, ie.,
(Q — e)profit ,(p) — adv(p) < 0, or else at the beginning of stage i we have

The proof of Claim A is by induction on the number of stages. For
i =1,(Q — ¢)profit, — adv, < (Q — € — 1)x; = ¥ 2, and the claim holds.

In the inductive step, suppose that stage ¢ has been reached and is
about to start. Thus now 4 and the adversary have an old pending job
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Figure 4.1: The adversary strategy. We denote v = z;, a = a;, and b = b;.
Line segments represent jobs, dark rectangles represent slots when the job
is executed by A, and lightly shaded rectangles represent executions by
the adversary.

with weight z; and (4.3) holds. If A executes a;z; in step (A), then, denoting
by p the sequence of all released jobs (up to and including a,z;), using the
inductive assumption, and substituting the formula for a,;, we have

(Q = e)profit () — adv(p) = (Q — profit, — adv; + (Q — e)aza
—(z; + a;z;)
S [\I]z -1+ (Q — € — 1)al]xl = —ea;r; < O,
as claimed.
If A executes z; and then b,z; in (B), then, again, denoting by p the

sequence of all released jobs, using the inductive assumption, and substi-
tuting the formulas for a;, b;, we have

(Q — e)profit \(p) — adv(p) = (Q — e)profit, — adv; + (Q — €)(w; + bizy)
—(372‘ + a;x; + bll’l)
In the remaining case (C), A executes first z;, then a;z;, and then b;z;.

Using the formulas for a;, b;, ¥;;1, and the defining equation Q* + Q2 —
4Q) + 1 =0, we have

(Q — e)profit, | — adviy, < (Q — e)profit, — adv,
+(Q — €)(x; + ajx; + biz;) — (ax; + 2bx;)
< Wi+ Q+(Q—1)ai — (2 - Q)b
= 0iVinr; = i1 Vi
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This completes the proof of Claim A.

Lemma 4.6.4 and Claim A imply that, for i large enough, we have
(Q — e)profit, — adv; < V;z; < (1 — Q + €)z;. For this i, if the game has
not stopped earlier, the adversary ends it after stage i. Denoting by o the
sequence of all jobs (including the pending jobs z;), we have

(Q — e)profit ,(0) — adv(o) = (Q — e)profit, — adv; + (Q — €)x; — x;
< 1-Q+ée&x;+(Q—¢€)x; —x; = 0.

This completes the proof of the lemma, except that in the argument so
far we assumed that the additive constant is 0. This assumption is easy
to eliminate: For any given additive constant B, simply choose the initial
job 1 > B. The remainder of the proof is a simple modification of the
presented argument. O

Upper bound

We now present our ()-competitive algorithm for the 2—uniform case.
Given that the 2—uniform case seems to be the most elementary case of
unit job scheduling (without being trivial), our algorithm (and its analy-
sis) is surprisingly difficult. Recall, however, that, as shown in [8], any
algorithm for this case with competitive ratio below /2 needs to use some
information about the past. Further, when the adversary uses the strategy
from Theorem 4.6.5, any ()-competitive algorithm needs to behave in an
essentially unique way. Our algorithm was designed to match this optimal
strategy, and then extended (by interpolation) to other adversarial strate-
gies. Thus we suspect that the complexity of the algorithm is inherent in
the problem and cannot be avoided.

We start with some intuitions. Let A be our online algorithm. Suppose
that at time ¢ we have one old pending job z, and two new pending jobs
b,c with b > ¢. In some cases, the decision which job to execute is easy.
If ¢ > z, A can ignore z and execute b in the current step. If = > b, A can
ignore c and execute z in the current step. If c < z < b, A faces a dilemma:
it needs to decide whether to execute z or b. For ¢ = 0, the choice is based
on the ratio z/b. If z/b exceeds a certain threshold (possibly dependent on
the past), we execute z, otherwise we execute b. Taking those constraints
into account, and interpolating for arbitrary values of ¢, we can handle all
cases by introducing a parameter 7, 0 < < 1, and making the decision
according to the following procedure:

Procedure CHOOSE,: If z > nb+ (1 — n)c schedule z, otherwise schedule b.
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To derive an online algorithm, say .4, we need to determine what values
of 1 to use at each step. To this end, we examine the adversary strategy
in the lower bound proof. Consider the limit case, when i — oo, and let
a, = lim; o a; = Q/(Q — 1) and b, = lim; .o, b; = Q/(Q — 1)%

Suppose that in the previous step two jobs z were issued. If the ad-
versary now issues a single job a, then A needs to do the following: if
z > a/a,, execute z, and if z < a/a,, then execute a. (The tie for z = a/a,
can be broken either way.) Thus in this case we need to apply CHOOSE,
with the threshold o = 1/a, = (Q — 1)/Q.

Now, suppose that in the first step .4 executed z, so that in the next step
a is pending. If the adversary now issues a single job b, then (assuming in
the previous step the optimal value of a ~ a, was used) A must to do the
following: if a > b/b,, execute a, and if a < b/b,, then execute b. Thus in
this case we need to apply CHOOSEg with the threshold § = a. /b, = Q — 1.

Suppose that we execute a. In the lower-bound strategy, the adversary
would now issue two jobs b in the next step, in which case we can use
n = a. But what happens if he issues a single job, say ¢? Calculations show
that A, in order to be ()—competitive, needs to use yet another parameter
n in CHOOSE,.. This parameter is not uniquely determined, but it must be
atleasty = (3 —2Q)/(2 — Q) > @ — 1. Further, it turns out that the same
value v can be used on subsequent single—job requests.

Our algorithm is derived from the above analysis: on a sequence of
single—job requests in a row, use CHOOSE,, with parameter « in the first
step, then (3 in the second step, and v in all subsequent steps. In general,
of course, two jobs can be issued at each step (or more, but only the
two heaviest jobs need to be considered). We think of an algorithm as a
function of several arguments. The values of this function on the boundary
are determined from the optimal adversary strategy, as explained above.
The remaining values are obtained through interpolation.

We now give a formal description of our algorithm. Let

a = %zOQ?, B=0Q-1~038  ~ = 32__25 ~ 0.39,
A =min {1522 009 = pat (=Wl + (- HNOL

where 0 < < 1and a < ¢ < 4. Note that for the parameters p, £ within
their ranges, wehave 0 < A(§) < 1, < (i, &) < . Function ¢ also satisfies

0(1,8) =0, 6(0,&) > Bforany ¢, and 6(0, ) = 3, 6(0,3) = 6(0,7) = 7.

Algorithm SwITCH. Without loss of generality, we assume that at each
step exactly two jobs are released. If more jobs are released, consider only
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the two heaviest jobs. If fewer jobs are released, create dummy jobs with
weight 0.

Fix a time step t. Let b, c (Where b > c) be the two jobs released at time
t, and u, v (where u > v) be the two jobs released at time ¢ — 1. (Initially, at
t=0letu=v=0.)

We distinguish two cases. If u = v, or if u was scheduled at time ¢ — 1,
then run the job selected by CHOOSE,. (Note that this includes the case
t = 0.) Otherwise, denoting by ¢ the parameter of CHOOSE, executed at
time ¢ — 1, run the job selected by CHOOSE,, for n = 6(v/u, §).

Theorem 4.6.6 Let us consider the problem of online scheduling of 2—uniform
instances of unit jobs in the deterministic model with the standard profit model.
Above we described algorithm SWITCH.

The algorithm SWITCH solves this problem and it is () ~ 1.377—competitive,
where Q) ~ 1.377 is the largest root of Q> + Q? — 4Q + 1 = 0.

Proof. The analysis of the 2—uniform case is based on the potential function
argument. We define below a potential function ¢ that maps all possible
configurations into real numbers, and we prove a bound on the amortized
cost of the algorithm in each step.

We fix an adversary schedule to be a canonical optimal schedule. Thus
if the adversary schedules both jobs released at the same time, then the
heavier one is scheduled first.

The configuration at time ¢ is specified by the parameter £ of CHOOSE;
used at time ¢ — 1, the jobs u > v released at time ¢ — 1, and the pending
jobs z,y € {u,v} of the algorithm and the adversary, respectively, at time
t. (Fort =0wesetu =v ==y =0and ¢ = a.) We denote the potential
at time ¢ by ®,,(u, v, ), and define it as follows:

E = 2-@Q° = a(Q—1) ~ 0.104,
G = 2(Q—-1)—1/Q ~ 0.028,
Py (u,v,8) = y—Qu,
D (u,v,8) = E-ANE)(u+w),
Py (u,v,§) = (@ —1v—(G-AE)+1/Q)u.

We now consider a single step at time ¢. Let b and c be the jobs released
at time ¢, where b > c. Let 7 denote the parameter of CHOOSE used at time
t, and let «’,y’ € {b, c} denote the pending jobs of the algorithm and the
adversary att+ 1, respectively. The potential at time ¢t +1is ®,/,/(b, ¢, 7); we
refer to it as the ‘new potential” as opposed to the ‘old potential” ®,, (u, v, &)
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at time ¢. The rest of this section is devoted to the proof of the following
inequality:

I' = &,(u,v,8) + Q- Aprofitsye — Aadv — Py (b, c,n) > 0, (4.4)

where Aprofitsy, and Aadv are the profits of the algorithm and the ad-
versary at time ¢. It is sufficient to prove inequality (4.4), because the
()—competitiveness of the algorithm follows immediately from (4.4) by
summation over all times ¢ and observing that ®,,(0,0,¢) = 0, i.e., the po-
tential is zero on configurations with no old pending jobs, which includes
the initial and final configurations.

We are now ready to prove (4.4) by a case analysis. During the proof, we
need to verify number of relations between the constants we have defined
so far. In most cases a rough calculation based on the numerical values
given above is sufficient due to some slack; we explicitly mention the cases
when the relations are tight.

Case 1: Suppose that v is pending for SWITCH at time ¢. Thus the old
potential is ®,,(u,v,{) = y — Qu, and SWITCH applies CHOOSE,, at time t.
This also means that A(n) = A(a) = 0.

Case1.1: If v < ab+ (1 — «a)c then SWITCH schedules b and has 2/ = ¢
pending at time ¢ + 1.

If the adversary schedules y, it has y' = b pending at time ¢ + 1, the new
potential is @, (b, ¢, &) = b — Qc, and we get

I'=(y-Qu)+Qb—y—(0—-CQc) = (@-1b+Qc—Qu = 0,

where the last inequality follows from the case condition, after substituting

a=(Q-1)/Q.
Otherwise, the adversary schedules b, it has ' = ¢ pending at time ¢ +1,
the new potential is ®..(b, ¢, ) = (1 — Q)c, and using y > v we get

' > w—-Qu)+Qb—b—(1-Q)c = (Q—1)(b+c¢)—(Q—1)v > 0,

where the last inequality follows from the case condition, after substituting

a=(Q-1)/Q.

Case1.2: If v > ab+ (1 — a)c then CHOOSE,, schedules v and has 2’ = b
pending.

If the adversary schedules y, it has 4’ = b pending at time ¢ + 1, the new
potential is ®4,(b, ¢, @) = 0, and we get

['=(y—-Qu)+Qu—-y = 0.
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Otherwise, the adversary schedules b, it has y' = ¢ pending at time ¢ + 1,
the new potential is ®.(b, ¢, ) = (Q — 1)c — b/Q, and using y > v we get

D> (0-Qu+Qu-b—(Q-1)c—b/Q) = v—ab—(Q—1)c = 0,
where the last inequality follows from () —1 < 1 —a and the case condition.

Case 2: In this case v > 0 is the pending job for SWITCH at time ¢, and at
time ¢t SWITCH applies CHOOSE,, where n = §(v/u, &). The old potential is
D,y (u,v,&). To reduce the number of subcases, we first note that

Dy (u,v,8) > Puylu,v,§). 4.5)

Indeed, after substituting, this is equivalent to ((E + G)A(§) + 1/Q)u >
(Q—1—E-X&))v. Since A(§) > 0 and u > v, it is sufficient to verify that
1/Q > @ — 1, which is true.

Since I is a linear function of job weights and, when the job weights
are rescaled, ) as well as other coefficients do not change, we may assume
that v = 1. It is also convenient to define [ = A({). Recapitulating the
definitions, we have

L= A¢) = min{lL, (€ - a)/(F - a)},
n = 1wl =vat+1=v)@B+ =0 = i)

The function A(¢) increases from 0 to 1 as £ increases from « to /3, and is
equal to 1 for ¢ > . Thus 0 <! < 1. The function 7(v, [) is non-increasing
in v and non—-decreasing in [ in the whole domain of v and /. Furthermore,
a<n(v,l) <7y n(l1)=a and n(0,1) = 3.

In each case of the analysis we need to minimize a linear function of b
and c subject to 0 < ¢ < band nb + (1 — n)c = 1. Since the feasible domain
is a line segment, the minimum must be attained at one of the endpoints
which are b = c=1and b = 1/n, ¢ = 0. Thus the minimum can be found
by comparing these two values of the investigated linear function.

Case2.1: 1 < nb+ (1 — n)c and thus SWITCH schedules b.

Case 2.1.1: The adversary schedules y = v = 1. Using v > 0, we bound
the old potential as ®,,(u,v,§) = Py (u,v,§) > E - . The new potential is
(b, c,n) = b — Qcand we get

I' > E-l4+Qb—1—(b—Qc)

= F-l-1+(Q—-1)b+Qc (4.6)
> E-1—1+(Q—1)/n (4.7)
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Thelastinequality is justified as follows: expression (4.6) is a linear function
of b, ¢, increasing in both b and c. From the case condition and b >
¢ > 0 it follows that (4.6) decreases when b and/or ¢ are decreased until
nb + (1 —n)c = 1, and under this constraint, () — 1)b + Qc is minimized
for b = 1/n, ¢ = 0. At the other endpoint of the feasible region, i.e., at
b = c =1, the value is larger, since 2Q — 1 > (Q — 1)/a > (Q — 1)/n.

Now (4.7) is minimized for v = 0, because = §(v,§) is decreasing
in v. We substitute v = 0 in (4.7), multiply by 7(0,[), and substitute the
definition of (0, ) to obtain

E- 1B+ (=8 —-B—-(—-p)I+Q—1

>
> E-f-f-(y-pl+Q-1
> 0.

n(0,0)-T

The final inequality holds since 3 = Q—1and E-3 > v— (. Thisholds, since
E-3>0.037and v — 3 < 0.02, including the rounding errors. Alternatively,
substituting the definitions of E, 3, and v, the inequality reduces to a
degree—4 polynomial inequality in ) which, using the definition of (), can
be reduced to degree-2 inequality 7Q* — 6Q — 5 > 0, that can be verified
using again the definition of Q).

Case 2.1.2: The adversary schedules y = v. Using [ < 1 and the definition
of G, the old potential is bounded by ®,,,,(u, v, &) = @y (u,v,8) = (Q—1)v—
G-1-1/Q > (Q—1)v—2(Q —1). The new potential is @ (b, c, ) = b— Qc.
We bound the linear function of b and c exactly as in the previous case to
obtain

I = (@-1o—2Q-1)+Qh—v—(-Q)
~Qu-2AQ -1+ (@ b+ Qe
~Qu-2Q-1)+(@Q-1/n

We now notice that = 7(v, ) is increasing with [, thus it is sufficient to
substitute the value of 7 for [ = 1. In this case we get after multiplying by
n(v, 1) and substituting its value

nw,1)-T" = —(aw+ 1 -0)y)((2-Qu+2(Q—1))+(Q - 1).

For v = 1, the right-hand side is equal to 0. To conclude that I' > 0, it is
sufficient to show that the right-hand side decreases for v € [0, 1]. Itis a
convex quadratic function (as v > «), thus it is sufficient to verify that its
derivative at v = 1 is at most 0. The derivative is (v — «)((2 — Q)v + 2(Q —
1)) — (aw + (1 —v)y)(2 — @), which at v = 1 equals 7@ — 2a < 0.

—(2
—(2

v
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Case 2.1.3: The adversary schedules b. Using (4.5), v > 0,1 < 1, and the
definition of G the old potential is bounded by @, (u, v,§) > ®,,(u, v, &) >
—G —1/Q = —2(Q — 1). The new potential is ®..(b,c,n) = (1 — Q)c. We

have

=
v

2Q-1)+Qb-b-(1-Q)c
= (Q@-1)(b+c—2)
> 0.

To justity the last inequality, note that, given the case constraint, b + c is
minimized at b = ¢ = 1, as the value at b = 1/n, ¢ = 0 is larger, since
2<1/y<1/n

Case 2.2: Suppose that 1 > nb + (1 — n)c. Then SWITCH executes u = 1.

Case 2.2.1: The adversary schedules y = u = 1. The old potential
is bounded by ®,,(u,v,§) = Pyu(u,v,§) > 0 and the new potential is
Duy(b, e.m) = B - A()(b + ¢). We get

r Q—1—FE-Xn)(b+c)

>
> Q—1-E-Xn)/n.

The last inequality follows since b+ c is maximized whennb+ (1 —n)c =1,
using the case condition. Under this restriction, it is maximized when
b=1/n,c=0, as the value for b = ¢ = 1 is smaller because 1/n > 1/v > 2.

Using the definition of ), the value of A\(n)/n is maximized for n = 3,
where A\(n)/n=1/3. Thus' > Q —1— E/3 > 0.

Case 2.2.2: The adversary schedulesy = v. Using ! < 1and the definition of
G, the old potential is bounded by @, (u, v, &) = @y (u,v,€) = (Q—1)v—-G-
[—1/Q > (Q—1)v—2(Q—1). The new potentialis ®y;, (b, ¢, n) = E-A(n)(b+c).
We bound the linear function of b and ¢ exactly as in the previous case to
obtain

' > Q@Q-1Hv-2Q-1)+Q —v—EXn)D+c)
> <2—@><1—v>—E'TM">
> (2_@(1_@)_%, (4.8)

where the last inequality follows from 1 > « and the definition of A\. The
right-hand side of (4.8) is linear in v, since = 7(v, [) is a linear function of
v. Thus it is sufficient to verify that (4.8) is non-negative for v € {0,1}. For
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v =1, itis equal to 0. For v = 0, we use 7 < ~y and the whole expression is
at least B( )
V-«

SRy
To verify the last inequality numerically, note that £/a = Q — 1 < 0.4,
so it is sufficient to check that (y — a)/(8 — a) < 1.5. Alternatively, the
inequality can be verified by substituting the definitions of the parameters
in terms of @ and reducing it to 5Q* — 12Q + 7 < 0, which holds by the
definition of Q.

> 0.

Case 2.2.3: The adversary schedules b. Using inequality (4.5), the old po-
tential is bounded by ®,,(u,v,§) > @y (u,v,8) = (Q —1)v -G -1 —-1/Q.
The new potential is ®y.(b, ¢, n) = (Q — 1)c — (G - A(n) + 1/Q)b. We have

I > @Q@-1)r-G-1-1/Q+Q—(1-G-An)—1/Q)b—(Q —1)c.

The expression on the right-hand side is a linear function of b and c. We
claim that it is minimized at b = 1/, ¢ = 0. Indeed, subtracting its value
atb=1/n,c=0, from the valueat b = ¢ = 1, we get

(I=G-An)—1/Q)(1/n-1)=(Q-1) = (1-G-1/Q)(1/y—1)=(Q—-1) = 0,

where we use A(n) < 1 and n < 7 in the inequality, and the last equality
follows from the definitions of G and . Thus, after substituting b = 1/n
and c = 0, and multiplying by 7,

n-I' > n-(Q-1Dv-G-1-1/Q+Q)—1+G-\(n)+1/Q. (4.9)

We want to show that the right-hand side of (4.9) is non—negative.
Ifn > (3, then A(n) = 1, and by the definitions of G and 7, the right-hand
side of (4.9) is equal to

va+ (1 =v)(+ 0 =DIQ-Nv-G-1-1/Q+Q) - (3-2Q).

This is a concave quadratic function in v, so it is sufficient to verify that
it is non—negative for v € {0,1}. For v = 1, the function is decreasing
with [, so it is minimized at [ = 1 and the value is @ — (3 — 2Q)) > 0. For
v = 0, the function is a concave quadratic function in [, so it is sufficient
to verify that it is non-negative for [ € {0,1}. For [ = 0 the value is
B(—1/Q+ Q) —(3—2Q),and for [ = 1itis v(2 — Q) — (3 — 2Q). Both values
are equal to 0, by the definitions of 3, v, and Q.

It remains to verify that (4.9) is non—negative when n < 3. In this case,
the right-hand side of (4.9) is equal to

n-(Q@-1v-G-1-1/Q+Q) - 1+1/Q+ G- (n—a)/(F—a). (410)
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For each [, n(v,l) is continuous and decreasing in v from 7(0,1) > [ to
n(1,l) = o < 3, so there is unique v = v; for which 7n(v,l) = 3. The
expression (4.10) is again a concave quadratic function in v, and we know
that it is non—negative at v = v; from the analysis of the previous case. As
in this sub—case we have v; < v < 1, it remains to verify that (4.10) is non-
negative forv = 1. In this caseits valueis a(2Q—-1-G-I-1/Q)—1+1/Q) > 0,
using [ < 1 and the definition of G.

We have now examined all cases, completing the proof of inequality
(4.4), and thus also the proof of Theorem 4.6.6. O

4.7 Bounded jobs scheduling

We consider the following online scheduling problem of unitjobs. Each
job j is specified by (r;, d;, w;), release time r; is integer, deadline d; is inte-
ger, weight w; is non—negative real, unit processing time p; = 1. Deadline
d; < r; + s for the s-bounded jobs.

In this section we present results related to the problem of scheduling
of s-bounded jobs in deterministic and randomized model. These results
are product of our joint research with other co—authors.

4.7.1 2-Bounded instances in randomized model

In this section we give a randomized algorithm for 2-bounded instances
with competitive ratio 1.25. This matches the lower bound from [20], and
thus completely resolves the 2-bounded case. In addition, our algorithm
is memoryless.

For a,b > 0, define

1 ifa>b
Dab = .
2 otherwise

Also, let g, = 1 — pgy. Note that p,, satisfies the following properties for
any a,b > 0:

Spaa > 4a—b (4.11)
5(pava + qapb) > 4b (4.12)
Spapa + 2qupb > 4a (4.13)
SPap@ + 2qapb > b (4.14)
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Algorithm R2B. Let a and b denote the heaviest jobs of span 1 and span
2, respectively, released at this time step, and c the heaviest pending job
(of span 2) issued in the previous step. Let v = max(c, a). Execute u with
probability p,, and b with probability g,.

Theorem 4.7.1 Let us consider the problem of online scheduling of 2—bounded
instances of unit jobs in the randomized model with the standard profit model.
Above we described algorithm R2B.

The algorithm R2B solves this problem and it is 1.25—competitive.

Proof: Without loss of generality, we can assume that at each step exactly
one job of span 1 is released. All jobs of span 1 except the heaviest one
can be simply ignored, and if no job is released, we can introduce a job of
weight 0. Similarly, we can assume that at each step (except last) exactly
one job of span 2 is released. This can be justified as follows: If, at a
given time ¢, the optimal schedule contains a job of span 2 released at ¢, we
can assume that it is the heaviest such job. A similar statement holds for
Algorithm R2B, since its decision at each step depends only on the heaviest
job of span 2. Thus all the other jobs of span 2 can be ignored in this step,
and treated as if they are released with span 1 in the following time step.

At a given step, the state of R2B is given by a pair (z, o), where z is the
job of span 2 released in the previous step, and ¢ is the probability that
was executed in the previous step. Denote by ¢ = 1 — ¢ the probability
that z is pending in the current step. In other words, the value of c in the
algorithm is 0 with probability ¢ and = with probability 7. To describe the
state of the adversary, let z € {0, 2} be a variable such that z = x if the
adversary has not scheduled z (i.e., z is pending in the adversary schedule)
and z = 0 if the adversary has no pending job.

We define the potential function for each configuration described by a
triple (z, 0, z). Note that this slightly deviates from the use of the potential
method in the randomized case, as discussed after Lemma 4.4.1. In our
case, the potential is a function of the distribution of R2B’s current state,
and is not a random variable. Nevertheless, Lemma 4.4.1 still applies.

Let ©,,. denote the potential function in the configuration (x, o, z). We
put ®,,. = 0if 2 = 0and ®,,, = 1z - max(50 — 1,30) if z = z.

Consider one step, where the configuration is (z, o, z), for z € {0,z},
and two jobs a, b are released, of span 1 and span 2, respectively. The new
configuration is (b, o', 2'), where ¢’ = 0qu + ¢, for v = max(a, z), and
2" € {0,b}. Using Lemma 4.4.1, we need to show that for each adversary
move:

R - Exp[Aprofit,, | — Pporr + Py, > Aadv (4.15)
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where Aprofit,, is the weight of the randomly chosen job scheduled by R2B
and Aadv the weight of the job scheduled by the adversary.

Case 1: Adversary schedules b. Then Aadv = b and 2’ = 0. For a fixed
value of v in the algorithm, the expected profit of the algorithm is p,u+ g0
and (4.12) implies 2(p,u + qub) > b. By averaging over u € {a,v} we
get R - Exp[Aprofit,, | > b. This, together with ®,,. > 0 and 4, = 0,
implies (4.15).

Case 2: The adversary does not schedule b. Then 2’ = b and ®,/.y = ib .
max(50'—1,30’). The algorithm executes b with probability og.,+6g., = o,
a with probability op., and v with probability op.,, so Exp[Aprofit,, | =
0'b+ opapa + Gpyyv. Substituting into (4.15), it is sufficient to prove that

min(b, 20'b) + 50papa + 55pupv + 4 - Dpp. > 4 - Aadv 4.16)

Case 2.1: The adversary schedules a. Then Aadv = a < v. Since ®,,, > 0,
it is sufficient to show (4.16) with @, replaced by 0. For the first term of
the minimum, we use (4.11) twice and get

b+ 50pwa + 5apwv = o(b+ dpwa) + (b + Spwv)
> 4doa+ 4ov > 4a.

For the second term of the minimum, we use (4.13) twice and get

20'0 4 50papa + 5pv = 0 (5papa + 2qapd) + o (5pupv + 2¢ub)
> 4doa+ 4ov > 4a.

Case 2.2: z = z and the adversary schedules z. It must be the case that
v = x > a, as otherwise the adversary would prefer to schedule a. We
have Aadv = .

If z > b, then p,, = 1. We use 4®,,,, = 4®,,, > (50 — 1)z and obtain

5Pt + 4Py, > Hox + doxr — x = 4x,
which implies (4.16).
It remains to consider the case z < b. Using (4.11), (4.14) and (4.13) we
obtain
b+5pmr > b+a(de —b) = ob+4ox
and
20'b + 50papa + 55ppr = 0(5papa + 2qub) + 7 (5pa + 2qupb)
> ob-+4ox
Together with 4®,,,, = 4®,,, > 30z and = < b this implies
min(b, 20'b) + 5opapa + 55papr + 4V, > ob+ 4cx + 3ox > 4,

and (4.16) follows. O
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4.7.2 s-Bounded instances in deterministic model

The 2-bounded (deterministic) case is now well understood: there
exists an online algorithm with competitive ratio ¢, and no better ratio
is possible [4, 20, 5]. In this section, we extend the upper bound of ¢ to
3-bounded instances by proving that Algorithm EDF,_; is p—competitive.

Algorithm EDF,: Let h be the heaviest pending job and f be the earliest-
deadline pending job such that w; > aw,. Execute f.

Theorem 4.7.2 Let us consider the problem of online scheduling of 3—bounded
instances of unit jobs in the deterministic model with the standard profit model.
Above we described algorithm EDF,,.

The algorithm EDF,,_; solves this problem and it is ¢—competitive.

Proof: We fix a canonical earliest-deadline adversary schedule A. Let £ be
the schedule computed by EDF,,_;. We use the following charging scheme:
Suppose that j is the job scheduled by the adversary at time ¢. If j is
executed in E before time ¢, charge j to its copy in E. Otherwise, charge j
to the job in E scheduled at time ¢.

Fix some time step ¢. Let f and j be the jobs scheduled at time ¢ in ' and
A, respectively. By the definition of EDF,4_;, let i be the heaviest pending
job in E at time ¢, and let f be the earliest-deadline job that is pending at
time ¢ and satisfies w; > (¢ — 1)wy, = wy/¢.

Job f receives at most two charges: one from j and one from itself, if
[ is executed in A at some later time. Ideally, we would like to prove that
the sum of the charges is at most ¢w;. It turns out that in some cases this is
not true, and, if so, we then show that for the job g scheduled by £ in the
next step, the total of all charges to f and g is at most ¢(w; +w,). Summing
over all such groups of one or two jobs, the ¢—competitiveness of EDF;_;
follows.

If f receives only one charge, it is at most ¢wy: If this charge is from f,
it is trivially at most w;. If the charge is from j (not scheduled before ¢ in
E), then j is pending at ¢ in £ and thus w; < w;, < ¢wy, by the definition
of EDF,4_;. In this case the group consist of a single job and we are done.

It remains to handle the case when f receives both charges. In this case,
obviously, 7 # f and j is pending in E at time ¢. Since in the canonical
earliest-deadline schedule A job j is strictly before f, yet f is chosen by
EDF,_4, it follows that w; < (¢ — 1)wy,.

If wy = wy, then f is charged at most wy + w; < (1 + ¢ — 1w, = Jwy,
and we have a group with a single job again.
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Otherwise, w; < wy, and by the rule of EDF,_, it follows that d;, > d;.
Furthermore, since the adversary does not schedule f at time ¢, we have
dy > t + 2. The span is bounded by 3, and thus the only possible case is
that d, = t + 3 and dy = ¢t + 2. Thus the adversary schedules f at time
t+ 1. The weight of the job g scheduled at time ¢ + 1in Eisw, > (¢ —1)wy,
as h # f is still pending in E. Furthermore, g gets only the charge from
itself, as the adversary at time ¢ + 1 schedules f which is charged to itself.
The total weight of the jobs charged to f and g is at most w; + wy + wy, <
(¢—1)wp+ws+wy, < 3(wy+w,), since both wy and w, are atleast (¢ — 1)wy,.
In this last case we have a group of two jobs. U

A more careful analysis yields an upper bound of 2 — ©(1/s) on the
competitive ratio of EDF, on s-bounded instances, for an appropriately
chosen a.. More precisely, for each s > 4, let A, be the unique non—negative
solution of the equation

(2= A)(A2 + EJ )\S+s—2—2EJ) — A2

Theorem 4.7.3 Let us consider a fixed integer s > 4 and the problem of online
scheduling of s—bounded instances of unit jobs in the deterministic model with
the standard profit model. Above we described algorithm EDF,. Constant A is
defined above.

Then the algorithm EDF, 5, solves this problem and it is \,—~competitive.

Proof: Throughout the proof, we write A instead of \,. For any time ¢, let M,
be the maximal weight of a job available to EDF, , at time ¢; define M, = 0
if no job is available.

First we show that we can restrict ourselves to instances where all the
jobs have weights A\’ for some integer . For these instances, however, we
assume that the algorithm has no control over how the ties are resolved,
and given two jobs of equal weight, the adversary can dictate which one
should be considered heavier. Still, the ties are resolved in a consistent
manner for both algorithms. More precisely, a valid run for such instances
is defined so that at each time step, we schedule the earliest deadline job
(applying our usual tie-breaking convevntion) from the set of pending jobs
that contains all jobs with weight strictly bigger than )/, /) and an arbitrary
subset of jobs (chosen by the adversary) with weight equal to M; /.

Claim A: Without loss of generality, it is sufficient to prove the theorem
for valid runs on instances where all the jobs have weights of the form X/,
for some integer 1.
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Call a job bad if its weight is not equal to A\’ for an integral i. Now we
show that any instance with some bad jobs can be converted to an instance
with a smaller number of bad jobs and with the same or larger competitive
ratio on some valid run. Express each weight of abad job j asw; = a;\% for
integrale; and 1 < a; < A. Letb,;, = min;(a;—1) and b,,,, = min;(A—a;) (the
minima are taken over all bad jobs j). Now replace the weight of each bad
job j by (a; +b)A%, for some b € [—bpn, byy)- From the definition of b,,, and
b, it follows that the order of the weights of jobs does not change, as well
as the result of comparisons of one weight to another weight divided by A,
except possibly for creating new ties. Consequently, any valid run on the
original instance is also a valid run on the new instance, and the set of jobs
scheduled in the original optimal solution gives also an optimal solution
of the new instance. As the total weights of jobs scheduled both in the
valid run and the optimal schedule are linear in b, their ratio is monotone
in [—bu, bnex) and thus it is maximized either for b = —b,,, or b = b,,,.
Choose the appropriate b of these two possibilities and the corresponding
modified instance. By the definition of b,,, and b,,,, the number of bad jobs
has decreased. After repeating this process a sufficient number of times
we will convert the initial instance into one without bad jobs, and the ratio
between the weight of the optimal schedule and the weight of EDF;,\’s
schedule will not decrease. This completes the proof of Claim A.

Fix a valid run of EDF, ) on an instance with no bad jobs and denote the
resulting schedule by £. At any time ¢, either a job of weight M, or M;/\
is scheduled. If a job of weight M;/) is scheduled, the job with weight
M, remains pending at time ¢ + 1 (if its deadline were ¢ + 1, the valid run
would schedule such a job at time ¢); thus in this case we have M, ; > M,.

Fix an earliest-deadline adversary schedule A. We define the charging
scheme as follows. For any integer time ¢, let j be the job scheduled at ¢ in
A and f be the job scheduled in E. If j is completed in E before time ¢ and
w; > M,, charge j to j in E. Otherwise, charge j to f in E.

By the charging scheme, each job f in £ receives at most two charges.
Denoting by ¢ the time when f is scheduled in E, f can receive a charge
from the job scheduled in A at time ¢, and also from itself, if f is scheduled
in A at or after time ¢.

It remains to prove that the charging scheme works correctly. The idea
is similar to the proof of Theorem 4.7.2. We partition £ into segments such
that in each segment the total of all charges to the jobs in the segment is
at most \ times their total weight. Summing over all such segments, this
will imply A-competitiveness of EDF, 5. Therefore, to complete the upper
bound proof, it is now sufficient to prove the following claim.
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Claim B: Schedule E canbe partitioned into disjoint contiguous segments
of jobs such that in each segment the total of all charges to the jobs in the
segment is at most A times their total weight.

We now prove Claim B. Let f be ajob scheduled in F at time ¢t. We start
by some general observations.

(I) If f receives only one charge, then this charge is at most A times its
weight. If this charge is from f in A, it is trivially at most w;. Oth-
erwise, this charge is from a job j scheduled at time ¢ in A. If j is
scheduled before ¢ in F, the charge is at most M; < Aw; by the defini-
tion of the charging scheme. If j is not scheduled before ¢ in E, then
j is pending at ¢ in £ and thus w; < M; < Awy, by the definition of
EDF, Y

(II) If f receives both charges, the charge from the job j scheduled in A at
time ¢ is at most M;/\. It could be more only if j is not scheduled
before t in £ and w; > M,;/\. In that case, however, j is pending
for EDF;/, and has sufficiently large weight. In A, both j and f are
pending at ¢ and the adversary selects j. Since the ties are broken
consistently, EDF must also prefer j and cannot schedule f.

We split E into segments starting from the beginning. Suppose that the
currently processed time is ¢t and E schedules a job f at time ¢. If f receives
a single charge or wy = M;, we create a segment with a single job f. By
the observations above, this segment is charged at most A times its weight:
if wp = M,, then f is charged at most (1 + 1/A)w; < Awy, by (II) and the
inequality A > ¢.

It remains to handle the case when f receives two charges and w; =
M;/X. For i > t, let f; be the job scheduled in E at time i, and let m > ¢
be the smallest index such that wy,, = M,,. (Such m exists, as eventually
a maximal job is scheduled.) Thus w;, = M;/A fort < i < mand M, <
My <--- < M,,. Let Z be the setofjobs f;, ..., f,,—1. We create a segment
of jobs fi, ..., fm and prove that its charging ratio is at most \.

Let k > 0 be such that M,, = \**!. Fori = 1,...,k, let X; be the set of
all jobs in Z with weight M,,/\’ that receive two charges and let z; = | X;].
Also, let X =JX;and z = | X| = 3¢ ;.

By the definition of Z, EDF, /) schedules first all jobs in X}, then X;_;,
and so on, up to X; (with possibly some jobs in Z — X scheduled in-
between the jobs from X.) Since every f, in X receives also its own charge,
it is scheduled in A after time r. Furthermore, it cannot be scheduled at
time 7’ such thatr < r’ < m, for otherwise we would have w; < M, < M,,
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and by the definition of the charging scheme f, is not charged to itself in
such a case. Thus all jobs in X are scheduled at time m + 1 or later in A.
We claim that for each ¢,

zit+r+2 < s (4.17)

For afixed i,let? > ibe such that the lastjob finished by A from X;U- - -UX},
belongs to X. Let j be a job of maximal weight available when EDF /y
schedules the first job of X;,. Since j is scheduled in E only after all jobs
in X, despite the fact that its weight is larger, it must have strictly larger
deadline than all the jobs in X;. Between the start of the first job in X, in
F and time m + 1, EDF ) schedules all jobs in X;; U X1 U---UX; and f,,.
Between time m + 1 and the time A finishes the last job of X/, A schedules
all jobs in X; U - -- U X. Job j is available at all times from the start of the
tirst job in X, in E, until at least one time step after A finishes the last job
of X;. Therefore we have

s > xptxp g+t +H1l4x 4+ Fxy > oo+ 2.

Using (I), each job in Z — X is charged at most A times its weight. Let

k
o
W = ZF (4.18)
i=1

ie., WM, = MtV is the total weight of jobs in X. Using (II), the jobs
in X and f,, are charged a total of at most 2WM,, + (1 + 1/\)M,, and
their weight is W M,,, + M,,. To finish the proof of A-competitiveness, it is
sufficient to show that

2W +1+ 5 1—5
AR S i

W+1 W+1
The right-hand side increases with . Thus, we need to determine the
largest possible value of W.

Suppose that integers x; satisfy (4.17) and maximize IW. Then we claim
that this optimal solution satisfies the following conditions:

(4.19)

(@ z; > x;;; forany i > 1. Otherwise, we could switch the values of z; and
x;11, preserving inequality (4.17) and increasing W. Furthermore,
x1 > 0, as otherwise W =0butx; =1, 2y = 23 = ... = 0is a feasible
solution with W > 0.

(b) z; = 0 for any 7 > 3. Otherwise, we could decrease both z;_; and z;
by 1 and increase z; by 1. Since A > ¢, this increases W by at least
1/A—1/73 —1/X3 > 0, and it preserves (4.17) and (a).
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() 21 + 22 + 2 = s. Otherwise (4.17) implies a strict inequality and we
could modify z;, z as follows: If 2, = 0, increase =, to 1. If z5 > 0,
increase z; by 1 and decrease =, by 1. This increases W, and it
preserves (4.17), (a), and (b).

(d) z; < x5 + 2. Otherwise, we could increase z, by 2 and decrease x; by
1. This increases W, and it preserves (4.17), (a), (b) and (c).

By (a), (c) and (d), we get (s — 2)/3 < z; < s/3. For any s > 4, the only
integer in this range is x; = |s/3]. Thus 2, = s — 2 — 2[s/3|, and we have

11 _1
2 A S 2 _ )\__ .
W+1 1+ LE\J 48 QAQQLSJ
A2 — )\

2 — =
M4 2\ fs—2—2[2)

by the definition of A. This completes the proof of Claim B and the the
upper bound.

Claim C: The competitive ratio of EDF, , is no better than A.

To prove Claim C we present instances on which the competitive ratio
of EDF, /) approaches ). Intuitively, the bad instance consists of exactly one
segment corresponding to the worst case from the proof of Claim B above.
Let z; and z, be the optimal values as defined in that proof. Let e > 0
be arbitrarily small. The instance contains the following jobs, written as
(rj,dj, w;): x2jobs (0, x2, 1—€), x1+1jobs (z2, 21+22+1, A—€), 22jobs (0, s, 1),
1job (0,s,)), 1 — 1jobs (z2,22 + s, A), and 1 job (w2, x5 + s, A?). It is easy
to check that the adversary schedules all the jobs in the given order, while
EDF, , schedules only the jobs with weights 1, A, and A\?. The total weight
obtained by EDF,, is |s/3|A + (s — 2 — 2[s/3]) + A? and the total weight
obtained by the adversary approaches (2]s/3|+ 1)\ +2(s —2— |2s/3]) + \?
for e — 0. Hence the competitive ratio approaches . O

Theorem 4.7.4 Let us consider the problem of online scheduling of 4-bounded
instances of unit jobs in the deterministic model with the standard profit model.
Above we described algorithm EDF,,. Constant \, is defined above.

Then the algorithm EDF,,,, solves this problem and it is \y ~ 1.732—
competitive.

Proof: This theorem obviously follows from Theorem 4.7.3, because this is
its special case for s = 4. O
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Theorem 4.7.5 Let us consider sufficiently large integer s tending to infinity
and the problem of online scheduling of s—bounded instances of unit jobs in
the deterministic model with the standard profit model. Above we described
algorithm EDF,,. Constant )\, is defined above.

Then the algorithm EDF, /5, solves this problemand itis \; = 2—2/s40(1/5s)—
competitive.

Proof: For s > 4 the equation is cubic. It can be verified that 2 —2/s < A\, <
2—1/s,and in the limit for s — 0o, \; = 2—2/s+0(1/s). Thus this theorem
follows from Theorem 4.7.3 in the limit case for s tending to infinity. O
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Chapter 5

Resource augmentation

When we study a non-trivial open problem from arbitrary area and we
want to establish new results related to the studied problem then it is very
important and useful for us and all other researches as well first to simplify
studied problem, analyze and solve simplified problem before solving the
studied problem.

In the context of the online scheduling problems and the competitive
analysis we speak about the technique of resource augmentation. However
the meaning of the resource augmentation in the context of competitive
analysis is a little bit stronger—we develop a new online algorithm for a
simplified problem and compare its performance with the optimal solution
of the non-simplified problem.

We use the resource augmentation technique in the context of the com-
petitive analysis because of two main reasons:

e The analysis of simplified problems is usually simpler and it can help
us to get insight into the problem and solving the simplified problem
gives us better chance to solve the general problem.

e When the problem is completely solved or at least partially solved
under the competitive analysis but we are not satisfied with reached
competitive ratio—for example the competitive ratio is unbounded,
it means that there is no constant-competitive online algorithm. But
when we are not so strict and we allow some small additional re-
sources then can get constant competitive online algorithm, of course
for some problems only.

With this method we can consider resources on which we can apply
the resource augmentation method—Ilike speed of a processor, number of
processors, deadlines, weights, etc.
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As we already mentioned in the introduction of this thesis already
Graham in 1966 was working with such ideas and methods. Formally
the technique of resource augmentation as a method of the competitive
analysis was introduced in 1995 by Kalyanasundaram and Pruhs in [37].
They were focused on the problems with unbounded competitive ratio.

5.1 Introduction

The resource augmentation method has been applied to lots of various
problems. We focused our research on the resource augmentation of two
resources:

e Deadlines—we consider a fixed constant k£ and the deadline a job j
expires at time d; for the offline algorithm and at time d; + £ for the
online algorithm.

e Speed of processor—we consider a fixed constant s, the processor is
running s-times faster for the online algorithm than for the offline
algorithm.

We discuss results of our research on the problems with resource aug-
mentation in the following sections.

5.2 Results overview

Our results

These results are products of our own research in the area of resource
augmentation. Results for the problem k-relaxed online scheduling were
not published. Results for the problem of scheduling in overloaded sys-
tems were published in [Pub—4].

We studied the problem of online k-relaxed scheduling in standard
model. In this are we have shown several results. First we have shown
that there is no 1-competitive online algorithm for this problem, see The-
orem 5.3.2. Also we have shown some interesting lower bounds for the
problem. We have shown in Theorem 5.3.3 that there is no 1-relaxed on-
line algorithm with competitive ratio better ~ 1.05099. Moreover we have
shown general lower bound on the competitive ratio for the k-relaxed
online algorithms, see Theorem 5.3.4.

Also we were working on the problem of scheduling in overloaded
systems—the resource augmentation method using speed—up. We were
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interested in bounds for speed—up. We have shown a lower bound on
speed—up for the problem with tight jobs in the standard model. We have
shown that there is no online 1-competitive algorithm with speed-up
s < 2. We have shown input instance consisting of tight jobs only. This
result is presented in Theorem 5.4.1.

Joint results

Here we present results which are product of joint research in the area
of resource augmentation and overloaded systems. Presented results were
published in [Pub—4].

First we have shown in Theorem 5.4.2 a ¢/(e — 1) ~ 1.58-competitive
online algorithm for the scheduling problem in the metered profit model.
Also we have shown a lower bound ~ 1.236 on the competitive ratio for
the online algorithm in this problem, see Theorem 5.4.3.

Second we have shown in Theorem 5.4.4 that there is no 1-competitive
online algorithm in metered profit model, with speed—up better than
Q(loglog £) where ¢ is the importance ratio.

Last result is regarding to resource augmentation in the number of pro-
cessor. In Theorem 5.4.5 we have shown a lower bound on the competitive
ratio Q( §/§/m) where m is number of machines used by the online al-
gorithm while the offline can use only one, the problem is considered in
standard profit model.

5.3 k-relaxed algorithms

In this section we study online algorithms with relaxed deadlines. A
k-relaxed algorithm is allowed to process a job up to k time units after its
deadline, but the optimal schedule is not allowed.

Model: Online problem. We assume discrete integral time, each job
is specified by integers of its release time and deadline and weight. The
processing times of the jobs are equal to a constant. Preemptions are not
allowed.

Definice 5.3.1 k-relaxed algorithm is an algorithm which process each job j in
the time interval [r;, d; + k] or does not process j.

We study the competitiveness of arbitrary deterministic algorithms for
afixed k. We show some lower bounds and also we show an algorithm—an
upper bound on the competitive ratio.
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5.3.1 Previous work

Albers and Schmidt were working on similar problem in [3]. They stud-
ied the behaviour of the greedy algorithm for the problem of packet buffer-
ing and they developed modified greedy algorithm. They were working
on the standard version of the problem and on the version with additional
resources—they considered resource augmentation of speed and memory,
it means that they consider larger buffers or higher transmission rates.

Let us note that they study almost the same scheduling problem as
us but in different terminology—the problem of packet buffering with m
unbounded buffers is equivalent to the problem of scheduling of unit jobs
On 1M Processors.

The greedy algorithm is obviously 2—competitive. They consider the
resource augmentation of the capacity of buffers—the buffers for the online
algorithm are c-times larger than for the offline algorithm. In that case they
shown that the greedy algorithm is (¢ + 2)/(c + 1)-competitive. They also
consider the resource augmentation of the transmission rate—the online
algorithm transmits k—times more packets at the same time than the offline
algorithm. They shown that the greedy algorithm is 1 + 1/k—competitive.
for c-times larger capatity of buffers is the competitive ratio of the online

5.3.2 No l-competitive algorithm

The algorithm is allowed to use more resources than the adversary in
the optimal schedule. Obviously the competitive ratio cannot be smaller
that 1 because of simple instances—e.g. a single job. But the natural and
non-trivial question is whether the competitive ratio is strictly greater than
1. This question is answered by the next theorem.

Theorem 5.3.2 Let us consider a fixed integer k > 0 and the problem of online
k—relaxed scheduling of jobs in the deterministic model with the standard profit
model.

Then there is no 1-competitive algorithm solving this problem.

Proof. In fact this theorem proves a lower bound on the competitive
ratio of considered algorithms for this scheduling problem. We prove this
theorem using the method of contradiction. For a while we assume 1-
competitive algorithm and we construct an input instance and we prove a
contradiction. Let us consider a fixed £ and denote n = k + 2. We define an
incremental sequence of input instances Iy, . .., I,,_1. The input instance ;
consists of blocks of jobs B, ... B;. The block B;:
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starts at time ¢ = i(k + 2),
at ¢ releases a job of weight 2* and span 1,
att + 1 releases a job of weight 2* and span 1,

att+1,...,t+ k + 1 releases jobs of weight W and span 2,

where W is a sufficiently large number.
We assume there is an 1-competitive k-relaxed algorithm for contra-
diction and we distinguish two cases to analyze it:

the algorithm processes all jobs of span 1 of the input sequence.
Hence the algorithm processed 2n jobs of span 1. Deadline of the
last job is n(k + 2) 4+ 1. The algorithm is allowed to use k additional
time slots, hence it can schedule at most n(k +2) + 1 + k — 2n =
(n+ 1)k +1 = (k+ 3)k + 1 heavy jobs of weight . The optimal
schedule gains n(k+1) = (k+2)(k+ 1) heavy jobs. The optimal gain
is strictly greater than the gain of the algorithm.

otherwise, let B; be the first block containing a job of span 1 not
processed by the algorithm; thus we finish the input instance by this
block B;. Then the optimal gainisi(k+1)W + 14244+ ---42'+ 27,
the gain of the algorithm isat mosti(k+ 1)W +1+1+24+2+---+
207142714+ 27 Optimal gain is greater than the gain of the algorithm.

Optimal gain is greater than the gain of the algorithm in both cases.
We get a contradiction with the assumption that the assumed algorithm
is 1-competitive. Therefore there is no 1-competitive k-relaxed algorithm
for the problem. O

5.3.3 Lower bounds

We slightly generalize the input instance as following. We define incre-
mental sequence of instances I, ..., I4; for a fixed constant a > 1. The
instance I; consists of blocks By, ... B;. The block B;:

starts at time ¢ = i(k + 2),
at t releases a job of weight o' and span 1,
att + 1 releases a job of weight o’ and span 1,

att+1,...,t+k+ 1 releases jobs of weight o**! and span 2.
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Theorem 5.3.3 Let us consider the problem of online 1-relaxed scheduling of jobs
in the deterministic model with the standard profit model.

Then there is no algorithm solving this problem better than ~ 1.05099—
competitive.

Proof. We assume that there is a c-competitive 1-relaxed algorithm for
the problem. We consider input instances Iy, I, I,. First we consider that
the algorithm loses a job of span 1 on an input instance /;. See the instance

and algorithm’s and optimal schedule at the following picture.
o 1 2 3 4 5 6 7 8 9 10 11

| — instance job

O | =3 | | | | | | | | o= algorithm'’s schedul

= ] optimal schedule

|2 ............

Vil ]| ==

Then the algorithm gains at most 2a? 4+ 1 on Iy, 4a* + a + 2 on I; and
602 + a? + 2+ 2 on . The adversary gains 2a” + 2 on [y, 4a* 4+ 2a.+ 1 on
I, or 6% + 202 + a+ 1 on I,. These facts and the c—competiveness of the
algorithm force the following bounds:

> _————for .

=72t 2a+2 or 2
Otherwise the algorithm does not lose any of jobs with span 1, but the
algorithm has 11 timeslots to process jobs, there are 6 jobs with span 1
and 6 jobs with span 2, hence the algorithm loses at least one of the heavy



5.3 k—RELAXED ALGORITHMS 89

jobs of span 2. Hence the algorithm gains at most o® + 2a* + 2a + 2. The
c—competitiveness forces the bound:

a2 +a+1
c> —
— Ta?+ 20+ 2

Our analysis of the cases is complete, hence se at least one of these
inequalities is satisfied. We optimize coefficient v = 2.42142, exactly

1 19
a==|1/161+3v2118 + - +5
6 161 + 3v/2118

and we obtain the following lower bound
c > 1.05099.

O

Theorem 5.3.4 Let us consider a fixed integer k > 0 and the problem of online
k—relaxed scheduling of jobs in the deterministic model with the standard profit
model.

The?fl .there is no algorithm solving this problem better than 1 + m—
competitive.
Proof. We assume that there is a c-competitive k-relaxed algorithm for
the problem. We consider input instances Iy, I3, ... I;+1. Let us choose
a = 2. First we consider that the algorithm loses a job of span 1 on an input
instance I;. Then the algorithm on I; gains

i—1
i+ 1)k + 12" 4204 2) Y
j=0

while the optimum gains
(i 4+ 1) (k+1)25 1 + 20+ "2,
=0
Hence we get bounds fori =0,...k + 1:

(i+ 1) (k + 1)281 420 4 3702
T (D (k+ 12 42423 2
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Otherwise the algorithm does not lose any job of span 1, hence it has
(k+ 2)(k + 2) + k + 1 time slots to process jobs of I;;. The algorithm
processes all of 2(k + 2) jobs with span 1, therefore it can process at most
(k+2)(k+2)+k+1—2(k+2) = k*+ 3k +1jobs with span 2. The algorithm
gains at most

k1

(K + 3k + 1)2"! 42> "2,
=0
Observe that the algorithm has the same gain as in the case when the
algorithm loses a job with span 1 on ;.
We did analysis of all possible cases, hence at least one of these in-
equalities has to be satisfied. We eliminate the dependance on i from our
inequalities using following operations:

(i + 1)(k + 1)281 420 4 37027
P4 1)(k+1)26+1 420 4 251 9)
7=0
i+ D) (E+1)2M 424 27—
(1) (kA 1)2kF 428 4 2041 2

1
> 1 —
= (1 4+ 1)(k + 1)2k+1 4 20 4 2141 — 2
1
>1
= (k 4+ 2)(k + 1)2k+1 4- 2k+1 4 2k+2

27k71
> 1 _—
=t e iskts

5.4 Overloaded Systems

The following scheduling problem is studied: We are given a set of
tasks with release times, deadlines, and profit rates. The objective is to
determine a 1-processor preemptive schedule of the given tasks that maxi-
mizes the overall profit. In the standard model, each completed task brings
profit, while non—completed tasks do not. In the metered model, a task
brings profit proportional to the execution time even if not completed. For
the metered task model, we present an efficient offline algorithm and im-
prove both the lower and upper bounds on the competitive ratio of online
algorithms.
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5.4.1 Introduction

In most task scheduling problems the objective is to minimize some
function related to the completion time. This approach is not useful in
overloaded systems, where the number of tasks and their processing times
exceed the capacity of the processor and not all tasks can be completed.
In such systems, the goal is usually to maximize the number of executed
tasks or, more generally, to maximize their value or profit.

The problem can be formalized as follows: we have a set of n tasks,
each task j is specified by its release time r;, deadline d;, processing time
p;, and weight w; representing its profit rate. Preemption is allowed, i.e.,
each task can be divided into any number of intervals, with arbitrary gran-
ularity. The objective is to determine a 1-processor preemptive schedule
that maximizes the overall profit. The profit gained from processing task
j can be defined in two ways. In the standard model, each completed task j
brings profit w;p;, but non—-completed tasks do not bring any profit. In the
metered model, a task w; executed for time ¢ < p; brings profit w;t even if it
is not completed.

In many real-world applications, algorithms for task scheduling are
required to be online, i.e., to choose the task to process based only on
the specification of the tasks that have already been released. An algo-
rithm that approximates the optimal solution within a factor R is called
R—competitive. Online algorithms are also studied in the framework called
resource augmentation. The idea is to allow an online algorithm to use more
resources (a faster processor or more processors) and then to compare
its performance to the optimum solution (with no additional resources).
For the scheduling problems, we then ask what competitive ratio can be
achieved for a given speed—up factor s, or what speed—up is necessary to
achieve 1-competitiveness. See [55, 15] for more information on competi-
tive analysis.

The standard model. This problem has been extensively studied. Koren
and Shasha [44] give a (v + 1)* - competitive algorithm, where { =
max; w;/ min; w; is called the importance factor. This ratio is in fact optimal
[14, 44]. Since no constant—competitive algorithms are possible in this
model, it is natural to study this problem under the resource augmentation
framework. Kalyanasundaram and Pruhs [37] present an online algorithm
that uses a processor with speed 32 and achieves a constant competitive
ratio. Lam and To [46] show an online algorithm with speed—-up O(log¢)
and competitive ratio 1. One natural special case of this problem is when
the tasks are tight, that is, for each j we have d; = r; + p;. For this case,
Koo et al.[43] give a 1-competitive algorithm with speed—up 14, and Lam et
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al.[45] show that in order to achieve 1-competitiveness the speed—up must
be at least ¢ ~ 1.618.

The metered model. This version was introduced (in a different termi-
nology) by Chang and Yap [17] in the context of thinwire visualization,
where the profit represents overall quality of service. Metered preemptive
tasks also provide a natural model for various decision making processes
where an entity with limited resources needs to choose between engaging
in several profitable activities. Chang and Yap proved that two online
algorithms called FIRSTFIT and ENDHIT have competitive ratio 2. They also
proved that no online algorithm can achieve a competitive ratio better than
2(2 —/2) =~ 1.17.

5.4.2 Lower bound on speed-up for tight jobs

In this section we mention our result for the problem of online schedul-
ing with resource augmentation on speed—up of processor. We improve
the lower bound from [45], by proving that, in order to achieve 1-
competitiveness, an online algorithm needs speed—up at least 2.

This result is published in [Pub—4].

Theorem 5.4.1 Let us consider the problem of online scheduling of tight jobs
with allowed speed—up of processor, in the deterministic model with the standard
profit model.

Then there is no 1-competitive algorithm solving this problem with speed—up
s < 2 for scheduling of tight jobs.

Proof: Let A be an online 1-competitive algorithm. We show an adversary
strategy that, for any given n, forces A to run at speed 2 — 1/n. The
adversary chooses tasks from among 2n — 1 tasks defined as follows. Task
0is (0,n,n,1). Fori =1,...,n—1, task iis (¢ — 1,4,1,1) and task ¢’ is
(i,n,n —1i,n/(n —1)).

The adversary strategy is this: issue tasks 0, 1,2, ..., as long as tasks
1,2,...,¢ are fully processed by A by time i. If A fails to fully process
task 4, the adversary issues task ¢’ and halts. If this happens, the instance
contains tasks 0,1,...,4,i whose optimal profit is is n + . To gain this
profit A needs to process all tasks other than i. Their total length is 2n — 1,
so A’s speed must be at least 2 — 1/n.

If A processes all tasks 1, ...,n — 1, the instance is 0,1, ...,n — 1 and its
maximum profit is n. To achieve this profit, .A must also process task 0.
Once again, this means that A’s speed is at least 2 — 1/n. O
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5.4.3 Metered profit model

In this subsection we focus on the metered profit model in the online
scheduling in the overloaded systems. These results have been published
in the paper [Pub—4]. These results products of joint research with other co—-
authors. We provide a short overview of results published there without
their proofs.

First we mention the upper bound—competitive online algorithm for
metered tasks. We have shown an algorithm MIXED for the problem and
we prove the following competitive ratio:

Theorem 5.4.2 Let us consider the problem of online scheduling of jobs in the
deterministic model with the metered profit model. Above we described algorithm
MIXED.

Then this algorithm MIXED is e/(e — 1) ~ 1.5820—competitive.

We have shown a lower bound on the competitive ratio for the problem
of online scheduling of metered tasks.

Theorem 5.4.3 Let us consider the problem of online scheduling of jobs in the
deterministic model with the metered profit model.

Then there is no algorithm solving this problem better than /5 — 1 ~ 1.236~
competitive.

These results improve both the lower and upper bounds from [17].

Next we study the resource augmentation version of this problem,
and prove that no online algorithm with constant speed—up can be 1-
competitive, neither in the metered profit model, nor in the standard
model. In fact, we prove that the minimal speed—-up needed to achieve
1-competitiveness is {2(log log ¢). Thus we disprove a conjecture from [43]
by showing that the problem with general deadlines is provably harder
than the special case of tight deadlines.

Theorem 5.4.4 Let us consider the problem of online scheduling of jobs with
allowed speed—up of processor in the deterministic model with the metered profit
model or alternatively with standard profit model. Let us denote the importance
ratio as &.

Then each 1-competitive algorithm solving this problem has speed—up at least
Qloglog&). In particular, there is no constant speed—up 1-competitive algorithm.



94 CHAPTER 5: RESOURCE AUGMENTATION

5.4.4 More processors

In this subsection we consider another way of resource augmentation.
Here we consider online algorithms which are allowed to use more pro-
cessors that the offline algorithms. We consider this in the standard profit
model. These results have been published in the paper [Pub—4] and are
products of joint research with other co—authors. We provide a short
overview of results published there without their proofs.

Furthermore we focus the model where an online algorithm is allowed
to use m processors of speed 1, rather than a single faster processor. For
this case we prove that the competitive ratio is Q( ¥/¢/m), even if all tasks
are restricted to be tight.

Theorem 5.4.5 Let us consider the problem of online scheduling of tight jobs in
the deterministic model with the standard profit model, the online algorithms are
allowed to use m processors against a 1—processor adversary. Let us denote the
importance ratio as &.

Then no online algorithm allowed to use m processors is better than
Q( /€ /m)—competitive against adversary using 1 processor.

Observe that for tight tasks constant speed—up is sufficient for 1-
competitiveness, so the lower bound shows that increasing the speed of a
single processor is more powerful than increasing the number of processors
of speed 1.



CHAPTER 6: ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 95

Chapter 6

Online scheduling of
equal-length jobs

Let us consider the following scheduling problem. The input is a set
of jobs with equal processing times, where each job is specified by its
release time and deadline. The goal is to determine a single—processor,
non-preemptive schedule that maximizes the number of completed jobs.
In the online version, each job arrives at its release time.

It is known that a simple greedy algorithm is 2-competitive for this
problem and that this ratio is optimal for deterministic algorithms. We
present ways how to improve the competitive ratio.

6.1 Results overview

Our results

Here we present results of our own research on the problem of online
scheduling of equal-length jobs. These results were already published in
[Pub-1].

We give in Theorem 6.5.2 a deterministic 3—competitive algorithm in
the preemption—restart model. In this model, an online algorithm is allowed
to abort a job during execution, in order to start another job. The algorithm
gets credit only for jobs that are executed contiguously from beginning
to end. Aborted jobs can be restarted (from scratch) and completed later.
Note that the final schedule produced by such an algorithm is not pre-
emptive. Thus the distinction between non-preemptive and preemption—
restart models makes sense only in the online case. (The optimal solutions
are always the same.)
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In addition to the algorithm, we give in Theorem 6.5.4 a matching lower
bound, by showing that no deterministic online algorithm with restarts can
be better than 2-competitive.

We also show in Theorem 6.5.4 a lower bound of ¢ for randomized
algorithms with restarts.

Joint results

Here we presents results of our joint research on the problem of online
scheduling of equal-length jobs. These results were already published in
[Pub-1].

We give in Theorem 6.6.1 a barely random 2-competitive algorithm
that uses only one random bit. We also show a lower bound of 2 on the
competitive ratio of barely random algorithms that randomly choose one
of two deterministic algorithms, see Theorem 6.6.5. If the two algorithms
are selected with equal probability, we can further improve the bound to £

in Theorem 6.6.6.

6.2 Previous work

The problem of scheduling of equal-length jobs to maximize the num-
ber of completed jobs has been well studied in the literature. In the offline
case, an O(nlogn)-time algorithm for the feasibility problem (checking if
all jobs can be completed) was given by Garey et al. [28] (see also [56, 16]).
The maximization version can also be solved in polynomial time [21, 7],
although the known algorithms are rather slow. (Carlier [16] claimed an
O(n*logn) algorithm but, as pointed out in [21], his algorithm is not cor-
rect.)

As the first positive result on the online version, Baruah et al. [13, 12]
show that a deterministic greedy algorithm is 2—-competitive; in fact, they
show that 2—competitiveness holds for any non—preemptive deterministic
algorithm that is never idle at times when jobs are available for execution.

Goldman et al. [29] gave a lower bound of % on the competitive ratio
of randomized algorithms and the tight bound of 2 for deterministic algo-
rithms. We briefly sketch these lower bounds, as they illustrate well what
situations an online algorithm needs to avoid in order to achieve a small
competitive ratio. Let p > 2. The jobs, written in the form j = (r;, d;), are
1=(0,2p+1),2=(1,p+1),3 = (p,2p). The instance consists of jobs 1,2
or jobs 1,3; in both cases the optimum is 2. Figure 6.1 illustrates the input
instance and the adversary strategy. (In this figure, and later throughout
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the paper, the horizontal dimension corresponds to the time axis, each job
j in the input instance is drawn as a line segment spanning the interval
[7;,d;], and jobs that appear in the schedules are represented by rectangles
of length p positioned at the actual time of execution.) In the deterministic

10 3 2p+1
2 1 ‘p+1
: 23
3 P i
ADV1 |
1 1 3
ADV2 :
2 : 1

Figure 6.1: Jobs used in the lower bound proof.

case, release job 1; if at time 0 the online algorithm starts job 1, then release
job 2, otherwise release job 3. The online algorithm completes only one
job and the competitive ratio is no better than 2. In the randomized case,
using Yao’s principle, we choose each of the two instances with probability
1. The expected number of completed jobs of any deterministic online
algorithm is at most 1.5, as on one of the instances it completes only one
job. Thus the competitive ratio is no better than 2/1.5 = 3.

Goldman et al. [29] show that the lower bound of 2 can be beaten if the
jobs on input have sufficiently large “slack”; more specifically, they prove
that a greedy algorithm is 2—competitive for instances where d; — r; > 2p
for all jobs j. This is closely related to our algorithm with restarts: On
such instances, our algorithm never uses restarts and becomes identical to
the greedy algorithm. Thus in this special case our result constitutes an
alternative proof of the result from [29]. Exploring further this direction,
Goldwasser [30] obtained a parameterized extension of this result: if d; —
r; > Ap for all jobs j, where A > 1 is an integer, then the competitive ratio
is1+1/\

In our brief overview of the literature given above we focused on the
case when jobs are of equal length and the objective function is the num-
ber of completed jobs. We need to stress though that, in addition to the
work cited above, there is vast literature on real-time scheduling problems
where a variety of other models is considered. Other or no restrictions can
be placed on processing times, jobs may have different weights (profits),
we can have multiple processors, and preemptions may be allowed. For
example, once arbitrarily processing times and /or weights are introduced,
no constant—competitive non—preemptive algorithms exist. Therefore it is
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common in the literature to allow preemption with resume, where a job
can be preempted and later started from where it was stopped.

The model with restarts was studied before by Hoogeveen et al. [34].
They present a 2—competitive deterministic algorithm with restarts for jobs
with arbitrary processing times and objective to maximize the number of
completed jobs. They also give a matching lower bound. Their algorithm
does not use restarts on the instances with equal processing times, and
thus it is no better than 2—competitive for our problem.

Real-time scheduling is an area where randomized algorithms have
been found quite effective. Most randomized algorithms in the general
scenarios use the classify—and-randomly—select technique by Lipton and
Tomkins [49]. Typically, this method decreases the dependence of com-
petitive ratio from linear to logarithmic in certain parameters (e.g., the
maximum ratio between job weights), but it does not apply to the case of
jobs with equal lengths and weights. Our randomized algorithm is based
on entirely different ideas.

Barely random algorithms have been successfully applied in the past to
a variety of online problems, including the list update problem [51], the k-
server problem [9] and makespan scheduling [2, 25, 52]. In particular, the
algorithm of Albers [2] involves two deterministic processes in which the
second one keeps track of the first and corrects its potential “mistakes”—
a coordination idea somewhat similar to ours, although in [2] the two
processes are not symmetric.

The area of real-time scheduling is of course well motivated by mul-
titudes of applied scenarios. In particular, the model of equal-length
jobs—without or with limited preemption—is related to applications in
packet switched networks. When different weights are considered, the
problem has further connections to the “quality of service” issues (recently
a fashionable phrase). Nevertheless, we shamelessly admit that this work
has been partially driven by plain curiosity. It is quite intriguing, after all,
that so little is known about the competitiveness of such a fundamental
scheduling problem.

6.3 Preliminaries

The instance on input is a set of jobs J = {1,2,...}. Eachjob j is given
by its release time r; and deadline d;. All jobs have processing time p. (We
assume that all numbers are positive integers and that d; > r; +p for all j.)
The expiration time of a job jis z; = d; — p, i.e., the last time when it can be
started. A job j is called admissible at time tif r; <t < x;. Ajob j is called
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tight if x; —r; < p.

A non—preemptive schedule A assigns to each completed job j an interval
(54, Ch), with r; < SA < x; and C#' = S# + p, during which j is executed.
These intervals are disjoint for distinct jobs. S and C#* are called the
start time and completion time of job j. Without loss of generality, both
are assumed to be integer. We adopt a convention that “job running (a
schedule being idle, etc.) at time ¢” is an equivalent shortcut for “job
running (a schedule being idle, etc.) in the interval [¢t,t + 1)”. Given a
schedule A, a job is pending at time ¢ in A if it is admissible at ¢ (that
is, r; < t < ;) but not yet completed in A. Note that according to this
definition a job that is being executed at ¢ may also be considered pending.
When A is understood from context, we will typically use notation F; to
denote the set of jobs pending at time ¢.

For any set of jobs (), we say that that () is feasible at time t if there exists
a schedule which completes all jobs in ) such that no job is started before
t. Q is flexible at time ¢ if it is feasible at time ¢ + p.

Applying the Jackson rule [35], it is quite easy to determine whether
a set P of pending jobs is feasible at ¢: Order the jobs in P in order of
increasing deadlines, and schedule them at times ¢, t + p, t + 2p, etc. Then
P is feasible if and only if all jobs in P meet their deadlines. Furthermore,
if we want to compute the maximum-size feasible subset P’ C P, we can
start with P’ = (), and then add jobs j € P — P’ to P’, one by one and in
arbitrary order, as long as P’ remains feasible. This means, in particular,
that P’ is a maximum-size feasible subset of P iff P’ is a C—maximal feasible
subset of P. All those properties can be proven by elementary exchange
arguments, and the proofs are left to the reader.

We say that a job started by a schedule A at time ¢ is flexible in A if the
set of all jobs pending in .4 at ¢ is flexible; otherwise the job is called urgent.
Intuitively, a job is flexible if we could possibly postpone it and stay idle
for time p, without losing any of the currently pending jobs; this could
improve the schedule if a tight job arrives. On the other hand, postponing
an urgent job can bring no advantage to the algorithm.

An online algorithm constructs a schedule incrementally, at each step ¢
making decisions based only on the jobs released at or before ¢. Each job j,
including its deadline, is revealed to the algorithm at its release time ;. A
non—preemptive online algorithm can start a job only when no job is running;
thus, if a job is started at time ¢ the algorithm has no choice but to let it run
to completion at time ¢ + p. An online algorithm with restarts can start a job
at any time. If we start a job j when another job, say £, is running, then &
is aborted and started from scratch when (and if) it is started again later.
The unfinished portion of k is removed from the final schedule, which is
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considered to be idle during this time interval. Thus the final schedule
generated by an online algorithm with restarts is non—-preemptive.

An online algorithm is called c—competitive if, for any set of jobs J and
any schedule ADV for J, the schedule A generated by the algorithm on
J satisfies |[ADV| < c|A|. If the algorithm is randomized, the expression
| A is replaced by the expected (average) number of jobs completed on the
given instance.

The definitions above assume the model—standard in the schedul-
ing literature—with integer release times and deadlines, which implicitly
makes the time discrete. Some papers on real-time scheduling work with
continuous time. Both our algorithms can be modified to the continuous
time model and unit processing time jobs without any changes in perfor-
mance, at the cost of somewhat more technical presentation.

6.4 Properties of schedules

For every instance J, we fix a canonical linear ordering < of J such
that j < k implies d; < d;. In other words, we order the jobs by their
deadlines, breaking the ties arbitrarily but consistently for all applications
of the deadline ordering. The term earliest-deadline, or briefly ED, now
refers to the <—minimal job.

A schedule A is called earliest-deadline—first (or EDF) if, whenever it
starts a job, it chooses the ED job of all the pending jobs that are later
completed in A. (Note that this may not be the overall ED pending job.)

A schedule A is normal if it satisfies the following two properties:

(n1) when A starts ajob, it chooses the ED job from the set of all pending
jobs;

(n2) if the set of all pending jobs in A at some time ¢ is not flexible, then
some job is running at t.

Obviously, any normal schedule is EDEF, but the reverse is not true.
All algorithms presented in this paper generate normal schedules. The
properties (n1) and (n2) are reasonable, as the online algorithm cannot
make a mistake by enforcing them. Formally, any online algorithm can
be modified, using a standard exchange argument, to produce normal
schedules without reducing the number of scheduled jobs. (We omit the
proof, as we do not need this fact in the paper.)

The following property will be crucial in our proofs.

Lemma 6.4.1 Suppose that a job j is urgent in a normal schedule A. Then at
any timet, SJ“-“ <t < xj, an urgent job is running in A.
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Proof: Denote by P the set of jobs pending at time S (including j). By
the assumption about j, P is not flexible at SjA. Towards contradiction,
suppose that A is idle or starts a flexible job at time ¢, where S < ¢ < z;.
Then the set @) of jobs pending at time ¢ is flexible at ¢. Since j is the ED
job from P (by the normality of A) and ¢t < z;, all other jobs in P have
not expired until ¢, and thus @) contains all the jobs from P that are not
completed in A until time ¢.

Using the above properties, we can rearrange the schedule as follows.
Since () is flexible at ¢, we can schedule all jobs of () at time ¢ + p or later,
start j at ¢ and schedule all jobs in P — @) — {j} as in .A. But this shows that
P is flexible at time Sy'—a contradiction. O

Lemma 6.4.2 Let X be a normal schedule for a set of jobs J. Let f : J — J be
a partial function such that if f(j) is defined then j is scheduled as flexible in X
and r4(;)(C;* < x4(;). Then there exists an EDF schedule A equivalent to X such
that:

(1) All jobs f(j) are completed in A.

(2) Consider a time t when either A is idle or it starts a job and the set of all
its pending jobs is feasible at t. Then all jobs pending at t are completed
in A. In particular, each job that is pending when A starts a flexible job is
completed in A.

(3) Let j be a job completed in A, and let U be the set of all jobs j' with r; (C4!
that are pending at time C:*. (Note that the jobs released at time C* are
not included in U.) If U is feasible at time C;* then all the jobs in U are
completed in A.

Furthermore, if X is constructed by an online algorithm and f(j) can be deter-
mined online at time C* for each flexible job j in X, then A can be produced by
an online algorithm.

Remarks: Property (1) is useful in our proofs, since it allows us to modify
the schedule computed by the algorithm to resemble more the optimal
schedule. Property (2) guarantees that any job planned to be scheduled
is indeed scheduled in the future. Property (3) is a technical condition
needed in the analysis of the algorithm with restarts.

Since A and & are equivalent, flexible jobs are the same and scheduled
at the same times in A and X. In particular, all the jobs j on which f(j) is
defined are scheduled at the same time both in .4 and X—a property that
will play an important role in our later arguments.

The basic idea of the construction of A is quite straightforward: Main-
tain a set (), of jobs that we plan to schedule. If the set of all pending jobs is
feasible, we plan to schedule them all. In particular, if we start a flexible job



102 CHAPTER 6: ONLINE SCHEDULING OF EQUAL-LENGTH JOBS

J at time ¢, the flexibility of j allows us to add to ();4, an extra job released
during the execution of j; so if f(j) is defined, we add f(j). Similarly, to
achieve (3), we can add all jobs released during the execution of j, as long
as the resulting set remains feasible.

Proof: We construct A iteratively. Throughout the proof, ¢ ranges over
times when X is idle or starts a job. For each such ¢, let P, and P, denote
the set of jobs pending in X and A, respectively.

We will maintain an auxiliary set of jobs ), that are pending at ¢ in
X and A, thatis @, C P, N P/. Simultaneously with the construction, we
prove inductively that, for all ¢, the following invariant holds:

(%) @ is an C—maximal feasible subset of each of P, and F].

Before describing the construction, we make two observations. First,
recall that condition () implies that @), is also maximum with respect to
size. Second, if any of sets P, FP;, ), is flexible, then ), = P, = P/, by the
maximality of Q),.

We now describe the construction. Initially, choose () as an arbitrary
maximal feasible set of jobs released at time 0.

Assume we have already defined Q. If X is idle at ¢, we let A idle and
choose an arbitrary ;41 2 @, by adding to @, the jobs released at ¢ + 1, as
long as the set remains feasible. Since X is idle, P, is flexible at ¢, and thus
Q: = P, = P/ and (), is feasible at t + 1. Thus P,;; = P/, and (*) holds at
time ¢ + 1.

Now suppose that X starts a job j at time ¢. We consider two subcases,
depending on whether j is flexible or urgent.

Case 1: j is flexible in X. Then A starts j, too. In this case, Q; = P, = P/,
and thus P/, = P, as well. Clearly, j is flexible in A as well. Since @), is
flexible, it is feasible at t+p. To construct s, we start with )1, = Q;—{j}
and expand it by adding newly released jobs, one by one, as long as @+,
remains feasible. The jobs are added in the following order:
(i) First, add f(j), if it is defined, pending, and not yet in ;.

(ii) Next, add all jobs j' with ¢(r;/(t + p, in an arbitrary order.

(iii) Finally, add all jobs j’' with r;; = ¢ + p, in an arbitrary order.
Since (), is feasible at ¢t + p, Q; — {7} U {f(j)} is feasible at ¢ + p as well,
so f(j) can be added to Q),1, in (i) without violating feasibility. By the
construction, (x) is satisfied at time ¢ + p.

Case 2: j is urgent in X. A starts the earliest-deadline (more precisely,
<-minimal) job %k from @),. Since (); is a maximal feasible set both for X
and A, it is non—empty whenever X starts a job. Furthermore, we know
that @), is not flexible at ¢t and thus £ is urgent.

Let T = Q; — {k}. We claim that:
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(t1) T is a maximal subset of P, (resp. P/) that is feasible at time ¢ + p,
and
(t2) T C PypN P,

That T' is feasible at ¢ + p follows directly from the definition of 7" and
the fact that % is the ED job in ();. For the same reason, all jobs in 7" are
pending in A at time ¢ + p. Since k is pending in X" at ¢, and X" schedules
the ED pending job (as X is normal), we have j < k. Therefore all jobs in
T are pending at time ¢ + p in X" as well. We conclude that (t2) holds.

No job in P/ — @; can be feasibly added to 7" at time ¢ + p, as otherwise
it could be feasibly added to @, at time ¢, contradicting the maximality of
Q) for A. The same argument applies to X'. Thus, 7" satisfies condition (t1)
for both P, and P/.

We construct )y, similarly as in the previous case. We start with
Qi+p = T and add newly released jobs, first the jobs released before C* =
t + p, and then the jobs released at C]X ,one by one, as long as ();, remains
feasible. Again, the maximality of 7" and the construction implies that ¢,
satisfies (x) at time ¢ + p.

This completes the construction. Obviously, X and A are equivalent.
Also, A is EDF since whenever it schedules a job, it chooses the ED job of
Qi, and jobs j' € P/ — (), are never added to @), for s)t, so they will not be
scheduled in A.

By the construction, A schedules all the jobs that are in some plan Q);.
At any time ¢ when A is idle or starts a flexible job, Q; is flexible and thus
Q¢ = P/. This proves (2). Since f(j) € Q.4, fort = S5, this also implies (1).
Finally, to show (3), recall that when constructing @), for ¢t = Sf , We are
first adding to @), all the jobs 5’ with r;/(t + p (by the assumption of the
lemma, j' = f(j) satisfies this); if they are all together feasible then they
are all added and thus U C Q;4,,. O

6.5 Restarts help

Our algorithm with restarts is very natural. At any time, it greedily
schedules the ED job. However, if a tight job arrives that would expire
before the running job is completed, we consider a preemption. If all
pending jobs can be scheduled, the preemption occurs. If not, it means
that some pending job is necessarily lost and the preemption would be
useless, so we continue running the current job and let the tight job expire.

We need an auxiliary definition. Suppose that a job j is started at time s
by the algorithm. We call ajob [ a preemption candidate for jif s(r; < z;(s+p.
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Algorithm TIGHTRESTART. At time ¢:

(TR1) Ifnojob is running, start the ED pending job, providing there is at
least one pending job, otherwise stay idle until some job is released.

(TR2) Otherwise, let j be the running job. If j was started as urgent or
no preemption candidate is released at ¢, continue running ;.

(TR3) Otherwise, let P be the set of all jobs pending at time ¢, including
J but excluding any preemption candidates. If P;" is flexible at ¢, pre-
empt j and start (at time ¢) a preemption candidate; choose the ED
preemption candidate, if more are admissible at time ¢. Otherwise
continue running j.

Let X be the final schedule generated by TIGHTRESTART, after removing
the preempted parts of jobs. For any time ¢, as before, by P, we denote the
set of jobs that are pending in " at time ¢. We stress that we distinguish
between X being idle and TIGHTRESTART being idle: at some time steps
TIGHTRESTART can process a job that will be preempted later, in which case
X is considered idle at these steps but TIGHTRESTART is not.

Lemma 6.5.1 Schedule X is normal.

Proof: By rules (TR1) and (TR3), TIGHTRESTART always starts the ED pend-
ing job; in (TR3) note that, by definition, any preemption candidate is tight
and thus it has earlier deadline than any job in the flexible set P; of the
remaining pending jobs. The property (nl) of normal schedules follows.

If TIGHTRESTART is idle then there is no pending job. Thus, to show the
property (n2), it remains to verify that Py is flexible at any time ¢’ when X
is idle but TIGHTRESTART is not. This means that TIGHTRESTART is running
a job which is later preempted.

Suppose TIGHTRESTART starts a flexible job j at time s and preempts it
at time ¢. Let ¢ be any time such that s(¢'(¢. Since j is flexible at s and
it is the ED job in P;, no job in P, expires before s + p)t. Thus we have
P, C P; C P}, by the definition of P and P/ in (TR3). As TIGHTRESTART
preempts at time ¢, ;" is flexible at t. Consequently, P;; C P is flexible at ¢
and also at ¢'(t. Using this for all ¢/, we conclude that the first preemption
candidate for j is released at ¢, as otherwise j would be preempted earlier.
Thus no preemption preemption candidate is admissible at any t', s(t'(t,
and P, = P} which we have shown is flexible at ¢. Thus (n2) holds and X
is normal. O

Theorem 6.5.2 Let us consider the problem of online scheduling of equal-length
instances of jobs with allowed restarts, in the deterministic model with the standard
profit model. Above we described algorithm TIGHTRESTART.

Then the algorithm TIGHTRESTART solves this problem and it is 3—competitive.
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Proof: As usual, let ADV denote an optimal schedule.

Let us start by giving some intuition behind the charging scheme. Sup-
pose that a job j is started at time ¢ in ADV. If a job k£ is running at ¢ in X,
we want to charge j to k. If X' is running a job £ which is later preempted
by I, we charge % to [ and 5 to k (using Lemma 6.4.2 to guarantee that the
modified schedule completes k). The main problem is to handle the case
when X is idle when j starts in ADV; we call such a j a free job. In this case,
TIGHTRESTART was “tricked” into scheduling of j too early. We would like
to charge j to itself. However, it may happen that then j would be charged
twice, so we need to split this charge and find another job that we can
charge 3. The definition of f(j) below chooses such a job and Lemma 6.4.2
again guarantees that the modified schedule completes f(j).

The difficulty that arises in the above scheme is that, due to preemptions
in TIGHTRESTART's schedule and to idle times in ADV, the jobs can become
misaligned. To deal with this problem, we define a matching A between
the jobs in X and ADV. Typically, a job £ in X is matched to the first
unmatched job in ADV that starts later than k. In some situations we
match a free job £ to itself.

We now proceed with the formal proof. First, we define a partial
function f : J — J. For any job j scheduled as flexible in X', we define
f(4) as follows.

(f1) If at some time ¢, S < t(Cs*, ADV starts a job k which is not a
preemption candidate then let f(j) = k.

(f2) Otherwise, if there exists a job k with S7* (r; (C5" < x;, such that ADV
does not complete £, then let f(j) = k (choose arbitrarily if there are
more such k’s).

(f3) Otherwise, f(j) is undefined.

Notice that f(-) is one-to—one, for the first two cases are disjoint, and
in each case j is uniquely determined by k = f(j): If k = f(j) and the first
case applied to j, then j is the job that is being executed by X when ADV
starts k. If the second case applied to j, then j is the job being executed by
X at the release time of £.

According to Lemma 6.5.1, X' is a normal schedule. Let A be the
schedule constructed in Lemma 6.4.2 from A and function f(-). Since A is
equivalent to X, it also satisfies Lemma 6.4.1.

Call a job j scheduled in ADV a free job if TIGHTRESTART is idle at time
S}PV. This condition implies that at time S;*"V no job is pending in A; in
particular, by Lemma 6.4.1, j is completed as a flexible job by time S*PV in
A.

Now define a partial function M : J — J which is a matching of (some)
occurrences of jobs in A to those in ADV. Process the jobs k scheduled in A
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Figure 6.2: An example of an instance, the schedule A produced by
TIGHTRESTART, and the construction of M (represented by directed edges).
The processing time is p = 4. Jobs are identified by positive integers.
Preempted pieces of jobs are not shown.

in the order of increasing Si'. For a given k, let j be the first unmatched job
in ADV started at or after Sg', or, more specifically, a job with smallest S;*"V
among those with S#PV > St and such that j # M (k') for all & in A with
S S, If no such j exists, M (k) is undefined. Else, if k is a free job, not in
the current range of M, and S}V > C{, then let M (k) = k. Otherwise, let
M (k) = j. The definition implies that A/ is one—to—one. (See Figure 6.2.)

Lemma 6.5.3 Let j be a job executed in ADV.
(1) If A executes some job when j starts in ADV, that is Szt < SAPV(CY for
some k, then j is in the range of M.
(2) If j is free and f(j) is undefined then j is in the range of M.

Proof: Part (1) is simple: Suppose that A is executing some job k at S*PV,
and consider the step in the construction of M when we are about to define
M (k). If j is not in the range of M at this time, then we would define M (k)
as j.

We now prove (2). Let s = S7 be the start time of j in Aand s’ = C* =
s + p its completion time. Since j is free, it is completed in A before it is
started in ADV, thatis S}V > o',

Suppose for a contradiction that j is not in the range of M. By the
definition of M, this implies that M (j) = [ for some job [ with s(S/PV(s'.
Otherwise, during the construction of M when we are about to define
M(j), we would set M(j) = j.
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Since f(j) is undefined, by condition (f1), / must be a preemption
candidate for j, that is s(r; < z;(s’. Furthermore, as TIGHTRESTART does
not preempt j when [ is released, the set P is not flexible.

Figure 6.3 illustrates the argument that follows. The idea is this: Since j
is not preempted even though a preemption candidate [ arrives, A must be
nearly full between s’ and d;. So, intuitively, one of the jobs scheduled in
this interval should overlap in time with the occurrence of j in ADV, and
this job would end up being matched to j. The rigorous argument gets a
bit technical because of possible gaps in the schedules.

Let K = {j' | s(rj/(s' < x; } be the set of all jobs released during the exe-
cution of j in A, excluding preemption candidates. Since f(j) is undefined,
by condition (f2), all these jobs are completed in ADV, and obviously they
cannot be completed before S{*PV. Thus K is feasible at C{*PV and also at
8, S CIADV.

LetU = {j' € Py | rj(s'} be the set of jobs pending at s’ that are released
strictly before s'. Since A is an EDF schedule and j is flexible (because j is
free), all jobs j' € P; — {j} have z;; > z; > s, so they are still pending at s'.
Therefore U = P, UK — {j} = P} UK.

We claim that U is feasible at s’. Suppose, towards contradiction, that
it’s not. Since K is feasible at s’ and all jobs ;' € U — K have z;; > z;,
TIGHTRESTART would then execute urgent jobs from s’ until at least the
time x;. Thus A would not be idle at time S*PV < z;, contradicting the
assumption that j is free. We conclude that U is feasible at s’, as claimed.

Now, by the feasibility of K at s’ and Lemma 6.4.2(3) and by the flexi-
bility of U at s and Lemma 6.4.2(2), A completes all jobs in U. Furthermore,
all jobs in U are scheduled between s’ and S}*"V, as TIGHTRESTART is idle
at SAPV,

all u jobs from U

 atmostu-ljobs
Figure 6.3: Illustration for the proof of Lemma 6.5.3(2).

Let u = |U|. Next we claim that
(i) SHPY — APV (up, and
(i) ADV does not schedule any of the jobs in U after j.
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If either of these claims is violated, U U{j} would be feasible at CAPV, for
we can first schedule K, which is feasible at C*PV, and then the remaining
jobs from U. Indeed, if (i) is violated, we can complete all jobs in U by the
time SADV which is smaller than the deadlines in P — K, and start j at
SADV If (ii) is violated, let j' be the job in U scheduled after j in ADV. We
know that SPPV — CAPV)SAY — ! — p > (u — 1)p, thus we can complete
all jobs in U by the time SADV and schedule j and j" as in ADV.

By the previous paragraph if any of (i) or (ii) does not hold, then
PruU{j} € UU{j}isfeasibleatr,+p < C/PY, contradicting the assumption
that [ (which is a preemption candidate) did not cause preemption. We
thus obtain that (i) and (ii) are true, as claimed.

Summarizing, A completes the u jobs in U between s" and S*PY, and,
by (ii), these jobs are not executed after S*PV in ADV. Therefore if j were
not in the range of M, the jobs in U would have to be matched to the jobs
in ADV between C/*"V and S*PV, which is not possible, because there are
at most u — 1 such jobs, by (i). We can thus conclude that j is indeed in the
range of M. O

Charging scheme. Let j be a job started at time ¢ = S*PY in ADV. We
charge j to jobs in A according to the following cases.

Case (I): j = M (k) for some k. Charge j to k. By Lemma 6.5.3(1), this case
always applies when A is not idle at ¢, so in the remaining cases A is
idle at ¢.

Case (II): Otherwise, if j is free, then charge % of j to the occurrence of j
in A and % of j to the occurrence of f(j) in .A. Note that, since (I)
does not apply, Lemma 6.5.3(2) implies that f(j) is defined, and then
Lemma 6.4.2 implies that both j and f(j) are completed in .A.

Case (III): Otherwise, A isidle at ¢, but TIGHTRESTART is running some job
[ at t which is later preempted by another job . Charge % of j to j
and 1 to I'. By Lemma 6.4.2(2), j is completed in A. Job I’ is urgent
and thus it is completed as well.

Analysis. We prove that each job scheduled in A is charged at most 3.
Each job is charged at most 1 in case (I), as M defines a matching.

We claim that each job receives at most one charge of 3. For the rest of
the proof, we will distinguish two types of charges of 1: self-charges, when
Jj is charged to itself, and non—self-charges, when j is charged to a different
job.



6.5 RESTARTS HELP 109

Suppose first that k receives a self-charge. (Obviously, it can receive
only one.) By the charging scheme, A is idle at time Si*PV. This implies
two things. First, k is not tight, so it cannot receive a non-self-charge in
Case (III). Second, k cannot be in the range of f(-), since each job f(j) is
either notin ADV or, ifit is, A is executing some job at time .S }*(?)V . Therefore
k cannot receive a non-self—charge in Case (II).

Next, suppose that £ does not receive a self-charge. Since f(-) is one-
to—one, k can receive at most one non-self-charge in Case (II). If £ receives
a non-self-charge in Case (III) from a job j, then £ is started in A while
ADV is executing j, so k can receive only one such charge. Finally, if &
receives a non-self-charge in Case (II) then, by the definition of f(-), k&
is not a preemption candidate, so it cannot receive a non-self-charge in
Case (III).

We conclude that each job completed in A gets at most one charge of 1
and at most one charge of 1, and thus is charged a total of at most 2. Each
job in ADV generates a charge of 1. Thus, by summation over all jobs in
ADV, we have |[ADV| < 3| A|, completing the proof of the theorem. O

We now show that the competitive ratio of our algorithm is in fact
optimal.

Theorem 6.5.4 Let us consider the problem of online scheduling of equal-length
instances of jobs with allowed restarts, in the deterministic or randomized model
with the standard profit model.

Then there is no deterministic algorithm solving this problem better than 3—
competitive. There is no randomized algorithm solving this problem better than
S—competitive.

Proof: For p > 2, consider four jobs given in the form j = (r;,d;): 1 =
(0,3p+1),2=(1,3p),3=(p,2p),4 = (p+1,2p+ 1). The instance consists
of jobs 1,2,30r 1,2, 4.

There exist schedules that schedule three jobs 1, 3, 2 or three jobs 2,4, 1,
in this order. (See Figure 6.4.) Therefore the optimal solution consists of
three jobs.

In the deterministic case, release jobs 1 and 2. If at time 1, job 2 is started
in the online algorithm, release job 3, otherwise release job 4. The online
algorithm completes only two jobs. As the optimal schedule has three jobs,
the competitive ratio is no better than 3.

Our proof for randomized algorithms is based on Yao’s principle [61,
15]. We define a probability distribution on our two instances, as follows:
Always release jobs 1 and 2, and then a randomly chosen one job from 3
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Figure 6.4: Jobs used in the lower bounds with restarts.

and 4, each with probability 1. If A is any deterministic online algorithm,
then the expected number of jobs completed by A is at most 2.5, as on
one of the instances it completes only 2 jobs. Using Yao’s principle, we
conclude that no randomized algorithm can have competitive ratio smaller
than3/2.5=2. 0

6.6 Barely random model

First, addressing an open question in [29, 30], we give a 2—competitive
randomized algorithm. Interestingly, our algorithm is barely random; it
chooses with probability 1 one of two deterministic algorithms, i.e., it uses
only one random bit. These two algorithms are two identical copies of the
same deterministic algorithm, that are run concurrently and use a shared
lock to break the symmetry and coordinate their behaviors. We are not
aware of previous work in the design of randomized online algorithms
that uses such mechanism to coordinate identical algorithms—thus this
technique may be of its own, independent interest.

In this section we present 2—competitive barely random algorithm. This
algorithm uses only one random bit; namely, at the beginning of compu-
tation it chooses with probability 5 between two deterministic algorithms.
We also show a lower bound for barely random algorithms: any random-
ized algorithm that randomly chooses between two schedules has ratio at
least 3. If these schedules (algorithms) are chosen with probability 1 each,
we improve the lower bound to .

Algorithm RANDLOCK. We describe our algorithm in terms of two iden-
tical processes that are denoted by & and ). Each process is, in essence,
a scheduling algorithm that receives its own copy of the input instance J
and computes its own schedule for J. (This means that a given job can
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be executed by both processes, at the same or different times.) We chose
to use the term “process” rather than “algorithm”, since X and ) are not
fully independent; they both have access to a shared lock mechanism used
to coordinate their behavior.

Each process X and Y is defined as follows:

(RL1) If there are no pending jobs, wait until some job is released.

(RL2) If the set of pending jobs is not flexible, execute the ED pending
job.

(RL3) If the set of pending jobs is flexible and the lock is available,
acquire the lock (ties broken arbitrarily), execute the ED pending
job, and release the lock upon its completion.

(RL4) Otherwise, wait until the lock becomes available or the set of
pending jobs becomes non—flexible (due to progress of time or new
jobs being released).

Algorithm RANDLOCK selects initially one of the two processes X or ),
each with probability 3. Then it simulates the two processes on a given
instance, outputting the schedule generated by the selected process.

Before we analyze the algorithm, we illustrate its behavior on the in-
stance in Figure 6.5. Both processes schedule only three jobs, while the
optimal schedule has five jobs. Thus RANDLOCK is not better than 2-
competitive.

5p+1
10 p
1 3p-1
2 p
+1 2p+l
3 p p
2p+1 5p-1
3p+l 4p+1
X —
1 2 4
Y
2 1 4
Zz
2 3 4 5 1

Figure 6.5: An instance on which RANDLOCK schedules three jobs out of
five. Job 1 is executed as flexible by both processes; the other jobs are
executed as urgent.

Theorem 6.6.1 Let us consider the problem of online scheduling of equal-length
instances of jobs in the randomized model with the standard profit model. Above
we described algorithm RANDLOCK.

Then the algorithm RANDLOCK solves this problem and it is 3—competitive.
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Proof: Overloading the notation, let X and ) denote the schedules gener-
ated by the corresponding processes on a given instance .J. By rules (RL2),
(RL3), both schedules are normal. Fix an arbitrary schedule ADV for the
given instance J.

We start by modifying the schedules X’ and ) according to Lemma 6.4.2.
Define a partial function f# : J — J as follows. Let f4(k) = hif k
is a flexible job completed in X and & is a job started in ADV during
the execution of k in X and admissible at the completion of k£ in &, i.e.,
SE <SPV < CF < .. Otherwise (if k is urgent or no such h exists), f4(k)
is undefined. Note that if i exists, it is unique for a given k. Then we define
A to be the schedule constructed from X in Lemma 6.4.2 using function
fA(-). Analogously we define function f7(-), and we modify schedule ¥
to obtain schedule B. We stress that these new schedules A and B cannot
be constructed online as their definition depends on ADV; they only serve
as tools for the analysis of RANDLOCK.

Since A (resp. B) is equivalent to a normal schedule & (resp. ),
Lemma 6.4.1 still applies to A (resp. B) and the number of completed jobs
remains the same as well.

Throughout the proof we use the convention that whenever D denotes
one of the schedules A and B, then D denotes the other one.

Lemma 6.6.2 Let D € {A, B}, and let D be the other process of RANDLOCK.
Suppose that at time t D is idle or is executing an urgent job and D is idle. Then
each job admissible at time t is completed in D as a flexible job by time t.

Proof: The lemma is a direct consequence of the lock mechanism. By the
assumption, the lock is available at time ¢, yet the process corresponding
to D does not schedule any job. This is possible only if no job is pending.
Consequently, any job k admissible at time ¢ must have been completed in
D by time t. Furthermore, if k£ would be executed as urgent in D before
time ¢ then, since S <t < x;, Lemma 6.4.1 implies that D could not be
idle at time ¢. This shows that k is completed as a flexible job. O

The charging scheme Our proof is based on a charging scheme. Each
adversary job will generate a charge of 1. This charge will be distributed
among the jobs in schedules .4 and B, in such a way that each job in these
schedules will receive a charge of at most 5/6. This will imply the 5/3
bound on the competitive ratio of RANDLOCK.

Let jbe ajob started in ADV at time ¢ = S;*PV. Thisjob generates several
charges of different weights to (the occurrences of) the jobs in schedules
A and B. Each charge is uniquely labelled as a self-charge or an up—charge.
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Self-charges from j go to the occurrences of j in A or B, and up—charges
from j go to the jobs running at time ¢ in .4 and B. If one of the processes
runs j at time ¢, then the charge to this job may be designated either as an
up—charge or a self-charge; in Case (III) below such a j can even receive
both a self-charge and an up—charge from j. The total of charges generated
by j is always 1. The charges depend on the status of A and B at time ¢.
(See Figure 6.6.)

Case (I): Both schedules A and B are idle. By Lemma 6.6.2, in both .4 and
B, j is completed as flexible by time ¢. We generate two self-charges
of 1/2 to the two occurrences of j in A and B.

Case (IT): One schedule D € {A, B} is running an urgent job £ and the
other schedule D is idle. By Lemma 6.6.2, in D, j is completed as
flexible by time ¢. We generate a self—charge of 1/2 to the occurrence
of j in D and an up—charge of 1/2 to k in D.

Case (ITI): One schedule D € {A, B} is running a flexible job k and the
other schedule D is idle. We claim that j is completed in both A and
B. For D, this follows directly from Lemma 6.4.2(2). We now prove it
for D. If r; < SP,then Lemma 6.4.2(2) applied to time ¢’ = SP implies
that D completes j. If z; > CP then fP(k) = j, so D completes j by
Lemma 6.4.2(1). The remaining case, namely S,? <rj<t<uz; < C’,?
cannot happen, for this condition implies that j is tight and thus the
set of jobs pending at time ¢ for D is not flexible. So D would not be
idle at ¢, contradicting the case condition.

In this case we generate one up—charge of 1/3 to k in D and two
self-charges of 1/2 and 1/6 to the occurrences of j according to the
two subcases below. Let £ € {A, B} be the schedule which starts j
first (breaking ties arbitrarily).

Case (IIa): If £ schedules j as an urgent job and the other schedule
€ is idle at some time #' satisfying S < ¢’ < x;, then charge 1/6
to the occurrence of j in £ and 1/2 to the occurrence of j in €.
We make here a few observations that will be useful later in the
proof. Since in this case j is urgent in £, and £ is either idle
or executes a flexible job at time ¢, Lemma 6.4.1 implies that j
is executed in £ after time ¢. It also implies that £ runs urgent
jobs between S¢ and x;. This means that £ runs an urgent job at
t'. Since £ is idle at time t' by the case condition, Lemma 6.6.2
implies that € schedules j as flexible before time ¢'.
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Case (I1Ib): Otherwise charge 1/2 to the occurrence of j in £ and 1/6
to the occurrence of j in €.

Case (IV): Bothprocesses Aand B are runningjobs k 4 and kg, respectively,
at time t. We show below in Lemma 6.6.4 that in the previous cases
one of k4, kg receives a self-charge of at most 1/6 from its occurrence
in ADV. We generate an up—charge of 2/3 from j to this job, and an
up—charge of 1/3 to the other one. No self-charge is generated in this

case.
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Figure 6.6: Illustration of the charging scheme in the analysis of Algo-
rithm RANDLOCK. The figure gives examples of different types of charges.
In Case (IlIb), there are several illustrations that cover possibilities playing
a different role in the proof. (To reduce the number of cases, in the figures
for Case (III) we assume that j # k and j is executed in D before it is
executed in D.)

This completes the description of the charging scheme. Before we
resume the proof of the theorem, we prove two lemmas, the purpose of
which is to justify the correctness of the charges in Case (IV).
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Lemma 6.6.3 Assume that Case (IV) applies to j. Suppose also that kx, for some
F € {A, B}, is scheduled before j in ADV (that is, SpPY < t — p), and that ky
in F receives a self-charge of 1/2 generated in Case (IIIb) applied to kz. Then
]i)j: < kg.

Proof: Since k receives a charge of 1/2 in (IlIb), the choice of £ in Case (I1I)
implies that k£ is executed in F later than in F, that is S,ff > S,Z; > t—p. On

the other hand, S,ff_ < t,s0 kx must be executed in F after k7. Furthermore,
S{, >t—p = Sp" = 1y, and thus ky is pending in F when k7 is started.
Since F is EDF, we have kz < kz, completing the proof. O

Lemma 6.6.4 Assume that Case (IV) applies to j. Then for some D € {A, B}
the self—charge to kp in D does not exceed 1/6.

Proof: Note that self—charges are generated only in Cases (I)-(IlI) and any
self-charge has weight 1/2 or 1/6. Assume, towards contradiction, that
both k4 and kg receive a self-charge of 1/2. At least one of k4 and kg
is scheduled as urgent in the corresponding schedule, due to the lock
mechanism. Thus k4 # kg, as (I) is the only case when two self-charges
1/2 to the same job are generated and then both occurrences are flexible.
Furthermore, if j = kg, for some G € {A, B}, then kg would not receive
any self-charge. Thus k4, kp, and j are three distinct jobs.

Choose D such that kp is urgent in D (as noted above, such D exists).
The only case when an urgent job receives a self-charge of 1/2 is (Illb). By
Lemma 6.4.1, D executes urgent jobs at all times ¢, t < ¢’ < zy,, which,
together with the condition for Case (III) applied to kp (namely that D
is either idle or executes a flexible job at SpPY), implies that SpPV < ¢.
As j # kp, it follows that SpPV < t — p. By Lemma 6.6.3, kp < kp and
Ty < Tpp. Furthermore, since (I1la) does not apply to kp, D is also not idle
atany time t', t <t' < xy,,.

We now show that the assumption of a self—charge of 1/2 to k5 in D leads
to a contradiction. The proof is by considering several cases. In most cases
the contradiction is with the fact that, as shown in the previous paragraph,
both processes are busy at all times between ¢ and z;,,. (Keeping in mind
that l’kﬁ < SL’kD.)

If this charge is generated in Case (I) or (II) then, by the case conditions,
D would be idle at time S2PV, and we would have SpPV > SP ) and thus
t < S,?ﬁDV <z, which is a contradiction.

Suppose that this self-charge is generated in Case (III). Similarly as
before, the condition of this case implies that one process is idle at time



116 CHAPTER 6: ONLINE SCHEDULING OF EQUAL-LENGTH JOBS

SeDV, so we must have SpPV < ¢, for otherwise we would have again an
idle time between ¢ and .

We have now two subcases. If the self-charge originated from
Case (Illa), the condition of this case implies that there is an idle time
t' between S,?gv and 2. Ast < ' < x;_, this is again a contradiction.

The last possibility is that this self-charge originated from Case (IIIb).
But then S,?ﬁDV <t—p,asj # kp, and Lemma 6.6.3 above applies to k.
However, the conclusion that kp < kp contradicts the linearity of < as
kp # kp and we have already shown that kp < kp.

Summarizing, we get a contradiction in all the cases, completing the
proof of the lemma. O

Continuing the proof of the theorem, we now show that the total charge
to each occurrence of a job in A or B is at most 5/6. Suppose that £ is
executed in D € {A,B}. During the execution of k£ at most one job is
started in ADV, thus £ gets at most one up—charge in addition to a possible
self-charge. If k does not receive any up—charge, it is self-charged 1/2 or
1/6, i.e., less than 5/6.

If k receives an up—charge in (II), then k is an urgent job and, since D
is idle, it is already completed in D, so SP < SP. The only case where
the occurrence of k that is later in time is urgent and receives a self-charge
is Case (IIIb), and in this case this self-charge is 1/6. So the total charge
would be at most 1/6 + 1/2 < 5/6.

If a job receives an up—charge in (III), the up—charge is only 1/3 and
thus the total is at most 1/3 + 1/2 = 5/6.

If a job receives an up—charge in (IV), Lemma 6.6.4 implies that the up—
charges can be defined as claimed in the case description. The total charge
is then bounded by 1/6 +2/3 =5/6 and 1/2 4+ 1/3 = 5/6, respectively.

The expected number of jobs completed by RANDLOCK is (].A| + |B])/2.
Since each job in A and B receives a charge of at most 5/6, and all jobs in
ADV generate a charge of 1, we have (5/3)-(|.A|+|B|)/2 = (5/6)-(|.A|+|B|) >
|ADV|. This implies that RANDLOCK is 5/3—competitive. O

As discussed in the introduction, a lower bound of 4/3 is known for
randomized algorithms [29]. For barely random algorithms that choose
between two deterministic algorithms, we can improve this bound to 3/2.
Assuming also that the two algorithms are selected with equal probability,
we can further improve the bound to 8/5.

Theorem 6.6.5 Let us consider the problem of online scheduling of equal-length
instances of jobs in the barely—randomized model with the standard profit model.
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Suppose that R s a barely—random algorithm randomly chooses one of two deter-
ministic algorithms.
Then the algorithm R is not better than 2—competitive.

Proof: Assume that R chooses randomly one of two deterministic algo-
rithms, A and B, with some arbitrary probabilities. Let p > 3 and write
the jobs as j = (r;,d;). We start with job 1 = (0,4p). Let t be the first time
when one of the algorithms, say A, schedules job 1. If B schedules it at ¢ as
well, release a job 1’ = (t + 1,t + p + 1); the optimum schedules both jobs
while both A and B only one, so the competitive ratio is at least 2.

So we may assume that 5 is idle at t. Releasejob 2 = (t + 1,t + 2p + 2).
If BB starts any job (1 or 2) at t + 1, release job 3 = (¢t +2,t+ p + 2), otherwise
releasejob 4 = (t+p+1,t+ 2p + 1). B completes only one of the jobs 2, 3,
4. Since A is busy with job 1 until time ¢ + p, it also completes only one of
the jobs 2, 3, 4, as their deadlines are smaller than ¢ + 3p. So each of A and
B completes at most two jobs.

The optimal schedule completes three jobs: If 3 is issued, schedule 3
and 2, back to back, starting at time ¢ + 2. If 4 is issued, schedule 2 and 4,
back to back, starting at time ¢ + 1. In either case, two of jobs 2, 3, 4 fit in the
interval [t + 1,4+ 2p + 2). If t > p — 1, schedule job 1 at time 0, otherwise
schedule job 1 at time 3p > ¢ 4 2p + 2. Thus the competitive ratio of R is at
least 3/2. O

Theorem 6.6.6 Let us consider the problem of online scheduling of equal-length
instances of jobs in the barely—randomized model with the standard profit model.
Suppose that R s a barely—random algorithm randomly chooses one of two deter-
ministic algorithms each with probability 3.

Then the algorithm R is not better than $—competitive.

Proof: Assume that R chooses one of two deterministic algorithms, .4 and
B, each with probability 1/2. Let p > 3 and write the jobs in the format
j = (rj,d;). We start with job 1 = (0,6p). Let ¢ be the first time when one
of the algorithms, say A, schedules job 1.

At time ¢ + 1 release job 2 = (¢t + 1,t + p + 1). If B does not start 2 at
time ¢ 4 1, then no more jobs will be released and the ratio is at least 2.

We may thus assume that B starts 2 at time ¢t + 1 and then starts 1 at some
timet > t+p+1. Releasejob3 = (t'+1,t'+2p+2). If Astartsjob3att' +1,
releasejob 4 = (t'+2,t' +p+2), otherwise release 5 = (' +p+1,t'+2p+1).
By the choice of the last job, A can complete only one of the jobs 3,4, 5.
Since B is busy with job 1 until time ¢’ 4+ p > t' + 3, it also can complete only
one of the jobs 3,4, 5, as their deadlines are strictly smaller than ¢’ 4 3p. So
A can complete 2 jobs only and B can complete 3 jobs.
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The optimal schedule can complete all four released jobs. If 4 is issued,
schedule 4, 3, back to back, starting at time ¢ 4 2. If 5 is issued, schedule
3,5, back to back, starting at time ¢’ 4+ 1. In either case, both jobs fit in
the interval [¢' + 1,#' + 2p + 2). This interval is disjoint with the interval
[t+1,t+ p+ 1) where 2 is scheduled. Finally, these two intervals occupy
length 3p + 1 of the interval [0, 6p) and divide it into at most 3 contiguous
pieces; thus one of the remaining pieces has length at least p and job 1 can
be scheduled.

Summarizing, R completes at most (2 + 3)/2 = 2.5 jobs on average,
while the optimal schedule completes 4 jobs. Therefore the competitive
ratio is at least 4/2.5 = 8/5, as claimed. O
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Chapter 7

Conclusions

This thesis is based on our research interests in the area of approxima-
tion and online algorithms. We focused our effort on research of various
online scheduling problems which is a stand—alone part of the considered
area.

Because of the nature of methods of the competitive analysis the pre-
sented results concering the online scheduling problems are mostly lower
bounds and upper bounds. Thus some of results improve previously
known results and some of them are new results for studied restrictions of
the scheduling problems. The improvement means that we significantly
decreased the gap between the lower bound and upper bound of a studied
problem or we matched lower bound and upper bound for the problem.
As it is usual in this area the competition with the other researchers in the
exact competitive ratios for the studied problems remains open until the
upper bound and the lower bound are matched.

When we are talking about results concering closing the gap between
the lower and upper bounds for the online scheduling problems then we
developed two upper bounds and three lower bounds. We also developed
two interesting negative results for the online scheduling problems with
the resource augmentation.

All of the presented results with the exception of two results related to
resource augmentation (one negative result and one lower bound) were
already published or accepted in serious scientific journals.

Thus it remains to conclude our goals which we defined for this thesis
have been satisfied and our research in the studied area was successful
because interesting results were developed.
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