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Are continuous type models satisfactory?

Empirical facts of financial time series and how Diffusion
models (DM) and Models with Jumps (JM) can capture these
facts

Sudden movements, heavy tails
DM: extremely large volatility term need to be added
JM: generic property
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Figure: Left picture: Returns observed every 6 seconds. In the right one,
Brownian Motion incements with the same mean and variance.
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Glance at history

(1900) L. Bachelier: probabilistic modelling of financial
markets using Brownian Motion.

(1st half of 20th cent.) P. Lévy: Lévy processes
introduced.

(1963) B. B. Mandelbrot: α-stable distribution to model
cotton prices.

(1973) Black and Scholes: geometric Brownian motion.

(1976) R.C. Merton: (Poisson) Jump-Diffusion model.

(1998) O.E. Barndorff-Nielsen: Normal Inverse Gaussian
process.

(2000 - ...) Boom in Jump processes.
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What are Lévy processes

Assume a given probability space (Ω,F , (Ft),P), with usual
conditions.

Definition

We say that the process L = (Lt , t ≥ 0), L0 = 0 is a Lévy
process if

(i) L has stationary increments:
L(Lt − Ls) = L(Lt−s), 0 ≤ s < t <∞,

(ii) L has independent increments:
Lt − Ls ⊥ Fs , 0 ≤ s < t <∞,

(iii) L is continuous in probability: Lt
P→ Ls , t → s.

5
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Examples

Poisson process Lt ∼ Po(λt), λ > 0.

Density

P(Lt = k) =
(λt)k

k!
e−λt ,

Characteristic function

ψLt (u) = exp
(
λt
(
eiu − 1

))
.

Brownian motion

Characteristic function

ψLt (u) = exp

(
µtu − 1

2
σ2tu2

)
.

Remark
L is Lévy if and only if the distribution of Lt is infinitely divisible for
all t ≥ 0.
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Notation

We denote a jump size at time t

∆L(t) = L(t)− L(t−), 0 ≤ t <∞.

For A ∈ B(R) bounded below we define

N(t,A) = # {0 ≤ s ≤ t, ∆L(s) ∈ A} , 0 ≤ t <∞,

which is a Poisson process with intensity ν(A) = E [N(1,A)].
We introduce a Poisson integral

Lt =
∑

0≤s≤t

∆Ls =

∫
[0,t]×R

zN(ds,dz).

We define a compensated poisson random measure

Ñ(t,A) = N(t,A)− tν(A).

7
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Basic theorem I.

Theorem (Lévy-Itô Decomposition)

If L is a Lévy process then there is b ∈ R, σ ≥ 0 and a Poisson
random measure N with a Lévy measure ν satisfying∫

R
(1 ∧ z2)ν(dz) <∞,

such that

Lt = bt+σWt+

∫
|z|≤1

zÑ(t, dz)+

∫
|z|>1

zN(t, dz), 0 ≤ t <∞.

(2.1)

The small jumps part
∫
|z|≤1 zÑ(t,dz) is an L2-martingale

Large jumps part
∫
|z|>1 zN(t, dz) is of finite variation, but

may have no finite moments
8
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Basic theorem II.

Theorem (Levy-Khintchine formula)

Let L be a Lévy process, then

EeiuLt = etψ(u),

u ∈ R, t ≥ 0 and

ψ(u) = ibu − 1

2
σ2u2 +

∫
R\{0}

(
eiuz − 1− iuzI[|z|<1]

)
ν(dz).

As an immediate result we can see that the law of a Lévy
process L is uniquely determined by the law of L1.

9
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Pathwise properties

Essentially driven by jumps, càdlàg paths.

As an immediate result of Lévy-Itô decomposition we see
that for every Lévy process∑

0≤s≤t

|∆Ls |2I[|∆Ls |<1] <∞, ∀t ≥ 0, a.s.

but we allow∑
0≤s≤t

|∆Ls |I[|∆Ls |<1] =∞, ∀t ≥ 0, a.s.

in which case L is of infinite variaton.

10
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Modelling with Jump
Processes
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Lévy
Processes

Definitions

Basic Theorems

Modelling
with Jump
Processes

Time
Transformation

Proposed
Models

Estimation of
Parameters

Optimal
Control

Economic Model

Theoretical
Results

Empirical
Results

Bibliography

Outline of modelling phase

1 Making the series stationary

we assume that the nonstationarity is basically caused by
variable intensity of trading,
overcome by appropriate time change.

2 Selecting a model

based on empirical facts (moments, variation, tail
behavior).

3 Choosing a fitting procedure and get the parameters

if analytical density is known, MLE method is used,
otherwise GMM method based on characteristic function
can be applied.

12
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Variation

Remark

Let L be a Lévy process of the form (2.1), ∆n
t = {t0, . . . , tn} arbitrary

partition of interval [0, t]∑
∆n

t

(
Lti − Lti−1

)2 P→ σ2t +
∑

s∈[0,t]

[∆(Ls)]2
, ‖∆n

t ‖ → 0.

In other words, our estimator of volatility may be deformed by big
jumps. Alternatives

BiPower Variation (Barndorff 1998)

π

2

∑
∆n

t

|Lti − Lti−1 ||Lti−1 − Lti−2 |.

Truncated Quadratic Variation (Hannig 2009)∑
∆n

t

(
Lti − Lti−1

)2 I[|Lti
−Lti−1

|<g(∆ti
)].

are both consistent estimators of σ2t.
13
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Comparison of different estimates of
standard deviations
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Figure: Transformed time: green line = Quadratic variation, red =
truncated QV, blue = BiPower variation.
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Petrásek,

Supervisor:
Mgr. Karel
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Normal Inverse Gaussian

Process can be expressed as Lt = B(Tt), where

Tt = inf {s > 0; Ws + αs = δt} ,

and Bt is a Brownian motion with drift θ and volatility σ.

Pure jump model with infinite variation.

Exponential tail decay.

Probability density in a closed (analytical) form (Bessel
function), i.e. MLE possible.

15



Modelling
with Jump

Processes and
Optimal
Control

Mgr. Jakub
Petrásek,
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Merton Jump-Diffusion

Process can be expressed as

Lt = αt + σWt +
Nt∑
i=1

Yi , t ≥ 0,

i.e. Brownian motion with big gaussian jumps.

Tails a little heavier than gaussian.

Probability density function can be expressed in a series
expansion. We use first order approximation

fL∆t
(x) = (1− λ∆t)fW∆t

(x) + λ∆t (fW∆t+Y1) (x).

16
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Estimation method

Maximum Likelihood method performed1.

NIG model

Time scale ᾱ µ σ θ
T 0.080051 -0.00012 0.3499268 0.0001245

T 0.090008 -0.00101 0.3468827 0.0010085

Merton model

µ σ γ δ λ
T -0.000201 0.087893 0.000260 0.6708204 0.316296

T -0.000289 0.099935 0.000778 0.6708204 0.287545

Table: Comparison of maximum likelihood estimates.

1Estimation performed in software R. Quasi-Newton optimization
method, which allows constraints of parameters, was used.
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Graphical inference

−2 −1 0 1 2

0
1

2
3

Figure: Estimated probability density function: green (solid) line = NIG,
red (dashed) = Merton Jump, blue (dotted) = Gaussian.
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Optimal Control
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Model set-up I.

Consider an investor placing his money into two assets

riskfree, paying interest rate r

risky asset with dynamics

dFt = αdt + σdWt +

∫ ∞
−∞

zÑ(dt,dz). (4.1)

An investor controls

the number of Ft , t ≥ 0 in his portfolio by ∆t ,

consumption Ct ≥ 0.

i.e. the dynamics of his portfolio is of the form

dXt = ∆t

(
αdt + σdWt +

∫ ∞
−∞

zÑ(dt,dz)

)
+ rXtdt − Ctdt.(4.2)

with X (0) = x , ∆t ∈ Ft− (predictable), Ct ∈ Ft .
20
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Model Set-up II.

The objective of an investor is

v(x) = sup
(∆t ,Ct)∈A(x)

∫ ∞
0

e−βtE U(Ct)dt, (4.3)

where A(x) is the set of admissible strategies, β a discount factor
and U denotes a power utility function of the form

U(x) =
x1−p

1− p
, p > 1.

Notation

θp(t) = ∆t

Xt−
is the number of assets in the portfolio per one

money unit at time t and let

ct = Ct

Xt−
denotes the proportional consumption.
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Personal risk aversion

Assume geometric BM model, one needs to consider

the maximal proportion of wealth an agent would invest.
Example toin coss, winner takes 1.2 of a bet, agent’s
wealth is 1000000.

Risk Aversion Coefficient
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Figure: Maximal (red) and optimal (blue) invested amount of money.
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Personal risk aversion

draw-down probability Pp(x) = x2p−1, It is the probability
that the investor’s discounted wealth will ever fall below
fraction x of the initial wealth.

Example

Logarithmic utility function: P1(x) = x . The probability of
losing (1− x) percent of investment is x

Power utility function for p = 1/2. An agent loses (1− x)
percent of investment with probability 1 for any 0 ≤ x ≤ 1.
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Theorem (Optimal Proportion and Consumption)

Assume the portfolio (4.2) and the objective (4.3). Let

θ∗p = argmin h(θp) = argmin
{
αθp(1− p)− 1

2
σ2θ2

pp(1− p)

+

∫ ∞
−∞

(
(1 + θpz)1−p − 1− θpz(1− p)

)
ν(dz)

}
.

Assume also that

β − r(1− p)− h(θ∗p) > 0. (4.4)

Then

θ∗p is the optimal proportion,

c∗ = (K (1− p))−1/p is the optimal consumption,

v(z) = Kz1−p is the value function,

where K = 1
1−p

(
β−r(1−p)−h(θ∗p )

p

)−p

.
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Lévy
Processes

Definitions

Basic Theorems

Modelling
with Jump
Processes

Time
Transformation

Proposed
Models

Estimation of
Parameters

Optimal
Control

Economic Model

Theoretical
Results

Empirical
Results

Bibliography

A short comment on the theorem

A similar theorem presented for geometric Lévy process
with ∫

R
ν(dz) <∞,

which is extremely restrictive, see (Framstad 1998). The
authors considered power utility function with 0 < p < 1,
which describes an extremely aggressive investor.

Assumption (4.4) grants that agent’s consumption is
positive and that his discounted well-being tends to zero
as t →∞.
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Merton proportion

Let us denote

Merton proportion

θ∗Mp =
α− r

pσ2
,

Merton consumption

c∗M = A(p) =
β − r(1− p)

p
− 1

2

(α− r)2

σ2

1− p

p
.

How will the proportion and the consumption be changed after
adding jumps into the model?

26
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Janeček MBA,
Ph.D.

Introduction

Lévy
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Optimal consumption and portfolio -
preparation

An empirical study was performed.2 Futures is a martingale
with respect to the risk neutral measure. To compare optimal
portfolios based on different models we:

standardized the data, so that σ ≈ 30%,

α is set as 7%.

Assume that our (Futures) returns behave like stock
log-returns but with different volatility and drift.

2Computation performed in software R. Integrals numerically evaluated,
adaptive quadrature applied. Nonlinear equation solved by Newton method.
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Optimal consumption and portfolio - results

Model Naive Merton NIG Merton Jump

p = 4 θ∗p 0.141150 0.104904 0.086328
c∗p 0.042647 0.042329 0.041673

p = 10 θ∗p 0.056460 0.047433 0.035010
c∗p 0.029270 0.029186 0.028809

p = 40 θ∗p 0.014115 0.012392 0.008806
c∗p 0.022344 0.022328 0.022220

p = 70 θ∗p 0.008066 0.007121 0.005036
c∗p 0.021342 0.021333 0.021270

Table: Comparison of optimal proportion and consumption for Merton and
Jump models. β = 10 %, r = 2%, α = 7 %, σ = 0.3.
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Janeček MBA,
Ph.D.

Introduction

Lévy
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Estimation of Lévy Processes in Mathematical Finance: A
Comparative Study.
Web page of International Congress on Modelling and
Simulation, 2005.

32



Modelling
with Jump

Processes and
Optimal
Control

Mgr. Jakub
Petrásek,
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