Motion of atomic nuclei in Galactic magnetic field

We use a simple method to model a propagation of cosmic rays in a wide range of energy (from 1e13 eV to the value 1e19 eV).

Trajectories were obtained by numerical integration. **Equation of motion**

$$\vec{F} = q(\vec{v} \times \vec{B})$$

Lorentz force on a particle with a charge **q** moving with a velocity **v** in a magnetic field **B**.

Magnetic field in the Galaxy

1) Regular component - global GMF

Bisymmetric model with spiral structure (Han & Qiao, 1994)
We have made (with M. Prouza) our model of poloidal (magnetic dipole) and toroidal field (in Galactic halo).

2) Turbulent components (are not included within global GMF)

From observations we know that have following properties:small length scale (< 150 pc)even three times stronger

• random orientation

We have modelled them by the cells located in random positions, which have turbulent field inside (random strength and orientation).

Radomír Šmída, smida@fzu.cz

Starting conditions

• Chemical composition (Wiebel-Sooth et al., 1998)

The abundance of the representative elements of each interval of atomic mass at energy equal to 1e12 eV: 42% H, 26% He, 13% C, 9% Mg, 10% Fe

Position

The positions of Galactic Supernova Remnants

Radomír Šmída, smida@fzu.cz

Results of computer modelling

• Change around **1e16 eV** in flux of particles (close to the position of well-known observed feature in energy spectra known as a **knee**)

• All nuclei with energy higher than **1e18 eV** escaped from Galaxy

• Change of the **chemical composition** above position of the knee

Radomír Šmída, smida@fzu.cz

Thank you for your attention!