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Motivation and goals of the research

e Motivation: Flow in artificial vascular grafts, flow in industrial pipes, flow in glottis

e Qualitative properties of the solution of Navier-Stokes equations near the corners:

— Asymptotic behaviour of the solution in the vicinity of the corners
— A priori error estimates

— A posteriori error estimates
e FEM solution of incompressible flows in tubes with abrupt changes of diameter:

— Adaptive mesh refinement using a posteriori error estimates
— A priori error estimates applied to adjusted mesh generation

— Solution of flows of incompressible viscous fluid with high precision
e Stabilization techniques for FEM

— Stabilization techniques for FEM using Galerkin Least Squares method

— Verification by means of a posteriori error estimates

e Numerical experiments



Artificial vascular grafts:
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Fig.1 Geometry of the periodic grooved channel with circular corrugations.
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Fig.2 Geometry of the periodic grooved channel with rectangular
corrugations.

Fig. 0.1: Profiles of artificial vascular grafts



MAC method results:
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Fig. 0.2: Velocity vectors - pulsatile flow
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2. Navier-Stokes equations for incompressible viscous fluids -
classical formulation
2.1. Unsteady two-dimensional flow

Q) C R? ...domain with boundary T" filled with a fluid
Find u(x,t) = (u1(x, 1), us(x,t)) € [C*()]* and p(x,t) € C () /R satisfying

(Z—ltht(u-V)u—l/Au—FVp = f inQx]0,T] (2.1)

V-u =0 inQx[0,7T] (2.2)

u = g onl'yx[0,7] (inflow and wall)

Boundary conditions { —v(Vun+pn = 0 onT} x [0,T] (outflow)

Initial condition u=uy in, t=0

e u(x,t) ...vector of flow velocity [m/s]

e p(x,t) ... pressure divided by density [Pa - m?3/kg]

e v ... kinematic viscosity of the fluid [m?/s]

e f(x,t) ...vector of intensity of volume forces per mass unit [N/kg]
e [, and T ...subsets of I satisfying T =T, UT},

e n ...unit outer normal vector to the boundary I



2.2. Steady two-dimensional flow

For the case of steady flow, the Navier-Stokes equations are reduced to

(u-Viu—vAu+Vp = f inQ
V-u =0 inQ

and boundary conditions to

u = g only
—v(Vu)n+pn = 0 onT),

2.3. Steady 2D Stokes problem

In case of the Stokes flow the first (nonlinear) term in (2.3) is omitted:

—vAu+Vp = f in(Q

V-u =0 inQ
and boundary conditions are the same as in (2.5), (2.6).

(2.3)
(2.4)

(2.5)
(2.6)

(2.7)
(2.8)



2.4. Unsteady axisymmetric flow

Now consider the system of Navier-Stokes equations for incompressible viscous fluid
in 3D, cf. [19]. Transforming the cartesian system of coordinates {x1, z2, 3} into the
cylindrical system of coordinates {r, p, z} where x; = rcosp; xy = rsiny; x3 = z,
and considering axialy symmetric flow (variables are independent of ), we obtain
Navier-Stokes equations in the form (cf. e.g. [])

ou ou ou Pu  10u  O*u dp ,
ov  Ov ov v 10v v op ,
E‘FUE—FU&—V(W ;a—ﬁ @)‘F%—fr IHQX[O,T](Z].O)
ov v Ou ,
Where E ; % = 11 Q X [O,T] (211)

e u denotes the axial component of velocity (direction of z-coordinate) considered
in m/s, which is a function of z,r and ¢

e v denotes the radial component of velocity (direction of r-coordinate) considered
in m/s, which is a function of z,r and ¢

o f = (f.,f.)! denotes the density of volume forces per mass unit considered in
N/m?, which could be a function of z,r and ¢

Equations (2.9)-(2.11) govern the axisymmetric flow in a domain  C R?, where the
generic point of R? is now denoted by x = (z,7)T for arbitrary ¢.



2.5. Navier-Stokes equations - variational formulation
Vector function spaces

vV, = {V:(vl,vg)\ve [HY(Q))% Tr v = gi,i = 1,2, on rg}

V = {V = (v, v9) | v € [HY Q)% Trv; =0,i =1,2, on Fg}

Find u(x,t) = (u1(x,t),us(x,t)) € V;, u—u, € V and p(x,t) € Ly(2)/R satisfying
for any t € [0,T)
Ju

—-VdQ+/(u-V)u-de+V/Vu:VVdQ—/pV-VdQ = /f-de
o Ot 0 0 0 0

/wv-udﬂ = 0
Q

forv eV and ¥ € Ly(1).
e u, ¢ I, is a representation of the Dirichlet boundary condition g

. - 8“:10 81}(1; aum a'Ux auy 8vy au:y a’Uy
e Vu: Vv = ox 8:c+ Jy 8y+8:c 8:c+ dy 0Oy




3. Approximation of the problem by FEM

e Divide 2 into NV finite elements Tk such that

N
UTk =9, ppe (T NT1) =0,K # L
K=1

e Taylor-Hood finite elements(cf. Fig. 3.1) — function spaces for approximation:

velocities

V= {vi = (.)€ @ o,
pressure and test functions for the continuity equation

Qn = {% € C(); ¥y |nc€ RI(T_K)}

test functions for momentum equations

Vi = {Vh = (vn,, Un,) € [C(V)%; vn, |1 € Ro(Tk), i = 1,2, v; = 0 in nodes on Fg}

7.€ Ro(Tx), i = 1,2, v; = g in nodes on I‘g}

where

= P.(Tx), if Tk is a triangle
Qm(T_K), if Tk is a quadrilateral



Taylor-Hood elements:

n
&’Um,'l}y,p $Uzavy Vg, Uy, P
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Fig. 3.1: Taylor-Hood elements: quadrilateral - left, tringle - right

Taylor-Hood elements satisfy Babuska-Brezzi condition (in f-sup condition)

3ep>0.const. Yauen Ivievyn (@n, V- Vi)o = Cllanllo]|vall1- (3.1)



3.1. Discretization of steady Navier-Stokes equations by FEM

Consider the variational formulation of the steady Navier-Stokes equations. Since the
function spaces satisfy V,;, C V,, Vi, C V, and @5, C La2(€2)/R for prescribed arbitrary
value of pressure (e.g. p, = 0) in one node, we can introduce approximate steady
Navier-Stokes problem:

Seek u;, € Vi, and py, € @), satisfying

/(uh -V)uy, - v,dQ2
0

-I-V/ Vuy, : Vv,dQ — /phv - v dQ) = / f- Vth, Vv, € V), (32)
Q Q Q

/ th . U_th = O, V¢h - Qh (3.3)
Q
u, — Ugp - Vh (3.4)

where u,;, € Vi, is the projection of u, onto the space V.

Using the shape regular triangulation and refining the mesh such that h,,,, — 0
where

hmaaz = mfzgx hK7

the solution of the approximated problem converges to the solution of the continuous
problem (for more cf. e.g. Brezzi, Fortin [4]).



3.2. Discretization of unsteady Navier-Stokes equations

To solve the unsteady Navier-Stokes equations (2.1)-(2.2), we need to discretize the
system both in space and time. Two techniques are avaiable:

e Method of lines (MOL)

1. step — semidiscretization in space (e.g. by FEM)
2. step — discretization in time (e.g. by the Euler method)

e Rothe's method

1. step — semidiscretization in time

2. step — discretization in space



3.3. Space semidiscretization of unsteady Navier-Stokes equations by FEM

Let us perform space semidiscretization of the system (2.1)-(2.2) by the FEM in the
context of the MOL. Extending derivations for the steady case in Chapter 3.1, we
introduce the problem:

Seek uy(t) € Vi, t € [0, 7] and pi(t) € Qn, t € [0,T] satisfying

% : Vth + /(uh . V)uh . Vth + I// Vuh . VVth —
o Ot 0 0
— / oV - v,dQ) = /f . Vth, Vv, € V), (3.5)
Q Q
YRV -updQ) = 0, Yy, € Qp (3.6)
Q

u, —uy, € Vi, (37)



3.4. Time discretization of unsteady Navier-Stokes egs. by the Euler method

Consider partition of the time interval [0,7] into M time intervals with M + 1 time
layers. The constant time step between n-th and (n + 1)-st time layer is denoted by ¥.

Apply the implicit Euler method (backward difference method), i.e. time derivative

is substituted as
ouy, - u) -l
ot 9
This leads to fully implicit method for seeking uy, in (n 4 1)-st time layer:

Seek ui™ € V,;, and pitt € Q, satisfying

1
5 / )t v, dQ + / (Wt V)u v, dQ + v / Vui ! Vv, dQ —
Q Q Q

1
_ / PV v, dQ — = / uy - v dQ = / £+ v,,dQ, Vv, € Vi(3.8)
0 Y 0 Q

/WV . uZ‘leQ = 0, Yy, € Qp (3.9)
Q
u/ - ug,jl e V (3.10)

Resulting nonlinear algebraic system is then solved by the Newton method.



4. Splitting technique for the Navier-Stokes equations

Apply the idea of splitting to the Navier-Stokes equations (2.1), (2.2) e.g. as done by

R. Glowinski in [19]:
Initially put: u’ = u,.
Then for n > 0, we obtain u”™! from u” via
%—‘; —vAu+Vp=f inQx [t" "]
V-u=0 inQx [t "],
u(t") =u",
u=g on 90 x [t" t"1]

Stokes

transport u(0) = u™tz,
1
nTa

u"t = u(At),
Here " = {z| z € 0Q, g""'(z) - n(z) < 0},

means the inflou part of the boundary (n(x) is the outgoing normal).

(4.1)

(4.2)

(4.3)

(4.4)
(4.5)



5. Asymptotic behaviour of the solution near corners
Introduction

e Motivation: numerical solution of flow of incompressible fluid in tubes with abrupt
changes of diameter.

e We study the axisymmetric flow governed by the Navier-Stokes equations.
e Concern in the asymptotic behaviour of the solution near the corners.

e The asymptotic behaviour of the exact solution of the NSE in the vicinity of
the corner is obtained using some symmetry of the principal part of the Stokes
equation, and then applying the Fourier transform.

e Our aim is to make use of the information on the local behaviour of the solu-
tion near the corner point, in order to suggest local meshing subordinate to the
asymptotics.

e Later we present a cheap strategy to be applied to families of triangular elements.



Solution of Navier-Stokes equations near the corner - the axisymmetric case

e The asymptotics of the biharmonic equation for the stream function v are basic.

e Here we concentrate on pipe flow (axially symmetric).

The stream function - vorticity formulation in cylindrical geometry:

a—w—l— a—w-|— a—w-|_ E— 82_w+(92_w+18_w_£ (51)
BT Uiy s - =Vl aatastog T2 | :
0% 0% 1Y
022 * o ror (5-2)
10y
up = S (5.3)
1
U = _Lov . (5.4)
e w is the vorticity, r Oz
e ¢ is the stream function,

r, z are cylindrical coordinates,

e u; = V,,us =V, are in turn axial and radial velocity components,

e v is the viscosity.



Substituting w, uy, us from (5.2) — (5.4) into (5.1), and substituting
Z—R)y =X, r—Tr9 =Y,
we get, on a model domain €2 (see Fig. 5), with the internal angle w, 0 < w < 2

Fig. 5.1: The solution domain {2

1 ooty 1 oy 0% 1 oy 0%
TP 0y 958 (y+10)2 Oy 020y | (y+ ro)® Dy Dy
1 O O N 1 W 1 oy
(y +10)2 0z 0220y (y+10)20x 0y®  (y+ro)* 0z dy
1ot o4 o
- Y+ To(a_yzf - zﬁngxQ * 8;‘6 — (55)
1 By Py Py O 3 3 o

_(y +19)2 03 0x20y  Oxdy? + 8y3) (y + 70)3 Ox? B (y +ro)* 0x



We first restrict ourselves to the principal part part of equation (5.5), namely

9 4 4
Voo v L 0u
oxt 0x20y?  oy*

f, (5.6)

where we first assume f = 0.

The boundary conditions are 5
0 =0, a_w -0
0 " 1o9y

where n is the outgoing normal to the boundary 0€).

Using polar coordinates p, v, ,
xr =p cost, y =p sinv,

on the infinite cone SNIO:

~

QOZ{(pvﬁ)7 0<p<oo, a’<7~9<ﬁ}7 (57)

where 3 — a = w, and substituting |
7=1In-, (5.8)

we get P

[(wTTTT + 4¢T’7’T + 4¢TT> + 4¢ﬂ919 + 2¢TT1919 + %9191919 + 4¢1919] =0 (59)

on the infinite strip
T € (—00,+00) , ¥ € (a, B). (5.10)



Performing the Fourier transform with respect to 7,

—+00

B0 9) = (2m)12 / eV (r, 9)dr, (5.11)

—0o0

Eq. (5.9) transforms to the ordinary differential equation
L9, iN0 = hygog + (=202 + 4N+ A)ihgy + (A —4iX> — 4\ = 0, (5.12)

where ¥ € («, 3). The operator L has the inverse operator R(\) which is a meromorphic
operator-valued function of A, each pole of R()\) having finite multiplicity.

Eq. (5.12) is a fourth order equation with constant coefficients, the characteristic
equation is the biquadratic equation

pt (=207 AN A) P+ (A —4i N — 4N = 0. (5.13)
And the solutions of (5.13) are
Hi2 = :i:)\, H34 = :f:()\ - 2I) (514)



Now we are in the position to use the following theorem by Kondratiev, Olejnik [25].

Theorem 5.1 Let f € M/gj(?zo) and let ¢ € VT/I;H(QO) be the solution of (5.6) satis-
fying the boundary conditions (5.7) on 0X2. Let

—01+2k1+6  —04+2k+6
O B s N M N (5.15)
2 2
Suppose that the resolvent function R(\) has no poles on the line Im A\ = h;.

Then the solution v has the form

pj—1

w(xn y) - Z Z ajspii/\j In® p- %;(19) + w(xv y)v (516)
7 s=0

where w satisfies (5.7), w € vall+4(§0), Vs € C> (), ajs = const., and \; are the
poles of multiplicity p; of the function R(\), satisfying

h < |m>\j < h;.

Now we can apply Theorem 5.1 to Eq. (5.6), with £ = 0, 6 = 4. We put h; = 2,
k=0, 6 =2.

Theorem 5.1 deals with the infinite cone &Nlo. The situation is a bit more complicated
in the conical domain €, and we refer to B. [5].



Finding the poles of R(\): According to (5.14), the general solution of (5.12) is
b = c1exp(AY) + coexp(—AV) + c3sin(20) + cq cos(20). (5.17)

The boundary conditions are R

_ 0 o0 —0 5.18
9=a.3 ’ 99 ’ (5.18)

Nontrivial solution of (5.17), (5.18) exists iff

exp(Aa)  exp(AfF) A exp(Aa) A exp(Af)
exp(—Aa) exp(—=A0) —Aexp(—Aa) —X exp(—Af)
sin(2a)  sin(25) 2 cos(2a) 2 cos(20)
cos(2a)  cos(20) —2 sin(2a) —2 sin(20)

R(\) = det = 0. (5.19)

E.g. for w =37 (. =0, 8 = 3m) the first root of (5.19) is i\ = —1.54448374,

which is simple, and by Theorem 5.1, the first term of the expansion is p!-5444837 j e
b(p, 0) = I gy (5.20)

By (5.3), (5.4), we get for the velocities, the expansion
w(p, ) = plPHWBHG () + ... 1=1,2, (5.21)

where the functions ¢; do not depend on p.
The same result in desk geometry by Kondratiev [24], Ladevéze, Peyret [26], M.
Dauge [15], where %% (p,9) = pt>15 ¢d(9) + ... .



6. A posteriori error estimates for the Stokes and NS equations

Introduction

e At present various a posteriori error estimates for the Stokes problem are available,
e.g. M. Ainsworth, J.T. Oden [?], R. Verfiirth [28], other references in B. [0].

Here focus on the - significant in adaptivity.

We derive own a posteriori estimate and trace the colorblue constants and their
sources.

In B. [6] and B. [7] a posteriori estimates for the Stokes problem in a 2D and 3D.

Discussion of adaptive stratey

Numerical results for a model of flow in a domain with corner singularity.



6.1. The Stokes problem and finite element solution

The Stokes problem in 2D: Q C IR* bounded Lipschitzian domain, given f& L?*(Q),
find {u,p} € H'(Q2)? x L2(Q) such that, in the weak sense,

—vAu+Vp = f inQ,
dvu = 0 inQ, (6.1)
u = 0 on 0N,
where u is the velocity vector, p is the presure, v > 0 is the viscosity. L3(f2) is the
space of L? functions having mean value zero. Let us denote (.,.)y the scalar product
in L?, and denote X = HJ(Q)? x L3(Q).
Stokes problem (6.1) variationally: find {u,p} € X

v(Vu,Vuy)g — (p,div uy)o + (pe, div )y = (f,ue)o V{u.,p} € X, (6.2)

Finite Element Approximation

For the FEM approximation take € a polygon in IR?, for simplicity.

Let {7, }1—0 be a regular (cf. [18]) family of triangulations of (2.

Vi, @y the finite element spaces of Taylor - Hood elements, velocities and pressure are
approximated as continuous functions of spatial variables.

The FEM approximation: find {u”,p"} € V}, x @y, such that, V{u”, p"} € V}, x Qy,,

*

v(Vu", Vul)y — (p", div u")y + (p, div u™)y = (f,ul), . (6.3)



6.2. A posteriori error estimate for the Stokes problem

Define the residual components on the elements K € Th by:

Ri(u"p") = f+vAu" — Vp", Ry(u",p") = div u". (6.4)
The error components are defined on 2 by

h h
€,L=U—U 76p:p_p )

where {u, p} is the exact solution defined in (6.2), {u", p"} is the approximate solution,
by (6.3). The X norm of {ey, e,} is

{ew, ep}”%( = (eu, eu)1 + (€, p)o-

Using the Poincaré-Friedrichs inequality, the Galerkin orthogonality, the Schwarz inequa-
lity, the interpolation properties of V", Q", and the estimate of the solution of the dual

problem, we get the theorem (proof in B. [0] is based on the ideas of Eriksson et al.
[16], and Babugka and Rheinboldt [3] )



Theorem 6.2 Let ) be a polygon in IR?. with Lipschitz continuous boundary. Let T"
be a regular family of triangulations of €. Let {u",p"} be the Hood-Taylor approxi-
mation of the solution {u,p} of the Stokes problem. Then the error {e,,e,} satisfies
the following a posteriori estimate

ledl1 + llepllo < 2 Cp Cr Cr Z (hKIRl(uh,ph)lo,K +
Kert (6.5)

2T

Remarks The constants Cp,C7, and Cr in Theorem 6.2 come in turn from the
Poincaré inequality, the interpolation properties of V},, ()5, and the regularity of the
dual problem, respectively.

Our result in Theorem 6.2 is in agreement with that of R. Verfiirth [28], though the
technique of the proof is different, and we do not require any regularity.

1
+ (| Ro(u”, p")o.se + hi Y
leOK

where are positive constants.



6.3. A posteriori estimates for 2D steady Navier-Stokes equations

Consider steady Navier-Stokes problem (2.1), (2.2), with boundary conditions (2.3).
Discretization by finite elements again with Taylor - Hood elements P2/P1.

Exact solution denoted by (u, uy, p) and the approximate FEM solution by (u?, uf, py).
The difference is the error

(eula Cuy s ep) = (Ul o U?, U2 — U'}217p _ ph)- (66)
For the solution (uq,us, p) we denote
U (1, uz, p, Q) = || (ur, ug, p) |7 = [[(wr, u2)|[7 o + 2150 (6.7)

8u1 2 0u1 2 8u2 2 6u2 2
- 2 g2 (28 o gz gz QO 249).

The estimate in Theorem 6.2 can be generalized to the Navier-Stokes equations:

[ (€u, eitz)”%,ﬂ + HepHg,Q < 52(“?7 ugvph)a (6.8)
where (cf. [28])
EXuf ub,p" Q) =C | > hK/ rirs) Yy / r2dQ| | (6.9)
KeTh Kerh ' TK

where hg denotes the diameter of the element T and r;, © = 1, 2, 3, are the residuals



8u ou 82uh 82uh 8ph
Il 1 1 1
™ f ( $+2 y>+V< $2+ y2> . (6 O)

0u2 L oub o*ub 0Pl op"
_ _ 9 11
" Ju = ( e T dy ) v <8x2 i Dy dy’ (6.11)
_ Ouf ouh
D T (6.12)

Let us note that due to our practical experience we use only the element residuals.

Denote also
b o) =0 | [t e+ [
Tk

rng] . (6.13)
Tk
Qualitatively the value of the constant C' not simple to determine, the sources seen in
Theorem 6.2. Important: C' doesn't depent on the mesh size and so can be determined
experimentally for general situation.

By computing of the estimates (6.8) we obtain absolute numbers, that will depend
on given quantities in different problems. We are mainly interested in the error related
to the computed solution, i.e. relative error. This is given by the ratio of absolute norm

of the solution error, related to unit area of the element Tk, ‘Tl ) EQ(u’f,uS " Tx),
and the solution norm on the whole domain €2, related to unit area W [(ul, ug, )13,
ie.

|Q‘ 52(“17“2717 TK)
I Tc| [1(uf, u3, p)IFq

R2(ul,ul, p" Ti) = (6.14)



6.4. Example: determination of the constant C

Example. Steady Stokes equations on one element, 2 = [0;2] x [0;2]. Let the exact
solution and corresponding boundary conditions be given as follows

v = 14 2%

vy = —3a?y,

p = 3vz® —3vy?, x€[0:;2], yel0;2],
and FEM solution

o = 32 -2 +1,

Ug = _3$2y7
p" = —0.04zy + bx + cy, where b = 0.1133333, ¢ = —0.0333333.

To determine the constant C' in the estimate (6.8)we compute
E2(wh vl pM) = C {h2/ [(ay + b — 6v)* + (az + ¢ + 6vy)*] dady
9)
+ / (327 — 62 + 2)2dxdy} — [(C"- 37838824,
Q

Then calculate

(01 — vy, v2 = 08, p — P")lanatytica = B-BI29TTA.

And so we get




6.5. Application to the adaptive mesh refinement and numerical results

Consider 2D flow of viscous, incompressible fluid in the domain with corner singularity
(see. Fig. 6.1).

925
1

30 10 145
(185)

Fig. 6.1: Geometry of the channel

Due to symmetry, we solve the problem only on half of the channel, cf. Fig. 6.2. BC: on
the inflow: parabolic velocity profile, at the outflow: 'do nothing’ BC. On the upper wall:
no-slip condition and on the lower wall: condition of symmetry (i.e. only y—component
of velocity equals zero). The parameters: v = 0.0001 m?/s, v;, = 1 m/s. The initial
mesh is in Fig. 6.2. Relative errors on the elements of the initial mesh are on Fig. 6.3.
s :
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Fig. 6.2: Initial finite element mesh

149 | 159 43 43 1.1 05 0.5 0.5 04 [ 04 0.3 0.3 [\

285 | 107.6 151 43 0.9 05 04 0.4 03 | 03 0.3 03 0

133 | 627 [117.3| 526 2838 31.0 305 | 25.1 9.9 47 22 13 05 03 [ 04 0.2 0.1 0

13.9 [ 345 163 26.7 8.9 125 12.7 9.1 4.0 23 16 13 0.6 0.6 0.6 0.3 0.2 Q

31 y uy } 37

Fig. 6.3: Relative errors on elements of initial mesh



Elements, where the relative error exceeds 3 % are refined, and new solution together
with new error estimates is computed. The refinements are on Figures 6.4 to 6.6. The
relative errors near the corners are shown on Figures 6.3, 6.8. Numerical results of velo-
city components, for pressure and streamlines are on Fig. 6.7. The corner singularities
caused by nonconvex corners seem to be approximated with high accuracy.

Fig. 6.4: Finite element mesh after first refinement

Fig. 6.5: Finite element mesh after second refinement

Fig. 6.6: Finite element mesh after third refinement
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Fig. 6.7: After third refinement: velocity v, (top left), velocity v, (top right), pressure p (bottom left),
streamlines near the corners (bottom rite)
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Fig. 6.8: Relative errors on elements of the third refinement




7. Application of a priori error estimates for Navier-Stokes equati-
ons to very precise solution
e Incompressible viscous flow modelled by the steady Navier-Stokes equations.

e Application of theoretical results: a priori error estimates of the FEM for NSE, and
asymptotic behaviour of NSE solution near corners.

e Our algorithm: generate the computational mesh in the purpose of uniform distri-
bution of error on elements

e Goal: very precise FEM solution on domains with corner-like singularities.

e Usual way to improve accuracy of solution by the FEM: the adaptive mesh refine-
ment based on a posteriori error estimates or error estimators. But: could be quite
time demanding, since it needs several runs of solution.

e Completely different method is applied in this chapter. Computational mesh is
prepared before the first run of the solution.

e Numerical results are presented for flows in a channel with sharp obstacle and in
a channel with sharp extension.



7.1. Algorithm for generation of computational mesh

Two main ‘tools’: The first is a priori estimate of the finite element error (cf. [18]):

1900wl < O[5 [0 oo S (i 0 Bn) | 3
o=l < (S T lipo) (S 1 )] 72

where hg is the diameter of trlangle Ty, and k = 2 for Hood Taylor elements.

The second tool is the asymptotic behaviour of the solution near the singularity. By
(5.21), for the angle o = %7‘(‘, the leading term of expansion for each velocity component
is ui(p, ) = p" (9 + ..., i =1,2 (7.3)
where p is the distance from the corner, ¥ the angle and ; is a smooth function. The
same expansion in the plane flow (cf. [23]), and also for the Navier-Stokes equations.
Differentiating by p, we observe %}’O)’ﬁ) — oo for p — 0.

Taking the expansion (7.3), we can estimate

TK

a2y C / P20 dp = C [ P 4 (e — b)Y (7.4)

rk—hK
where 7 is the distance of element Tk from the corner, cf. Fig. 7.1.

Putting estimate (7.4) into the a priori estimate (7.1) or (7.2), we derive that we
should guarantee

h% [—T%V_k) + (TK - hK) 20~ )] href (75)

in order to get the error estimate of order O(h Tef) uniformly distributed on elements.



From this expression, we compute element diameters using the Newton method in

accordance to chosen h,.;.
element T

reh] | hy
rT

Fig. 7.1: Description of element variables

Geometry and design of the mesh

Algorithm applied to two different computational domains in 2D. The first is the channel
with sudden intake of diameter (Fig. 7.2 - left), the second is the channel with abruptly
extended diameter (Fig. 7.2 - right). Due to symmetry, the problem solved only on the
upper half of the channels. 3000 3000

0
Y
Q

1%;
212000

24000

(185) 9000

Fig. 7.2: The first geometry (left), the second geometry(right)

In the first case, diameters of elements computed for values h,.; = 0.1732 mm,
k =2, v =0.5444837. Starting distance 1 = 0.25 mm from the corner.

This corresponds to cca 3% of relative error on elements. Fourteen diameters of
elements obtained (see Table 7.1(left)).

For the second channel, we used h,.; = 0.1732 m, k = 2, v = 0.5444837 and
started in the distance r; = 300 mm from the corner. Fifteen diameters of elements
were obtained (see Table 7.1(right)).



i | r; (mm) | h; (mm) i | r;(m) | h;(m)
1 | 0.25000 | 0.06004 1 | 0.30000 | 0.06956
2 | 0.18996 | 0.04808 2 | 0.23044 | 0.05621
3 | 0.14189 | 0.03795 3 | 0.17423 | 0.04483
4 | 0.10394 | 0.02947 4 | 0.12940 | 0.03522
5 | 0.07447 | 0.02245 5 10.09419 | 0.02720
6 | 0.05202 | 0.01674 6 | 0.06699 | 0.02059
7 | 0.03527 | 0.01217 7 | 0.04640 | 0.01524
8 | 0.02311 | 0.00858 8 | 0.03116 | 0.01098
9 | 0.01453 | 0.00584 9 | 0.02017 | 0.00767
10 | 0.00869 | 0.00380 10 | 0.01250 | 0.00515
11 | 0.00489 | 0.00234 11 | 0.00735 | 0.00330
12 | 0.00255 | 0.00134 12 | 0.00405 | 0.00199
13 | 0.00121 | 0.00070 13 | 0.00206 | 0.00112
14 | 0.00050 | 0.00050 14 | 0.00094 | 0.00057

15 | 0.00038 | 0.00038

Table 7.1: Resulting refinement for the first (left) and the second (right) cases of geometry

Fig. 7.3: Details of refined mesh - type A (left), type B (middle), type C (right)



The refined detail is connected to the rest of the coarse mesh. In Figures 7.4-7.5,
final meshes after the refinement are shown for both geometries.

0.02

0 0.05 0.1 0.15

Fig. 7.4: Final computational mesh for the first channel

N}
N BN |

0 2 4 6 8
Fig. 7.5: Final computational mesh for the second channel



Measuring of error

To review the efficiency of the algorithm, we use a posteriori error estimates (6.8) as
derived in Chapter 5, to evaluate the obtained error on elements. Suppose that the
exact solution of the problem is denoted as (u1,us,p) and the approximate solution
obtained by the FEM as (u’, uf, p"). The exact solution differs from the approximate
solution in the error (e,,, €y, €,) = (u1 — ult, ug — ul, p — p).

In adaptive mesh refinement in Sections 5.3 - 5.5 we used the error estimator (6.14):

Q| £ (uip, ugn, pr, Tx)
R2 To) - | — ro
(U1h7u2h7ph7 K) |TK| u2<ulh,u2haph7 Q) ( )

In this Chapter, for the similarity with a priori error estimate, we use the modified
absolute error defined as
Q& (uan, uon, ph, Tk
| Trc| U (urn, ugn, pn, Q)

'Agn(ulhau2h7ph7TK,Q,n) (77)

where |Tk| is the mean area of elements obtained as |Tx| = % where n deno-

tes the number of all elements in the domain, and the symbols £2(uyy,, usn, pr, Tx),
U? (urp, usn, pp, Q) are dfefined in (6.7), (6.13).



7.2. Numerical results

Channel with sudden intake of diameter (results for Re = 1000)

In Figures 7.6-7.7, plots of entities that characterize the flow in the channel are
presented. In Fig. 7.6, there are streamlines and plot of velocity component u,. Plots
of velocity component u, and pressure are shown in Figure 7.7. Note, that the fluid
flows from the right to the left on plots of u,, u,, and p, to have better view.
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Fig. 7.6: Detail of streamlines (left) and velocity component u, (right)

In Figure 7.9, there are values of obtained error on elements in refined area. All
values are listed in Table 7.2. Marking of elements in the table is described in Figure
7.8, together with plot of contours of velocity u, close to the corner.
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Fig. 7.9: FEM error on elements in the refined area for the first case of geometry
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A B C D E F G H

1.858 | 0.652 | 0.229 | 0.103 | 0.132 | 0.149 | 0.193 | 0.234

2.221 | 0.664 | 0.135 | 0.105 | 0.127 | 0.160 | 0.194 | 0.238

2.427 | 0.513 | 0.122 | 0.103 | 0.123 | 0.156 | 0.192 | 0.230

2.292 | 0.407 | 0.110 | 0.095 | 0.110 | 0.140 | 0.170 | 0.205

1.574 | 0.261 | 0.083 | 0.069 | 0.087 | 0.103 | 0.126 | 0.154

0.523 | 0.104 | 0.034 | 0.037 | 0.042 | 0.054 | 0.068 | 0.085

0.585 | 0.093 | 0.032 | 0.030 | 0.033 | 0.036 | 0.043 | 0.051

1.544 | 0.274 | 0.079 | 0.064 | 0.072 | 0.085 | 0.098 | 0.109

OO NO|CI B W N

2.223 | 0.404 | 0.115 | 0.091 | 0.105 | 0.122 | 0.144 | 0.165

10 | 2.409 | 0.521 | 0.126 | 0.098 | 0.112 | 0.139 | 0.169 | 0.191

11 | 2.277 | 0.654 | 0.134 | 0.101 | 0.118 | 0.139 | 0.163 | 0.192

12 | 1.912 | 0.665 | 0.237 | 0.102 | 0.125 | 0.126 | 0.159 | 0.174

I J K L M N con. -

0.283 | 0.345 | 0.399 | 0.499 | 0.530 | 0.793 | 1.222 -

0.288 | 0.341 | 0.408 | 0.482 | 0.596 | 0.782 | 1.380 -

0.276 | 0.329 | 0.392 | 0.476 | 0.570 | 1.353 | 2.495 -

0.245 | 0.289 | 0.343 | 0.390 | 0.471 | 0.577 | 1.996 -

0.185 | 0.216 | 0.242 | 0.252 | 0.222 | 0.499 | 1.754 -

0.102 | 0.120 | 0.122 | 0.142 | 0.151 | 0.419 | 1.813 -

0.056 | 0.066 | 0.082 | 0.126 | 0.388 | 1.070 | 3.776 -

0.124 | 0.140 | 0.168 | 0.194 | 0.363 | 0.896 | 1.733 -

0.189 | 0.215 | 0.243 | 0.268 | 0.309 | 0.488 | 0.957 -

0.216 | 0.245 | 0.265 | 0.285 | 0.277 | 0.610 | 1.558 -

0.212 | 0.237 | 0.237 | 0.284 | 0.411 | 1.021 | 2.786 -

==
SlEBlo|w oo~ w o=

0.199 | 0.186 | 0.209 | 0.172 | 0.311 | 0.496 | 1.970 -

Table 7.2: Obtained errors on elements for the first case of geometry



Channel with abruptly extended diameter (results for Re = 400)
Similarly, streamlines, plots of velocity components u, and w,, and pressure are

o

presented in Figures 7.10-7.11. "
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Fig. 7.10: Streamlines (left) and velocity component w, (right)
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Fig. 7.11: Velocity component w, (left) and pressure (right)



8. Numerical solution of flow problems by stabilized FEM

Motivation and goals of stabilization of FEM

e Solution of flows of incompressible viscous fluid with higher Reynolds numbers by
FEM

e Stabilization techniques for FEM, Galerkin Least Squares method
e Development and implementation of an algorithm of stabilized method (semi-GLS)
e Numerical experiments

e Check of accuracy by a posteriori error estimates



8.1. Galerkin Least Squares stabilization technique

Basic scheme (Hughes, Franca, Hulbert, 1989 [[21]]).
Extension to the Navier-Stokes equations (Franca, Madureira, 1993 [17]]):
For system
(Vu)u—2vV-e(u)+Vp = f inQ
V-u = 0 inQ
u = 0onTl

6(11) o 1 6uz i 8Uj
Yo 2 333j ({95131
e Find vy € Vy, and p, € @), satisfying in €2

Bars(un, pr; v, ¥n) = Laps(Vi, ¥n),  Yvp € Vi, Yy, € Qp

introduce stabilized problem

where

Bars(ap, pr; Vi, ) =

((ap - V)up, vp)o + Que(an),e(vr))o — (pn, V- vi)o +
(Vn, V- up)o+(V -1y, 0V - vp)o +

> (- V)ws + Vpy — 20V - e(wy), 7((up - V)vi, + Viby — 20V - (Vi) .
K

Lars(Vi, ¥p) = (£, vi)o+ Z ((up - V)vy + Vo, — 20V - 5(Vh)))



Our implementation

e we do not consider stabilization of the continuity equation (6 = 0). For this reason,
we call the technique semiGLS (abbreviated sGLS).

e we use formulation with Laplacian instead of ¢(u);;
Find up(t) € Vi, t € [0,T] and py(t) € Qp, t € [0, T satisfying for any t € [0,T]
Bsars(Un, pr; Vi, ¥n) = Lsars(Vi, ¥n), Vv € Vi, Vi € Qp

where

6)uh

Bsars(un, pr; vi, ) = v Vth+/(uh°V)uh'Vth
0

+ V/Vuh Vv,dQ) — /phV-VthJr/th-uthJr
Q Q

T Z / [ uh v)uh — vAuwy, + Vph] T [(uh . V)Vh — vAvy, + th] ds2

LsGLS(Vh7¢h) = /f Vth—FZ/ uh V h—VAVh-FV@Dh]dQ



8.2. Results of numerical experiments

Test problems:
e lid driven cavity — steady
e channel with sudden extension of diameter — steady
e flow past NACA 0012 airfoil — unsteady

The effect of stabilization: the difference of solutions obtained with and without
stabilization:

_ (nsGLSi - nNewtoni)2
o= | =— -100 [%] (8.1)
\ El n?\f@wtom

where 1 means in turn uy;, ups and pp, n denotes number of nodes with 1 given, 1,615
denotes the solution by the semiGLS algorithm and 7)ncwton the solution by the Newton
method without stabilization. Results summarized in Table 8.1.

Differences of solutions obtained by the semiGLS method from those obtained by
the Newton method computed by (8.1) are big for the problem of cavity.
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Streamlines, Re = 10,000, mesh 32x32 without stabilization, 32x32, 64x64 and 128x128




mesh 32x32 | 64x64 | 128x128
Ou,, (%] | 41.69 | 39.07 21.42
Ou,, [%0] | 70.81 | 49.12 22.24
dp, [%0] | 197.90 | 137.10 42.82

Streamlines and pressure contours for Re = 100,000, mesh 128 x128



CHANNEL WITH SUDDEN EXTENSION OF DIAMETER - STEADY FLOW

Steady flow in 2D channel with abruptly extended diameter (Figure 8.1). Complicated
due to singularities of solution in the vicinity of nonconvex internal corners. The aspect
of suitable mesh generation studied in [10] and [27]. We compare solutions with and
without semiGLS stabilization. Streamlines presented in Figure 8.2 for Reynolds number
1,000. Differences between solutions computed by (8.1) listed in Table 8.2.

3000 3000

2000
|
24000

9000

Fig. 8.1: Geometry of the channel

mesh | channel (Figure 8.1)
Oupy [%0] 0.0718
Oups [70)] 2.7202

Op, [%0] 0.5139

Table 8.2: Differences between solutions obtained with and without stabilization
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Fig. 8.2: Streamlines in the channel by the Newton method without stabilization (left) and streamlines
by the semiGLS algorithm (right), Re = 1,000



Additionally, we present streamlines, plots of velocities and pressure for Reynolds
number 80,000 in Figure 8.3.
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Fig. 8.3: Streamlines (left), plot of velocity upe (center) and pressure (right) by the semiGLS algorithm,
Re = 80,000



UNSTEADY SOLUTION OF FLOW PAST NACA 0012 AIRFOIL

Results for angle of incidence of 34° and Re = 1,000 by unconditionaly stable projection
FEM (Guermond and Quartapelle [20]) compared in Figures 8.5-8.8, to ours by the
semiGLS algorithm. Then streamlines and pressure contours for Re = 100,000 are
presented in Figures 8.9-8.10. The mesh (see Figure 8.4) of 6,220 elements, 18,478
nodes, and 43,085 DOFs. Data: zero initial condition, unit horizontal velocity on the
left part of the boundary and ‘do nothing’ boundary condition on the rest. Time steps
for Re = 1,000 are 0.01 s and for Re = 100,000 are 0.005 s (see Sistek [27] for details).
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Fig. 8.4: Computational mesh for NACA 0012 problem, angle of incidence of 34°
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Fig. 8.6: Pressure contours by the semiGLS algorithm (left) and by [20] (right), ¢ = 1.6s, Re = 1,000



1

Fig. 8.8: Streamlines by the semiGLS algorithm (left) and by [20] (right), ¢ = 3.6s, Re = 1,000



Fig. 8.9: Streamlines (left) and pressure contours (right) by the semiGLS algorithm, ¢ = 2.6s,
Re = 100,000

Fig. 8.10: Streamlines (left) and pressure contours (right) by the semiGLS algorithm, ¢ = 3.6s,
Re = 100,000



8.3. Application of a posteriori error estimates

Test problem: lid driven cavity — steady GLS

Y

05
ents for Re = 10,000, mesh 128x128



Accuracy of stabililized FEM using a posteriori estimates:

Frame 001 | 23 May 2006 | FLOW INSIDE CAVITY, MESH 64x64, NEWTON METHOD, Re = 10,000 Frame 001 | 23 May 2006 | FLOW INSIDE CAVITY, MESH 128x128, semiGLS, Re = 10,000

rrors on elements (Re = 10,000) left: Newton - mesh 64 x64, right: semiGLS - mesh 128x128



Conclusions

e Derivation and implementation of FEM algorithm for solving flow problems
e Modification of GLS technique of stabilization

e Comprehensive testing of developed method

e We reached higher Reynolds numbers in solved problems

e For reaching higher Re — stabilization + mesh refinement

Future. ..

e Evaluate the distortion of solution affected by the stabilization (aposteriori error
estimates for stabilized FEM)

e Implement and compare other stabilization techniques (Glowinski, Tezduyar, .. .)



9.

Conclusion

Mathematical models for incompressible flows: Navier-Stokes equations, Stokes
problem.

One focus: flow problems with singularities due to corners in the solution domain.
Two ways to desired precision (based on qualitative properties)

First approach (Chapter 5): use a posteriori error estimates of the FEM solution.
The role of constant.

Adaptive strategy to improve the mesh and thus the FEM solution. Numerical
results demonstrate the robustness of this approach.

The alternative way based on the asymptotic expansion of the exact solution near
the corner and on the a priori error estimate of the FEM solution

Derived an algorithm for designing the FEM mesh a priori, to get the solution with
desired precision near the corners, though there is a singularity there.

This approach saves a lot of computational time using mesh ‘prepared’ in advance
Second focus: flows with higher Reynolds numbers
Developed stabilized version of FEM [27],[11], [12].

Combine stabilization with a posteriori estimates. Achievements on precise solution
of problems with singularities - a very cheap tool for verification [13].
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