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Flare model

Martens & Kuin, 1989

• standard two-ribbon flare

• energy release during mag. recon-

nection in corona

• plasma heating, particle accelera-

tion

• beams: form of flare energy trans-

port

• energy loss via Coulomb collision

and return current ⇒ heating,

excitation, ionisation

• X-ray, radio emission

• increased emission in EUV, UV, op-

tical, IR bands



Problem formulation

• compute time evolution of hydrogen continuum and line

profiles

• study influence of particle beams on hydrogen emission

• hydrodynamic and radiative response of solar atmosphere

to heating by particle beams: radiative hydro code

• response of hydrostatic VAL C atmosphere

to beam heating: HD code

• propagation and energy losses of the beam:

test particle code

• ionisation and hydrogen emission: NLTE

radiative transfer code



Hydrodynamics (Varady)

• standard set of 1D HD equations in one fluid approximation describes the state

and evolution of plasma along magnetic field lines

• included processes

• thermal conduction (Spitzer’s classical approx.)

• optically thin (Rosner et al., 1978) and thick (Peres et al., 1982) radiative losses

(approx. expressions)

• heating given by beam energy deposit into the atmosphere and return current

calculated by a particle code

• ionisation calculated by a NLTE radiative transfer code

• numerical methods

• LCPFCT algorithm (for generalised continuity equations)

• timestep splitting method

• Crank-Nicholson algorithm for conduction



Particle beam heating (Varady, Karlický, Moravec)

• beam energy deposit is calculated by a test

particle code for the instant properties of

the atmosphere

• the code includes

• Coulomb collisions with neutrals and elec-

trons (Emslie, 1978)

• electron scattering (Bai, 1982)

• optionally return current (runaway approx.,

Varady et al., 2005)

• power-law particle beams

• power-law index δ = 3 − 7

• low-energy cutoff ≈ 10 keV (MeV) and

high-energy cutoff ≈ 100 keV (MeV)

• time modulation of energy flux F (t)

• properties could be obtained from X-rays



Radiative transfer (Kašparová, Heinzel)

• NLTE radiative transfer for hydrogen is calculated in the lower part of the loop

using the instant values of T , nH and the energy deposit to hydrogen EH

• 5-level + continuum model of hydrogen

• time dependent ESE
∂ni

∂t
=

∑

j 6=i

njPji − ni

∑

j 6=i

Pij

• excitation and ionisation of hydrogen by the particle beam is taken into account

by nonthermal collisional rates Cnt
1j (Fang et al., 1993)

Cnt
1j = k1j

EH

n1

• Cnt
1j included into transition rates Pij

P1j = R1j + C1j + Cnt
1j

• numerics: MALI, linearisation of ESE, Newton-Raphson, Crank-Nicholson schemes



Effects of the Cnt - ionisation

• NLTE ionisation lags behind the time evolution of T due to time evolution of the

ratio of the number of recombinations to photoionisations

• Cnt increase ionisation ≈ 1000 km where temperature increase itself does not

completely ionise the plasma

• stronger effect for high beam energy flux F and low index δ



Effects of the Cnt - Balmer lines

• Cnt influence is strongly linked to EH as a function of height

• line intensities are affected according to their formation heights

I(λ) =
∫

CF (λ, s) ds =
∫

η(λ, s)e−τ(λ,s) ds

• new Hα wing formation region at EH maximum, stronger for lower δ

• Cnt affect mainly Hα and Hβ wings and whole Hγ line
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Effects of the return current (RC) - Hα line

• return current in runaway approximation:

jb = jRC α = nRC/ne = 0.1

• increase in the Hα line centre intensity at ∼ 0.4 s

• result of the higher total energy deposit and

subsequent temperature increase at ∼ 2000 km

• Cnt again create new formation region at

EH peak location

• decrease in the Hα intensity due to Cnt

RC

no RC



Cnt for proton beams - Hα line

• δ = 3, F = 1012 erg cm−2 s−1

• E1 = 5, 20 MeV

• same hard X-rays as electron beams

(deka-MeV protons)

• higher energy deposit, temperature

at z ≥ 500 km for E1 = 5 MeV

E1 = 5 MeV

E1 = 20 MeV



Electron beams - Lyα

• during heating Lyα is formed in lower atmospheric layers

CFt(λ, z)

• line wings are more sensitive to Cnt (like Balmer lines)

CFλ(t, z)

• abrupt drop at λ = 0.45 Å is due to narrowing of formation region; η, τ decrease

due to decrease in n1, n2 caused by Cnt and heating



Electron beams - far ir and mm continua (35µm - 1cm)

• assumed to be of thermal origin and due to H I and H− free-free processes

• Planck source function (LTE), opacity κν calculated using non-LTE populations

κν = nenp f(T, ν) + nenH g(T, ν)

• Cnt affect λ < 0.2 mm since larger λ

originates at layers above significant EH



Diagnostic tools - time correlation

• can we clearly recognise Cnt effects in hydrogen emis-

sion?

• fast hydrogen lines/continua variations exhibit a good

correlation with beam flux variations

• Lyα wings show anti-correlation
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Diagnostic tools - beam parameters

• despite clear influence of Cnt on hydrogen emission,

unambiguous diagnostic tool has not been found

• line/intensity ratios R or wavelength-integrated

intensity Itot do not exhibit unique and system-

atic behaviour with beam parameters
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Conclusions and future plans

• electron/proton beam heating significantly affects hydrogen emission on

time scale of the heating

• correlation of lines/continua variations with hard X-rays presents only an

indirect indication of pulse beam heating

⇓

comparison of simulations with observations is needed

• test flare, electron beam parameters

from Yohkoh, however no hydrogen data

• more RHESSI flares, Hα data available

(WrocÃlaw, Onďrejov)
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The End


