Particle beams and hydrogen emission in solar flares J. Kašparová¹, M. Varady^{1,2}, P. Heinzel¹, M. Karlický¹, Z. Moravec²

¹Astronomický ústav AV ČR, v.v.i., Ondřejov, Czech Republic ²Katedra fyziky, Universita J. E. Purkyně, Ústí nad Labem, Czech Republic

R(M)HD seminar, Astronomický ústav, Ondřejov, 22 Oct 2009

FLARE MODEL

- standard two-ribbon flare
- energy release during mag. reconnection in corona
- plasma heating, particle acceleration
- beams: form of flare energy transport
 - energy loss via Coulomb collision and return current ⇒ heating, excitation, ionisation
 - X-ray, radio emission
- increased emission in EUV, UV, optical, IR bands

- compute time evolution of hydrogen continuum and line profiles
- study influence of particle beams on hydrogen emission
- hydrodynamic and radiative response of solar atmosphere to heating by particle beams: radiative hydro code
- response of hydrostatic VAL C atmosphere to beam heating: HD code
- propagation and energy losses of the beam: test particle code
- ionisation and hydrogen emission: NLTE radiative transfer code

- standard set of 1D HD equations in one fluid approximation describes the state and evolution of plasma along magnetic field lines
- included processes
 - thermal conduction (Spitzer's classical approx.)
 - optically thin (Rosner et al., 1978) and thick (Peres et al., 1982) radiative losses (approx. expressions)
 - heating given by beam energy deposit into the atmosphere and return current calculated by a particle code
 - ionisation calculated by a NLTE radiative transfer code
- numerical methods
 - LCPFCT algorithm (for generalised continuity equations)
 - timestep splitting method
 - Crank-Nicholson algorithm for conduction

PARTICLE BEAM HEATING (Varady, Karlický, Moravec)

- beam energy deposit is calculated by a test particle code for the instant properties of the atmosphere
- the code includes
 - Coulomb collisions with neutrals and electrons (Emslie, 1978)
 - electron scattering (Bai, 1982)
 - optionally return current (runaway approx., Varady et al., 2005)
- power-law particle beams
 - power-law index $\delta = 3 7$
 - low-energy cutoff $\approx 10~{\rm keV}~{\rm (MeV)}$ and high-energy cutoff $\approx 100~{\rm keV}~{\rm (MeV)}$
 - time modulation of energy flux F(t)
 - properties could be obtained from X-rays

- NLTE radiative transfer for hydrogen is calculated in the lower part of the loop using the instant values of T, $n_{\rm H}$ and the energy deposit to hydrogen $E_{\rm H}$
- 5-level + continuum model of hydrogen
- time dependent ESE

$$\frac{\partial n_i}{\partial t} = \sum_{j \neq i} n_j P_{ji} - n_i \sum_{j \neq i} P_{ij}$$

• excitation and ionisation of hydrogen by the particle beam is taken into account by nonthermal collisional rates C_{1i}^{nt} (Fang et al., 1993)

$$C_{1j}^{\rm nt} = k_{1j} \frac{E_{\rm H}}{n_1}$$

• C_{1j}^{nt} included into transition rates P_{ij}

$$P_{1j} = R_{1j} + C_{1j} + C_{1j}^{\text{nt}}$$

• numerics: MALI, linearisation of ESE, Newton-Raphson, Crank-Nicholson schemes

Effects of the C^{nt} - ionisation

- NLTE ionisation lags behind the time evolution of T due to time evolution of the ratio of the number of recombinations to photoionisations
- $C^{\rm nt}$ increase ionisation ≈ 1000 km where temperature increase itself does not completely ionise the plasma
 - stronger effect for high beam energy flux F and low index δ

Effects of the C^{nt} - Balmer lines

- $C^{\rm nt}$ influence is strongly linked to $E_{\rm H}$ as a function of height
 - line intensities are affected according to their formation heights

• new Hlpha wing formation region at $E_{
m H}$ maximum, stronger for lower δ

Effects of the return current (RC) - $H\alpha$ line

• return current in runaway approximation:

 $j_{\rm b} = j_{\rm RC}$ $\alpha = n_{\rm RC}/n_{\rm e} = 0.1$

- increase in the H α line centre intensity at \sim 0.4 s
 - result of the higher total energy deposit and subsequent temperature increase at $\sim 2000~\rm km$
 - $C^{\rm nt}$ again create new formation region at $E_{\rm H}$ peak location

•
$$\delta = 3, F = 10^{12} \text{ erg cm}^{-2} \text{ s}^{-1}$$

- $E_1 = 5, 20 \text{ MeV}$
 - same hard X-rays as electron beams (deka-MeV protons)
 - higher energy deposit, temperature at $z \ge 500$ km for $E_1 = 5$ MeV

Electron beams - ${\rm Ly}\alpha$

• during heating Ly α is formed in lower atmospheric layers

• abrupt drop at $\lambda = 0.45$ Å is due to narrowing of formation region; η, τ decrease due to decrease in n_1, n_2 caused by C^{nt} and heating

Electron beams - far ir and MM continua $(35\mu$ M - 1cm)

- $\bullet\,$ assumed to be of thermal origin and due to H I and H^- free-free processes
 - Planck source function (LTE), opacity κ_{ν} calculated using non-LTE populations

3

• $C^{\rm nt}$ affect $\lambda < 0.2$ mm since larger λ originates at layers above significant $E_{\rm H}$

DIAGNOSTIC TOOLS - TIME CORRELATION

- can we clearly recognise C^{nt} effects in hydrogen emission?
 - fast hydrogen lines/continua variations exhibit a good correlation with beam flux variations
 - Ly α wings show anti-correlation

DIAGNOSTIC TOOLS - BEAM PARAMETERS

- despite clear influence of C^{nt} on hydrogen emission, unambiguous diagnostic tool has not been found
 - line/intensity ratios R or wavelength-integrated intensity I_{tot} do not exhibit unique and systematic behaviour with beam parameters

- electron/proton beam heating significantly affects hydrogen emission on time scale of the heating
- correlation of lines/continua variations with hard X-rays presents only an indirect indication of pulse beam heating

 \downarrow comparison of simulations with observations is needed

- test flare, electron beam parameters from Yohkoh, however no hydrogen data
- more RHESSI flares, Hα data available (Wrocław, Ondřejov)

The End

