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ISSS in general
• Series of international summer schools, lectures given by renowned experts in the field
• History since 1982 (ISSS1 in Kyoto)
• Held each 2-3 years
• The next one preliminary scheduled for 2011 in Canada
• Relativelly easy to get support!!!

ISSS9 summary 

• Particle in cell (PIC) simulations
• Delta-F simulations
• Vlasov simulations
• Test particles simulations
• Hybrid simulations
• Magnetohydrodynamic (MHD) simulations

Tutorials:

• Four days of intensive learning (theoretical morning course, practical 'hands-on' 
afternoon) sessions
• Four days of regular workshop: talks oriented to applications of space plasma 
simulations to real problems; ussually tutorial approach.
• About 80 students, 20 teachers and assistants from various countries

All lecture notes and sample codes you can get at 

                                     http://www.iss s9.uvsq.fr/
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   PIC codes integrate the trajectories of many particles interacting

self-consistently via electromagnetic fields.  PIC codes are possible 

whenever there is some differential equation which describes fields 

in terms of particle sources.

   PIC codes are used in almost all areas of plasma physics, such as 

fusion energy research, plasma accelerators, space physics, ion 

propulsion, plasma processing, and many other areas.

   What distinguishes PIC codes from molecular dynamics that a 

grid is used as a scaffolding to calculate fields rather than direct

binary interactions => reduces calculation to order N rather than N2.

Particle-in-Cell Codes
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PIC codes differ in what kind of forces are included in the plasma 

description.  We will include 3 here, but others are possible.

We will concentrate on Spectral codes, although finite-difference,

and finite-element methods are also used.

The topics to be covered are:

• Electrostatic Plasma Model

• Electromagnetic Plasma Model

• Darwin Plasma Model

• Radiative and Darwin Electromagnetic Fields

• Energy and Momentum Flux

Particle-in-Cell Codes
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Electrostatic Codes

Simplest plasma model is electrostatic:

1. Calculate charge density on a mesh from particles:

2. Solve Poisson’s equation:

3. Advance particle’s co-ordinates using Newton’s Law:
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Note:

• S(x) is a particle shape function, for example a delta function
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Electrostatic Codes

Periodic analytic solution (gridless):

1. Fourier transform the charge density:

2. Solve Poisson’s equation in Fourier space:

3. Fourier transform Smoothed Electric Field to real space:
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Notes:

• For delta functions, S(k) = 1/V

• Periodic systems are charge neutral

• Gridless solutions are very accurate, but slow
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Electrostatic Codes

Note:

• Time step should resolve plasma frequency

Solution is explicit time advance:
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Time-Difference equations of motion: second order leap-frog scheme 
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Electrostatic Codes

Interpolation function W(x) should be smooth with limited support

• B-splines typically used

Tri-Linear interpolation most common: W(r)=Wx(x)*Wy(y)*Wz(z)

( )W xx =
( )/ ,xx x

2T T+ 0xxT 1 #-

( )/ ,xx x

2T T- 0 x x1 T#

Define grid:

Deposit charge on discrete grid:

where we define:

analogous to gridless case:
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Electrostatic Codes

Discrete Fourier Transform (DFT) of charge density:

where discrete wavenumbers are defined:

analogous to gridless case:
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Electrostatic Codes
Major complication of grid is non-physical forces (aliasing).

Arises when particle co-ordinates have spatial variations less 

than grid space: they get mapped to longer wavelengths.

Express interpolation as infinite Fourier series:

this leads to:

The sum is geometric series:

where kN represents wavelengths that cannot be resolved:
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Electrostatic Codes

One can express the Fourier transform of grid density:

Compare to gridless result:

One can see W(k’) acts like a particle shape function.  Terms

involving kN are non-physical aliased terms.

Solution of electric field is same as gridless case, except for use 

of DFT:
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Electrostatic Codes
Obtaining electric field at particle location involves interpolation:

Proceeding as before:

This is analogous to the gridless case:
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Note:

• Forces now depend not only on separation of particles, but also 

on separation of particle from grid

• Non-conservative forces usually leads to self-heating
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Electrostatic Codes
Aliasing is controlled by behavior of Fourier transform of 

interpolation function for k > kN.  Fourier transform of B-splines:

These functions have maximum near k = (p+1/2) kN, for p > 1.

Worst alias occurs for p =1, which maps densities at k = 3 kN/2 to

k = kN/2.

A simple improvement is to use a particle shape (filter) function

S(k) along with the interpolation function.  If S(k) is small in the 

vicinity of k = kN/2, one can suppress the largest aliased terms.

One is also suppressing physical modes, so this limits the 

resolution of model.

A common filter function is:
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Electrostatic Codes
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Linear Interpolation Function W1 vs k

W1=(sin(0.5*k)/0.5*k)**2

S=exp(-(k*a)**2/2), a = 0.5

W1

W1*S

Fourier transform of first order interpolation function W1 with and 

without gaussian smoothing with a = 0.5.

• Modes with k>2! mapped to modes with k < 2!.
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Electrostatic Codes
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Fourier transform of first and second order interpolation functions 

W1 and W2, and W1 with gaussian smoothing with a = 1.0.
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Electrostatic Codes
   If filter is used to suppress aliasing, the effective particle shape is:

In real space this corresponds to a convolution of the interpolation 

function with the filter function, which makes particles “fatter”.

   Even when aliasing is suppressed, grid effects are still present. To

see this, replace qi with qi Seff(k) in plasma theory, which modifies 

the plasma frequency:

For linear interpolation, isotropic grid, and gaussian smoothing:

This may or may not be important.  For plasma waves:
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Electromagnetic Codes
More complex plasma model is electromagnetic:

1. Calculate charge and current densities on a mesh from particles

Note equation of continuity is satisfied by this definition:

2. Solve Maxwell’s equation:

3. Advance particle co-ordinates using the Lorentz Force:
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Periodic analytic solution (gridless):

1. Fourier transform the charge and current densities:

The equation of continuity is satisfied in Fourier space:
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Electromagnetic Codes

Periodic analytic solution (gridless):

2. Solve Maxwell’s equation in Fourier space:

    Separate E field into longitudinal and transverse parts, where

kxEL=0 and k•ET=0.  Eliminate longitudinal field in Ampere’s law 

with equation of continuity:

This results in the following equations:
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Note:

• Periodic systems are current neutral
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Electromagnetic Codes

Periodic analytic solution (gridless):

3. Fourier Transform the Electric and Magnetic Fields to real space:
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Note:

• Time step should resolve light waves:

Electromagnetic Codes

Time-Difference field equations:

first advance magnetic field a half step with old E field: 

then leap-frog electric field a whole step with new B field:

Finally, advance magnetic field a half step with new E field:
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Electromagnetic Codes

Discrete equations of motion for particles are:
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Solution is the Boris Mover:

first accelerate a half step with E field only:

Then rotate a whole step with B field only:

Finally, accelerate a half step again with E field only:
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Darwin Codes

Most complex plasma model is Darwin:

Electromagnetic Ampere’s law:

Darwin Ampere’s law:

This small difference changes the character of the equations from

hyperbolic to elliptic: No light waves.
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Darwin Codes

1. Calculate charge, current, and derivative of current densities:

Actually, we deposit acceleration density and velocity flux:

Then differentiate:
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Darwin Codes

2. Solve Darwin subset of Maxwell’s equation

Separate E field into longitudinal and transverse parts, E = EL + ET:

And solve them separately:

3. Advance particle’s co-ordinates using Lorentz force
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Darwin Codes

Periodic analytic solution (gridless):

1. Fourier transform charge, current and current derivative:

2. Solve Darwin subset of Maxwell’s equation in Fourier space:
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Periodic analytic solution (gridless):

3. Fourier Transform the Electric and Magnetic Fields to real space:
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Darwin Codes
Time-Difference field equations require iteration: no leap-frog

ET depends on dvj/dt and dvj/dt depends on ET!

Simple iteration using old values of dvj/dt to update ET:

is unstable when kc < "pe.

To stabilize the iteration, subtract a shift constant from both sides:

where the shift constant is the average plasma frequency:

The solution is:
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Darwin Codes

To obtain second order accuracy need to know velocities and 

accelerations at time t.  This is obtained from leap-frog as follows:

Iteration starts by calculating EL(t) from x(t)

setting

and solving for initial ET(t) and B(t)

Iteration has two parts:

Advance particles, calculate dvj(t)/dt and vj(t), deposit dj/dt and j

Do not update particles

Solve for improved ET(t) and B(t)

When converged, use Boris Mover to update particles

( )
( / ) ( / )

t
t t t t

v
v v

2
2 2

j

j jT T
=

+ + -; E ( ) ( / ) ( / )
dt

d t
t

t t t tv v v2 2j j j

T
T T

=
+ - -; E

( /2) ( /2)t t t tv vj jT T+ = -

Monday, June 29, 2009



Darwin Codes

Iteration converges in about 2 iterations if density does not vary too 

much, specifically if

Beyond that, number of iterations increases, and eventually the 

algorithm becomes unstable again.  It can be stabilized by modifying 

the shift constant as follows:

As the density  becomes more extreme, the number of iterations 

again increases, but appears to remain stable.
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Radiative and Darwin Fields
Transverse parts of Maxwell’s equation are:

where E = EL + ET.

Transverse parts of Darwin subset are:

Separate transverse Maxwell fields into two parts,

ET = ED + ER, B = BD + BR.

Subtracting the Darwin equations from Maxwell’s equations gives 

the equations for radiative parts:

The Darwin fields are driven by plasma current, the Radiative fields

are driven by displacement current.
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Radiative and Darwin Fields

Similar expressions can be  derived for the vector potential in the 

Coulomb gauge:

where A = AD + AR.  The Radiative and Darwin field then follow:

These decompositions are useful as filters for diagnostics, 

illuminating physical processes in plasmas.
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Energy and Momentum Flux

For the electromagnetic model, energy flux equation is well known:

where S is the Poynting vector.  This equation is not unique.

Less well known is the energy flux equation for the electrostatic model:

For the Darwin model the energy flux equation is:

An important point to notice is the the transverse electric field ET does 

not enter into the definition of the field energy.

t
S

E E B B
j E

8 8
:

:
:

:
d

2

2

r r
+ + =-9 C c

S E B
4

#
r

=

t
S

E E
j E

8

L L
L: :

:
d

2

2

r
+ =-9 C

t
S j

4

1
d

2

2

r
z
z= -; E

( )
t

S
E E B B

j E E
8 8
L L

L T:
:

:
:

d
2

2

r r
+ + =- +9 C

( )
c

c t
S E E B E

4
1

L T T#
2

2

r
z

= -+; E

Monday, June 29, 2009



Energy and Momentum Flux

For the electromagnetic model, the momentum flux equation is also 

useful:

where T is the Maxwell stress tensor, and S/c2 is the momentum of the

electromagnetic field.  This equation is also not unique.

In the electrostatic model there is no field momentum and the equation

reduces to:
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Energy and Momentum Flux

For the Darwin model, the momentum flux equation is also formerly 

the same as the electromagnetic case:

But the field momentum vector is different:

and T is the Maxwell stress tensor is also different:
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Notes:

• There is momentum in Darwin field, but no radiation.

• ET does not contribute to the field momentum.

• The Poynting vector for momentum differs from the one for 

energy
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