Physiol Bohemoslov 1985;34(6):548-61 Related Articles, Books
 

Role of endogenous opiates and extracellular K+ accumulation in the inhibition of frog spinal reflexes by electrical skin stimulation.

Sykova E, Kriz N, Hajek I

Electrical skin stimulation of the hind limb (10-100 Hz, 30 s-5 min) at the intensity which leads only to the excitation of low threshold afferents depressed (for 1-30 min) the flexor reflex evoked in spinal frogs by nociceptive stimuli. The inhibition, which lasted for longer than 5 min was blocked by naloxone. Short-term poststimulation effects were associated with an increase of extracellular K+ concentration (delta [K]e) and were not blocked by naloxone. Enkephalins or morphine applied to the spinal cord surface increased the threshold for flexor reflexes while naloxone decrease their threshold. The stimulation was followed by short-term hyperpolarization of primary afferents (PAH; 1-5 min) and by depression of dorsal root potentials (DPRs) which had a similar time course to the delta [K]e, and were not blocked by naloxone. This period was frequently followed by longlasting PAH and enhancement of DRPs (5-30 min), which were abolished by naloxone. Superfusion of the isolated spinal cord with opioids produced PAH and enhanced DRPs evoked by nociceptive stimuli, while naloxone or increase of [K] in Ringer solution depolarized primary afferents and depressed DRPs. It is suggested that the antinociceptive effects of electrical stimulation of low threshold cutaneous afferents in spinal frogs involves at least two mechanisms. The short-term effect may result from delta [K]e, especially at high stimulus strength and is equally effective against noxious and non-noxious stimuli. The longlasting effects selectively affecting nociceptive transmission appear to be produced by endogenous opioids.

Back to the List of Publications