Localization and irreversibility of cyclic slip in polycrystals
Investigator: Ing. Jiří Man, Ph.D.
Number of Project: P108/10/2371
Agency: Czech Science Foundation
Duration: 01. 01. 2010 - 31. 12. 2013
The project is focused on the revealing and explanation of the fundamental micromechanisms of the localized
cyclic plastic straining in polycrystalline materials resulting in the early fatigue damage and leading to fatigue
crack initiation. The study of the evolution of the internal dislocation structure and of the development of
surface relief at ambient and depressed temperatures aims to clarify the role of point defects in the formation of
specific surface relief. Slip activity and slip irreversibility in persistent slip bands (PSBs) in dependence on the
crystallographic orientation will be studied in two materials with different stacking fault energy (polycrystalline
copper and 316L steel). Modern high resolution techniques as e.g. AFM (atomic force microscopy), EBSD
(electron back scattering), FIB (focused ion beam) etc. will be adopted. Analysis of experimental data and the
comparison with models of localized cyclic plastic straining and crack initiation leads to more thorough
understanding of the damage mechanisms and represents further stimulus for fatigue damage modeling.