Universality Classes of Step Bunching?

e Mechanisms of step bunching
e Step-dynamical equations and continuum limit

e Scaling properties of a single bunch

e Towards a global scaling picture

Joint work with V. Tonchey, S. Stoyanov and A. Pimpinelli



Nonequilibrium mechanisms for step bunching

Ehrlich-Schwoebel-barriers in sublimation R.L. Schwoebel (1969)
Surface electromigration S. Stoyanov (1991)
In growth:
Pinning of steps by impurities N. Cabrera, D.A. Vermilyea (1958)
Step edge diffusion P. Politi, J.K. (2000)
Chemical precursors [e.g. GaAs] A. Pimpinelli, A. Videcoq (2000)
Dimer mobility M. Vladimirova, A. De Vita, A. Pimpinelli (2001)
Impurity-induced mobility gradients J.K. (2002)

Anisotropic diffusion [e.g. Si(001)] J. Myslivecek et al. (2002)



Issues: e shape and scaling of individual bunches
e global evolution of the morphology (coarsening)

Levels of description:

e step evolution equations:

dx; X,--l -
gt F (X0 = %) + fo(X; = X;_1) x
Xj+1
[BCF 1951; Schwoebel & Shipsey 1966]
e continuum height equation: h(x,t)
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[Mullins 1959: Villain 1991]



Scaling properties of step bunches

e bunch height
N~WY a>1
N~L~tP

W '—|_LLL e minimal terrace size:
= L - | ~N7Y~W/N

min

=y=1-1/a

Experiments for electromigration-induced step bunching on Si(111):

o Yy~ 2/3 [Fujita et al., Phys. Rev. B 60, 16006 (1999)]

e Br1/2 [Yang et al., Surf. Sci. 356, 101 (1996)]

Goal: Consistent derivation of power laws and prefactors



Stability of step trains

e step evolution:

(X =%) + (X =Xy e =

j*1

f.: flux from lower/upper terrace

e homogeneous step train: XEO) =[f.()+f_(D]t+jl I: step spacing

linear stability analysis: x;(t) = XEO) +e(t) = g(t)~ePt with

Z(w(¢)) = —(1—cos)[f\.(I) — £2(I)]
= step train is stable iff f\(I)—f" () >0

e step bunching during growth requires preferential attachment from the
upper terrace




The Ehrlich-Schwoebel effect

[G. Ehrlich, F. Hudda (1966); R.L. Schwoebel, E.J. Shipsey (1966)]
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e Additional energy barrier suppresses adatom descent across step edges

e Preferential attachment to step edges from the lower terrace
= stabilization during growth, destabilization during sublimation



Step bunching by steering

e Steering: Attraction of incident
atoms to the substrate implies
Inhomogeneous deposition flux

At vicinal surfaces steering leads
to enhanced deposition near
descending steps
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Lennard-Jones trajectories for Cu(100)
[van Dijken et al., PRB 61, 14047 (2000)]




e Flux model: Fy

F(X)=Fy[1—ge XA fee (104

e Burton-Cabrera-Frank (BCF) equation for stationary adatom density n(x):
Dn"” 4+ F(x) =0 with boundary conditions n(0) =n(l) =0

= f,—f =-2e[A(1+e)—2A%/1)(1— e~ —2¢[A —2(A%/1)]

= fi(I)—f.(1) <0, instability for all |

e Time scale for bunching: 0.~ (8¢) (1 /A)% ML



One-dimensional stochastic model

e Atom deposited at site | reaches
upper step with probability

- P=1—(i—1)/I

i 1/2 .1/2 I ( )/
o _ e Atoms deposited at | = 1 are
o “deflected” with probability p

e Simulation with | =3 and p=1:

Steering model, p=1, I=3
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Step bunching during sublimation

BCF equation for the stationary adatom density n(x):

d’n n dn

D7—7=0 bc: D d—xw = £K [N(X) — Neq(%)]

T: adatom lifetime k. : attachment rates to ascending/descending step

step-step interactions: Neq(X,) = Ng, exp[BAU(X)] with B = 1/k;T and

BAU(X) = — <>§+1|O—xi)3+ (Xi —|(;<i1)3

|, = (2QB9)*3: interaction length 0. step repulsion coefficient

additional lengths: Ay = +/DT diffusion length d = D/k_ kinetic length

Ehrlich-Schwoebel parameter: S=k_/k, = exp|—BAE] < 1



o Forx —X ;<< dandx —x , < Ay step dynamics become linear

dx DQmM [ S 1
dt A2

1+S X1 = %)+ 1+S(X' X_,)| -+ interaction terms

—> exact continuum limit for slowly varying profiles: [J.K. (1997)]
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Step bunching by surface electromigration

e BCF equation with an electromigration force f [Stoyanov, 1990]:

d2n dn n dn
D5~ BDf ——=0 be: D —BDfnly = +kin—ngl|,_,

= linear step equations in the attachment-limited regime:
[Liu & Weeks, 1998]

dx; DQngqf
dt  2dkgT

(%1 +%_1—2%) +R(X%, 4 —X%_,) + interaction terms

—- continuum equation:

oh g | Dndhyf

1 SngDngq A21P
- _|_ -
ot dX 2dk, T m

Rn3
o T Tadm o | = o

destabilizing for f <O



¢ Neglecting the symmetry-breaking term ~ m~39m/dx, the stationarity
condition J(X) = J, takes the form of Newton’s equation for u = nv:

2
K % = /U(Jy+B//U) = -V'(u), V(u)= —%Jou3/2— Bu

V(u) 4 e Bunch shape corresponds to trajectory

0 < U(X) < Upax

e Two types of trajectories:
K(du/dx)?/2+V(u) <0or >0

0 —u e How to fix J,?

o Liu & Weeks [PRB 57, 14891 (1998)]:  Jy= —5i55Rhyl <0

= current remains at its initial value throughout the bunching process
= bunch is described by trajectories with U,,,x > U*



e Scaling law for minimal terrace size | ., in a bunch of N steps:
1/3 1/3 2/3
o _ s (S ) (1) (A0 (lo) 2
I 1-S d I I

Numerical simulations:
(V. Tonchev)
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Universality classes of step bunching?

e Generic continuum equation for step bunching:
[Pimpinelli et al., PRL 88, 206103 (2002)]

oh 0J . 02
E—I—a—x—const., J = Bm" + Km¥ asz
with Bo >0, K >0 destabilizing stabilizing

k = 0/1: diffusion limited/attachment limited kinetics

n: exponent of step-step interaction [V, (1) ~ 17"
e Postulate invariance of h(x,t) under scale transformation

h(x,t) — b~ h(bx,b%)

= a=1+2/(n—k—-p),z=2(1+n—-k-2p)/(n—k—p),B=0/z



For sublimation and electromigration p = —1, k=1

2

_n+2 B
B ~ 24n

n

1
= 7B:§7y

For n = 2 this implies y=1/2,1 . ~ N2 222

min

The scaling argument for | _. fails because in the stationarity condition
J(X) = J, the destabilizing current is irrelevant compared to the mean
current Jwhenp <0 = effectivelyp=0 = y=2/(n+1)

On the other hand, the numerics is consistent with the predictions of the
scaling theory for a and 3 with p = —1

= violation of the “obvious” scaling relation y=1—1/a !!!

Local and global properties described by different continuum equations ?



Bunch asymmetry and bunch motion

e Bunches are distinctly asymmetric:
lg.c ~ N~1/3 as predicted by continuum theory, but I, ~ N°

e Asymmetry due to symmetry-breaking term is much too weak and of the
wrong sign:

S=0. 074, beta=0.3

Numerically integrated bunch shape for
different values of the maximal slope

S=0.3,Ay/l =d/l = 100,1,/l = 0.12 i

e Bunch asymmetry reflects the accelerating trajectories of steps escaping
from one bunch and attaching to the next



