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1. INTRODUCTORY REMARKS



Piezoelectric materials

— more than seven decades of commercial use

— a wide variety of applications ranging from crystal-controlled
oscillators to small size active elements of modern electronic devices

Piezoelectric effect

material response to electric field E = (E;), or stress field T' = (T}y,)
piezoelectric tensor d = (dyj5) ~ V[V? . 18 components

stress field (e.g. sound pressure) — polarization,

appearance of electric field

3
P = E d;iji Lk ... transducers
k=1

. electric field — induced strain, change in shape

3
Oj = E diji i ... actuators
i=1

piezolectric coefficient dsss:

(a) P3 = ds33T53 — induced polarization along [001] under stress
applied in the 3-direction

(b) 033 = d333F3 — induced strain in the 3-direction under E || [001]



Structural forms of piezoelectrics:

A single domain crystals

— Si0y (oscillators), LiNbO3 (SAW devices), - - -

B polycrystalline ceramics:

typical material: solid solution Pb(Zr(,_,)Ti,)O3 (PZT)

compositional tuning of material parameters: doping

soft PZT ( donors ): sensors, ultrasonic imaging systems

hard PZT ( acceptors ): autofocusing in cameras, tuning of lasers
C single multidomain crystals:

1997 — ultrahigh piezoelectric coefficient ds3 in thombohedral single
crystals of ferroelectric Pb(Zn;;5Nby/3)O3-8%PbTiO3 (PZN-PT)
poled along the non-polar direction [001]

— new generation of high sensitive actuators and transducers

Table 1. Piezoelectric response of piezoelectric materials.

structural form material ds3 [pC/N]

single domain crystals SiO, ~ 50

polycrystalline texture ‘soft’ PZT  ~ 600
‘hard” PZT ~ 200

single crystals PZN-PT > 2000




Engineered domain configurations

1999 — stable domain structure in the PZN-PT crystals after poling

equal distribution of four equivalent domain states

with polarizations along [111], [111], [111] and [111] (S. Wada et al.)

QUERY: ; engineered domain configuration —is it a factor supporting

enhanced piezoelectric response to appear ?

experiments with non-lead single crystals of BaTiO3 and KNbOs3

— of piezoelectric coefficient ds;3

Table 2. Piezoelectric properties of BaTiO3 and KNbOj single crystals.

poling ferroic  compound ds3
direction phase (T =25°C) [pC/N]

polarization vectors

[111] Admm  BaTiOjg 203

[100], [010], [001]

3m () 145 [111]@
[001] dmm  BaTiOg 125 [001](@)

3m (c) 350 [111], [TT1], [T11], [111]
[110] mm?2,, KNbOs 18.4 [110]@)
[001] 4mm 51.7 [101], [T01], [011], [0T1]
(@) single domain state ) B > 40 kV/em
() T = ~100°C
PROBLEM:

DETERMINE ALL POSSIBLE ENGINEERED DOMAIN
CONFIGURATIONS WHICH CAN BE PRODUCED BY

EXTERNAL FIELDS



2. DOMAIN CONFIGURATIONS, AVERAGE
TENSOR PROPERTIES AND EXTERNAL
FIELDS



A simple model of a multidomain crystal

Basic characteristics:

e point groups of prototypic and ferroic phase, G and F, resp.

e n = |G|/|F| possible single domain states <1, ..., <n>

|G|, |[F| - the number of operations in those point groups

<j> — gqj_>]'<’L.> for any 1 7é j7 gi—j Q Fz — Stab(;(<z'>)
the stabilizer of the ith state

numbering through left cosets of F; in G
cosets G=F + ¢F + -+ + g, F
states <l>, P2s= go<l>, ... <n>= gp<1>

e partial volumes v; of the n states, vy +---+ v, =1

Domain configuration (DC)
C(’UZ) — ’U1<1> L U2<2> L. .. Un<N>

LI ~ coexists with

Some concepts in use:

H-orbit of the state <i-, H C G: Hxi={h<i>;h € H}

—  H-decomposition: {1,....,n} =H%iyU---UHx%1,

The closure H® of the group H with respect to the group pair G D F:

H® = Stabg(H % i) N --- N Stabg(Hxi,) O H



Characteristics of domain configurations
1. Effective symmetry K of domain configuration C(v;)

K={g € G;gC(v;) =vig<l>U---Uvig<n>=C(v;)}
... the stabilizer K = Stabg(C(v;)) of C(v;)
stability condition of a DC C(v;) exposed to an external field F:
K C U J= Staboi)(F)NG
Stabos)(F)={9€0(3);9F=F} ... orthogonal stabilizer of F

Statement 1. A subgroup H of G is the stabilizer of some DC C'(v;)

if and only if it coincides with its closure, H = H®.

2. Unique expression of any DC' through coherent configurations

Coherent DC <7y, ..., j7,> with the stabilizer K:
all states <j1>, ..., <j,> form an orbit K« j;

:>Uj1:"':7)jq:$ & K= Stabg(K* 71)

Statement 2. Any DC with stabilizer K is coherent or a unique
combination of s coherent DC's <ij1,..., 4>, § < n:
C’(uj) = U1<Z'1:1, ce 7i177"1> LU u5<2'371, Ce 71'877’.9>

- K= Stabg(K *i1,1> MN---N Stabg(K *”L'SJ)
— u; is a partial volume of the jth coherent DC, uy +--- 4+ u, =1



3. Example of potassium niobate: ferroelectric Amm?2-phase.

prototypic group G = m3m

ferroic group F = 2,,mym,

twelve ferroelectric states

1th state — polarization pY
« oriented line with arrow

< initial non-ferroelectric
coherent DC <1,2,...,12>
Stabilizer K = m3m

Stress field T11 = T22 7& T33
Stabo3)(T') = 0o,/m,mm

Configurations:

1,2,3 4>,
25,6,7.8,9,10,11, 12-
Stabilizer K = 4,/m;m,m,,




To3="T5=T1y

6 | / 5 Stress field T11 = T22 = T33./
9
StabO(?)) (T) — Ooxyz/mxyzmrn

Configurations:

22.4,6,8,10, 12~
Stabilizer K = 3,,,2,5/Myy

4. Average tensor properties of a DC C(v;).
The average T of a tensor property T (first approximation):

~ T — ’UlT(l) _|_ . e _|_ fUnT<n)

T — contribution from the ith state
Final expressions:

coherent DC <ji, ... j,> ~ T = é(T(jl) 4o Tl

general DC C(UJ) — U1<Z'171, cee Z.17,,11> - L US<Z'S.J7 - ;is,rs>

~ T:u1T(1>+---+u$T
T(j) — contribution from the jth coherent DC

(s)



3. TENSOR PROPERTIES OF COHERENT
CONFIGURATIONS



Tensor representation S of rank m

Tensor space L : basis — {e;p.; Jo koo =12, 3}, dim L =3"

m—indices
S:03)39— S(g) € GL(L),
S(g>e]k :Z?’k:’...l €<g>D]/7<g>Dk’k<g> o ej’k/... ; j7 ka s 17 27 3
J 1 — polar L D,
e(g) = { D(g)| - axial } tensors m=1:8 { D,

m > 2 : a tensor property T = Z?k'_:l Tii €.
permutational symmetry of m indices . QT C Sy
TeQr: S(r)e;, = ejip.. I=Jetys k=12,
. Py, L =LT
. carrier space of tensor T
polar tensor T : Qr=C, = L*=L, S ~ D}
Qr# C, = LY*C L, S ~ [D"|9T ... symmetrized power

Neumann’s principle:  Stabos(TY) O F,
< Fi<1l> = <1> = tensor property TW e Le, C LT
L, ={x =3 _ Ty € LT S(f)w = forall f € Fi}
. stability space of Fy

. PFlLT = LFl

a coherent DC <jy, ..., jp>, Stabg(<ji1,...,75p>) = K:

T — %(T(jl) 4o TUY= PTVY) = ... = BTUP) € Ly



Statement 3. The average property T of a coherent configuration
<J1y---,Jp> Will have the same form as the tensor T' of a single

domain crystal with equal macroscopic symmetry K if PKLFjl: Lg.
Basic observations: PKLFj1 =0<«= Lk L LFh'

Four cases: O —
®  PlLp, =Lk = Stabop)(T) = Stabos)(T)
O 0C PxLe, C Lx & Stabogs)(T) = Stabos)(T)
A 0C PLr, C Lx <~ Stabo)(T') D Stabos)(T)

Similar four cases after
R, - an irreducible representation (irep) of G
LT - maximal G-invariant subspace of LT whose G-irreducible

subspaces afford just the irep R,

Hq, Ry, Ry, _ Ry,

LFJ1 Lqul — LFjlﬂ LT qu, LK LKq = LK M LT R(Jz
‘ 5 Electric field (Ey, By, E3),
s B < |5
! Stabo(g,)(E) = OQ[114]MxyM.
| Configuration
<5,9>
| Stabilizer K = myy
L _

/
/
/




TENSOR PROPERTIES OF A COHERENT DOMAIN CONFIGURATION

with average symmetry K= mx-y in KNbO;

L= Stab,(T) - orthogonal stabilizer of atensor T

coherent DC <5,9> single domain state

stabilizer K= mx-y tensor
components

—o—0 —o o P Py Ps

L= OO”Pmm P~V

¢ ® €n €12 €3
€5, €3
€33

e ~ [V?]
o [
L= 2x-y / mx-y
d VIV?3]

[ o

- L= mx-y d,:i=123

o =0 =1,...,.6
@ — @ equal components d,= d,.jj, A=j
®—@®) 2 x former comp. d,=2d,, j%k,

— @ 2dashed lines intersect A=9-j-k

It in the sum of connected comps.



4. FERROELECTRIC COHERENT
CONFIGURATIONS OF Amm2-PHASE OF
POTASSIUM NIOBATE CRYSTALS



Coherent configurations

Electric field (Ey, E£1,0)
Stabo)(E) = 0oymgm,

Configurations
<1> and <5,8,9, 10>
Stabilizer K = 2,,m,gm,

Electric field (0,0, Es)
mech. stress 171, T, T33

Staboz)(E) = oo,mmy
Staboiy(T') = m;mym,
Configuration

<9, 6>

Stabilizer K = mym,2,




Minimal incoherent configurations

Electric field (E7, 5, 0)
Stabo<3)(E) = 00[140]MzM.

5 Configurations
ur<1> U uo<2>,
)
)
Stabilizer K = m,
Non-coherent DC C(u;):
C<UJ> — ”LL1<Z.171, c. 7i1,r1> LU U5<Z'571, C. 72‘5,7‘s>

StCLbG((L'j,l, « o 7ij,rj>> = Kj, ] = 1, ]
StCng(C(U]» =K = Klﬂ"'ﬂKSZHS Kj

J=1

K#Nju Ky k=1,....s = minimal incoherent DC



DOMAIN CONFIGURATIONS IN POTASSIUM NIOBATE:

FORM OF and its orthogonal stabilizer L = Stab,;(e)

single domain state coherent DC <5,6>
stabilizer K= mx my 2z

o ° L [ ) (] ]
o o \
® L=mxmymz L= oox/mxmm
coherent DC <1> (SDS) coherent DC <5,8,9,10>

stabilizer K= 2xy mx-y mz

\. . \ .
® L=mxy mx-y mz ® [=9°9z/mzmm

Minimal incoherent configurations

U <1> v U, <2> u; <5,8> v u,<9,10> u; <1> v u,<5,8>

stabilizer K= mz
\. ° [ ) ° ° [ ) [ ) °
° [ ) [ ( J L4

L=mxy mx-ymz @ L=mxmymz @ Ll=2z/mz @



5. CONCLUSIONS



Tensor properties (summary):
Coherent DC"’s vs. single domain states

Table 3. Non-equivalent coherent DC’s produced by electric field.

Comparison with hypothetic single domain states of same symmetry.

Electric field Cooherent DCs Stabilizer Stibilizers: Tensor
E Kot DC| Tvs.T form
(0,0, E3) <5,6,9,12> 4,mymyy —
(B, Ev, B | <1,5,9> 3yyzMyy = £
(B, E1,0) | <15 2yMygmy | = # =, #
(B, By, E3)
By < | Bl <5, 9> Myy — =+
Minimal incoherent
DC’s
7# 7
7 7
(E17E2’O) ui<l> L ug<d, 8>; Mz = £
- 7

Table 4. Non-equivalent coherent DC’s produced by electric field
and mechanical stress.

El. field Stress Coherent | Stabilizer | Stabilizers: | Tensor
E T DC’s K of DC Tvs. T form
(0,0, E3) 111,190,133 | <5,06> mym,2, # #
Th= T, T33, B
(B, —E1,0) Tyi= Ty, <5,11> | 2y = =+




Main results

e ( non-equivalent coherent DC"s can be, theoretically, produced by

electric field, possibly in combination with additional stress

e In 5 coherent DC’s form of odd rank and/or even rank tensors
differs from tensor form in a single domain crystal with same
symmetry:

— for 2 orthorhombic coherent DC’s the stabilizers of even rank

tensors are different than for respective single domain states

—In 4 cases, 3xzMyy, MMy2;, 2,y and myy, pseudo-spontancous

tensor components are forbidden in the ferroelectric Amm?2-phase

— for coherent DC’s whose stabilizer is one of ferroic groups,
certain spontaneous tensor component(s) will be zero due to the

orthogonality of relevant stability spaces, e.g.

25,89, 10> L L2

o Quite stmilar features were established for 4 incoherent D(C's

with the monoclinic stabilizer m,.



Concluding remarks

non-equivalent coherent configurations — new materials

e stabilizer K of a coherent DC stands as ‘fake’ ferroic symmetry

e average properties are given by single domain parameters

Five basic cases:

Comparison of average tensor form with single domain

form for odd- and even-parity tensors.

tensor parity

stabilizer K of

case odd even coherent DC [T']
A same  same Amm
B different  different My
C same  different MyMy 25, 25y MygM,
D different  same -

aq same 1mixed case

ao mixed case
different
by mixed case

&y
S

¢ mixed case

same
mixed case

different
mixed case

mixed case - not for all tensors with same parity both forms

coincide

[T’ - both forms coincide/differ for tensor T



