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Diffusion in a 2D channel

(0r — DA)p(z,y,t) =0

A(X
— + Neumann BCs:
jxy,1
Oyp = O‘ and
p(x,t) y=0
O,p = A'0,
X yp IO y:A(aZ)

as the current density j(z,y,t) = —DVp(x,y,t) at the hard walls is parallel

to them.

A(z)
Is there any corresponding equation for p(x,t) = / plx,y,t)dy ?
0
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Exact formulation: the 1D density p(x,t) is determined by

the diffusion equation + BCs + an initial condition p(x,y,0) = po(x,y).

We can:
e either to solve the 2D problem e or to map the initial condition
e and to map the solution p(z,y,t) e and to solve some equation
A(z) op(x,t) 4
plat) = [ ple.y.t)dy S = Q. 0n)p(, 1)
0

Our goal:

to find the operator Q(x, 0.) to make both treatments equivalent.

— Typeset by Foil TEX —



The simplest approximations:

Fick — Jacobs equation :

Zwanzig's correction (1992) : 8}9(;;, t) — D@ﬁA(gy) (1_114/2(55)) 0 p(z,1)
T

Reguera and Rubi (2001) concluded from the non-equilibrium TD

op(a,t) _ 9 pla,b
o 6’xA(x)D(x)8:1: (x
_1/3
with D(z) estimated as D(x) =~ (1 + A’2(:1:)) :
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Trick #1: suppose anisotropy of the diffusion constant D

Op(x,y,t) _ (. O 0 .

Rescaling time D,t — t = we introduce a small parameter e = D, /D, ;

0 0

)pl,9,8) =0 (a—y—eA%x)a—x)p(x, v.)| =0

((9_ 0? 1 0?
ot 0x? e0y?

After integration of the diffusion equation over y and using BC:

op(nt)  Pplat) O
o Ox2 ox
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Zero-th order, ¢ — 0:

- transverse relaxation (x )%eé
is so fast that p(x,y,t pLLYIT.

. ) 0.1
Is flat in the transverse

0 2
direction: 0 y
plz,t 3
,OCE',y,t :IOCC,ACC,t — T N -
Alx
Then
Op(x,t 0%p(z,t 0 p(x,t 0 0 plx,t
B e AN Alx)——1=~) =—A ’ = FJ eq.
ot 9z2 oz \" A oz " ox Az .
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For ¢ > 0:
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- transverse relaxation is 0.3
slower: p(X,y)0.2
p becomes curved in the 0'10
transverse direction; 0
olx,y,t) = x,y,@xpx’t 0
3

- this is substituted for p(x, A(x),t) in the mapped equation:

Op(x,t 0%p(x,t 0 p(x,t
Y — Y L A/ A A . Y
ot Ox? ox z) otz Alz), 0 Az
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Trick #2: search for the operator of backward mapping @

0 %,
a) w does not depend on time, hence ” o(z,y,03) = &(x,y, 0y) o

b) w satisfies the inverse (unity) relation

1 /A“’”) p(z,t)  p(z,t) .
dy w(x,y,0:) = for any solution p(x, 1),
A(z) Jo Alz)  A(z)
c) w can be expanded in € : o(xz,y,0z) = 1+Z &, (z,y, Oz)
j=1
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d) the backward mapped p(z,y,t) = &(z,y,9;) |p(z,t)/A(z)] solves the
diffusion equation

= 02 107 p(x,t)
J+1 IR »
jzz:oe ( ot Ox2 anQ)wj(x,y,ax) 0

with Neumann BC at y = 0 and A(x).

ﬁp(x,t) e 0710 / ~ p(ﬂ?,t)
o = QU dp(e1) = 5o | 5o Aw) = A'@)a (e, A(),0.)| S5
0 - 0 p(z,t)
&CA( )(1 €2z, &E)) or A(x) ’
where also Z can be expanded in e : eZ(x, Oz) = Z eij (2,0
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Recurrence relations:

0% 0%
a—yQ wj—|—1(x7y7833) — _@ wj<x7y7833)

., 1 0 . 9
k=0

- A’
and Zj(a:,@x)ai = A((j)) wi(x, A(x), 0) for j > 0.

- we start from o(z,y,0;) =1 and Zo(z,d,) = —1 (valid for FJ)

- use BC and the inverse relation for fixing the integration constants at
double integration of 05,4 1(x,y, 0x)
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Resultant expansions of &(z,y,d,) and Z(z,0,):

. , A(x) 0O
o(x,y,0,) =1+¢ <3y2 — A 2(:1})) 6A((:1:)) 5 + ...
and
op(z,t) 0O o , s,
S = %All— A A (24(44) —+

0 p(x,t)

AA' A" + A2AG) _7A%) o+
i i )+ oxr A(x)

Instead of the function D(x), we get an operator containing 9/0x.
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Stationary flow: D(z) can be expressed using Z.

Any form of the equation for 9;p(x,t) represents 1D mass conservation law.

0 p(x,t)

J(a.t) = ~A@D@) AT (e, ) = A@) (1 - eZ(z,0.))

or A(x) Or A(x)

In the stationary state: J(x,t)=J constant;
0 p(x) —J

— any stationary solution p(x) has to keep =

orA(x) A(x)D(z)

Final relation: |

A(x)

1
D(x)

= A(x) [1 —eZ(x, (%)} -

enables us to generate D(x) as an expansion in e.
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2
D(x) = 1—§A’2+i—5 (9A’4+AA’2A”—A2A’A<3>)

63

13540445444 A"
045 ( *

584247 A" 41424 AG) —12A3A’A”A<3>+8A3A’2A<4>+2A4A’A<5>)

"Linear” approximation:

€ €? (=€) o5 arctan(/eA’)
D(z)~ 1—-A”4 A" — . A% =
() 34 7% oyt T JeA

1
1+ eR2(x)’

3D symmetric channels:  D(x) R(x) is the radius
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\/€ as a scaling parameter of the transverse lengths

If we rescale /ey — y, /eA(x) — A(x) and p — /ep the diffusion
becomes isotropic:

Jdp(z,y,t) (0% 0°  \plz,y,t)
G _(8w2+8(ﬁy>2) Je

the upper boundary condition:

0p(z,y,t) _ g1 2 OP(@ Y )
veolvay VAT g

Vey=\/eA(z)

= a narrow channel with isotropic diffusion is equivalent to a wide domain
with D, > D,.
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Variational approach

pZ(X,y),1)

Q: Can we express the 2D density p(z,y,t) as a function of only one spatial
(curvilinear) variable z = z(x,y)?
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Variational mapping: we start from the functional F|p, p]

t1 TR A(x) 1/ . 1
— / dt / dx / dy (— (pﬁ - ﬁp) + Opp Ozp + =0yp (%p)
to xy, 0 2 €

Stationary condition 0F = 0 gives the diffusion and "ant: diffusion”
equation for the density p = p(x,y,t) and its complementary p = p(x,y,1):

1 : 1
=0ip+-05p 5 —p=0ip+-0p
€ €
Next step: switching from (x,y) to (z,y) in F
Al 9 92\2 1
/ dt/ dz/ dy :r;[ pp— pp)+<(—z) +-—
ox €

x = x(z,y) is inverse to z = z(z,y) and =, = z(z, A(z,)).

(%) )o-p0us
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Integration over y — along constant z = z(x,y):

Fip(z, /t di / dZ[ pp pp) + r(2) 02p &zp] ;
0 zr,
A(xy) Or y A(x)
a(z) 2/0 dya and

\

o= [ ag) " (+1(5))

Stationary condition d F}[p, p] = 0 gives
the mapped equation:

z = z(x,y) = const.
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A problem: there is no condition for the transformation z = z(x, y)
— at the stationary p,p, Flp,p| =0 for any z = z(x,y).

Simple Ansatz:

z=z(x,y) = Z eijjzj(a:)

=0
— the boundary conditions for p(z(z,y),t) have to be satisfied

0p 0z 1 0p 0z .. Op 0z
—_— — = O - ——— = A ~ A ;
0z Oy =0 e 0z Oy () 0z Ox y—A(z) ’
hence
1 A'(x)

zZ

Zj(x) — ZA(SE) j—l(x) :

zo0(x) can be chosen to make the Ansatz summable.
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Test example - hyperboloidal cone

Oblate spheroidal coordinates:

r=an, r’=a’(1+&)(1 -7’

AT,

f’””llllll ¢ — longitudinal coordinate; £ >0
/] g ;
,,';;Il;;;llllllllll;;l“ll 1 — curved transverse coordinate,
,’l/,"/l//,l////// hard walls at n =1)9; 0 <mp < 1
il - e
,/,/// //// the points 179 < n < 1 are inside the cone
‘:"’Z,,////////// Boundary conditions:

% - & = 0 absorbing boundary; p(0,7) =0

- in infinity, p(¢ — oo, n) — po = const.

Q: What is the stationary flux J through the bottleneck (z = £ = 0)?
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1.6

Flux
4aD £o
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. several questions:

e how to find the optimal transformation z = z(x,y) ?
e how reliable is the "linear” formula for D(x) 7

e can we sum more terms in the e- expansion of D(x) ?

A(x)=ap+aix

A. M. Berezhkovskij, M. A.
Pustovoit and S. M. Bezrukov:
J Chem. Phys. 126, 134706
(2007)

| X
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Stationary curvilinear coordinates

. op(z,t) 0O 0 p(x,t)
The mapped equation : YR &CA(I)D(@“)@:C A(z)
| - plx) dz’
Its stationary solution : A(z) = P0o J/ A(z")D (')

D(z) is fixed by using Z(x, ;) and &

(,y,0,) is known, hence

R p(x
p(m,y)zw(x,y,a)A((x —po+JZZ€7y zjk(x) = po+ J2(x,y) ;
7=0 k=0

)= [ g5 a0 =5/
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Correspondence to electrostatics

Conversely, the stationary p solves Ap(x,y) = 0 plus Neumann BC at
y =0, A(x), so D(x) can be calculated directly from

] = A(a)D(a) [ i/ e y)dy]

for exactly solvable geometries in electrostatics.

Q: Why do we need D(x) if we have already the 2D solution p(z,y)?

A: Originally, we intended to use the mapped equation for description of
non stationary processes.

e the simplified mapped equation (with D(x)) is capable to describe only
quasi-stationary processes.
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Linear cone:

single charge at (0,0)

p(x,y) = po+clnr

where r = /22 + y2.

JInr

A(x)
Fixing c: J= —/ Oup(z,y)dy = plz,y) = po—
0

J[/ol1 [ 1 arctan
Do) == (gl [ o] ) =
vz \0x [y o v

r = v/x2 + y? — correct curvilinear coordinate for the variational mapping.

arctan -y
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Linear
approximation:

A(x) is approximated
by its tangent at x;

A(x)
A’(z)

apgp = T —

In the linear cone,

J

2 arctan vy

s Sl [ ]
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Circular
approximation:

A(x) is approximated
by a circle, given by 3
parameters: radius Ry,
and the shifts xq, yo;

- the circle fits A(x),
A'(z) and A”(z) at N Yo Ro
Tr=x.

|
=
>

J (w+ 2 — 20)* + y°

= po — 1
pLT,y) = po 2 arctan[—w /yo] . (w—2+x0)2+ 9%’

where w = \/R% — y2 and arctan of real argument € (0, 7).
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AA//

D) = A'(1+ A% 4+ AA") arctan(A’)/ arctan(y) + AA” — A2(1 4+ A?)”’

\/(1+A’2)3— (1—|—A’2—|—AA”)2
14+ A% 4 AA”

where v =

If A is rescaled by /¢, its Taylor expansion is

2 3
D(z) = 1—§A’2+i—5A’2(9A’2+AA”)—;TE)A’Z(135A’4+45AA’2A”+5A2A”2)+...
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Finite channels

e the mapping procedure supposes that the function A(x) is analytic
e the mapping generates a unique stationary curvilinear system

e if the function A(x) defined for x € (z,xR) is extended by its mirrors
A(zp r+x) = A(rr, r — =) and it remains analytic, the mapping works
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Finite linear cone

- calculated by using electrostatics
forxL:O, 33321
1
A(X)=X
0.95
0.9 finite cone
D(x)
0.85
0.8
0 0.2 0.4 0.6 0.8 1
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Hierarchy of approximations of the mapping

e Zwanzig-Mori: keeps all information; the transients are hidden in the
memory

e non stationary mapping: projects out the transients, the mapped
process is again Markovian, governed by the generalized FJ equation
modified by a correction operator 1 — Z(x,0,.)

e stationary mapping: fixes a unique curvilinear coordinate system; the
operator 1 — Z(x,0,) becomes a function D(z).

e next approximations of D(x). The exact stationary function is replaced
by a function D(x) corresponding to some exactly solvable model,
which approximates the true boundary.
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Can be this mapping extended to other dynamics?

forced diffusion: diffusion in an external field . . .
ballistic motion - 7

quantum mechanics - 7
One has to resolve ...

. what are the transients?
. what is the small parameter €7
. what is an equivalent of the Fick-Jacobs equation?

. what plays the role of the equilibrium in non-dissipative processes?
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