

UNESCO/IUPAC Postgraduate Course in Polymer Science

Lecture:

Polymer solutions in a nutshell

Jiří Horský

Institute of Macromolecular Chemistry ASCR, Heyrovsky sq. 2, Prague -162 06 http://www.imc.cas.cz/unesco/index.html unesco.course@imc.cas.cz

Polymers – under one name great variability

polymerization degree = number of monomeric units => molar mass/molecular weight (distribution, averages)

Architecture

head-to-tail configuration (defects)

HT HT HH TT HT $CH_2CH CH_2CH CH_2CH CHCH_2 CH_2CH CH_2CH$ $CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$

Stereoisomerism in the main chains

Special branching architectures Hyperbranched polymers one-step polycondensation of AB_n

Dendrimers

Two step reaction of AB_n – deprotection, extension

carbosilane dendrimer

Prof. Otto Wichterle

Tree of knowledge

The statue represents ever branching macromolecular structures...

dendron

dendrimer

Fascinating polymeric liquids R. B. Bird and C. F. Curtiss Phys. Today 37, 36 (1984) climbing the rod exit expansion upward flow

Polymer solutions

Applications (flow modifiers: paint, food, pharmaceutical industry etc.) Life is solvent based (macromolecular schism-H. Morawetz, K.A. Dill)

structure/properties relation structure -> properties (applications) properties -> structure (molecular characterization) Flow properties (non-Newtonian liquids) thermodynamics radiation scattering monodisperse linear homopolymer above its glass and melting temperatures

Isolated polymer molecule (infinite dilution) in inert solvent (vacuum)

~~~~~~

the extended zigzag conformation is just one from many possible ones => polymer coil



Root-mean-square radius of gyration

Bead and stick model



 $R_{g}^{2} = \left\langle \frac{\sum_{i=0}^{N} (r_{i} - r_{g})^{2}}{N+1} \right\rangle = \frac{1}{2(N+1)} \left\langle \sum_{i=0}^{N} \sum_{j=0}^{N} (r_{i} - r_{j})^{2} \right\rangle$ 

Root-mean-square end-to-end distance  $R_{\rm f}^2 = < R^2 >$  only linear molecules

Not all conformation (combination of stick angles) are possible because beads cannot overlap excluded volume between beads (monomeric units) distant along the chain (long-range)

Monomeric units/beads are not hard spheres Interaction potential has attractive and repulsive part The potential results from polymer/polymer, solvent/solvent and solvent /polymer interactions



Under certain conditions repulsive and attractive parts compensate each other  $\Rightarrow$  effective zero volume (theta solvent, theta temperature)

#### Ideal chain (zero excluded volume)



**Freely-jointed chain**:  $\phi$ ,  $\theta$  free; / fixed

random walk  $\Rightarrow$  binomial (normal for  $n \rightarrow \infty$ ) distribution  $\Rightarrow R_f^2 = nP_f^2$ 

Entropy elasticity 
$$f = \frac{dG}{dR} = \frac{d}{dR}(H - ST) = \frac{d}{dR}(-k_bT \ln p(R)) = \frac{d}{dR}(\frac{3}{2}k_bT\frac{R^2}{R_f^2}) = 3k_bT\frac{R}{R_f^2}$$
  
Freely rotating chain:  $\varphi$  free;  $\theta$  (68°),  $l$  (0.154 nm) fixed  $R_f^2 = nl^2\left(\frac{1+\cos\theta}{1-\cos\theta}\right)$  ( $\cong 2$ )  
Hindered rotation model  $R_f^2 = nl^2\frac{1+\cos\theta}{1-\cos\theta}\frac{1+<\cos\varphi>}{1-<\cos\varphi>}$  Characteristic ratio  $C_{\infty} = \frac{R_f^2}{nl^2}$   
Rotational isomeric-state model trans gauche+ gauche -

transfer matrix technique (Flory)

**Equivalent freely jointed chain** identical end-to-end distance  $R_f^2 = Nb^2$  and counter length *nl* cos( $\theta/2$ )=*Nb b* length of Kuhn segment

Worm-like chain (Kratky-Porod) semiflexible/stiff polymers

free rotating chain persistence length,  $l_p$ , is an **average** projection of end-to-end distance in the direction of the first bond for  $n \rightarrow \infty$ worm-like chain  $l \rightarrow 0$  and  $\theta \rightarrow 0$   $l_p = \text{const}$  **Bead-spring model – Gaussian chain** the distance between beads *i* and *j* (*i* – *j* >>0) in a freely-jointed chain has a Gaussian distribution

in a Gaussian chain it holds for any *I*, *j* a physical realization is a bead-spring model





#### **Real chains**

 $\frac{A}{kT} \cong \frac{R^2}{Nb^2} + b^3 \frac{N^2}{R^3}$ 

long-range interactions - excluded volume *v* expand macromolecule but elasticity resists



 $\frac{\mathrm{d}A}{\mathrm{d}R} = 0 \quad \Rightarrow R \approx N^{0.6}$ 

hard spheres entropic athermal solvent

total excluded volume ~  $N^2$ 

in reality also *U; v* can be <0 bad, theta and good solvents



Two parameter theory of dilute polymer solutions

unperturbed dimensions excluded volume

Intramolecular excluded volume  $\Rightarrow$  isolated macromolecules  $\Rightarrow$  infinite dilution

#### (log) concentration Xa semidilute Infinitely dilute dilute concentrated

**Concentration regimes in polymer solutions** 





#### Thermodynamics

model of polymer solution  $\Rightarrow$  free energy of mixing  $\Rightarrow$  equilibrium state of the solution



Mean-field theory local contact probabilities approximated by overall ones

F-H eq. becomes semiempirical as  $\chi$  has entropic component

$$\chi = a + \frac{b}{T} + \dots$$

F-H eq. can be derived for mixing of polymers – polymer blends

#### **Phase behavior**

Solubility parameters  $\delta_{\rm p}$  and  $\delta_{\rm s}$   $\chi \approx \frac{\tilde{v}}{kT} (\delta_{\rm p} - \delta_{\rm s})^2 > 0$  nonpolar systems  $\mathcal{E}_{\rm ps} = \sqrt{\mathcal{E}_{\rm p} \mathcal{E}_{\rm s}}$  (missing entropic part)

General criterion of solubility  $\Delta G < 0$  is met with amorphous polymers even if  $\chi > 0$ So the question is: Can  $\Delta G$  decreases on phase separation?



#### **Osmosis – osmotic pressure**

semipermeabile membrane



$$\Pi = \left(\frac{\partial \Delta G}{\partial V}\right)_{np} = \tilde{v}_{s}RT(\frac{\phi}{N} - \ln(1 - \phi) - \phi - \chi \phi^{2})$$

dilute solution

$$\Pi = \tilde{v}_{s} RT(\frac{\phi}{N} + (\frac{1}{2} - \chi)\phi^{2} + \frac{1}{3}\phi^{3} + ....)$$
$$\Pi = RT(\frac{c}{M} + A_{2}c^{2} + A_{3}c^{3} + ....)$$

 $T = \theta \implies A_2 = 0$ 

 $0 << c \Rightarrow exl. vol \rightarrow 0$ 



blob ξ<sup>3</sup> correlation length ξ



 $\mu_{s}^{I} = \mu_{s}^{II}$  $\mu_{s}^{I}(p,\phi) < \mu_{s}^{II}(p,0)$  $\mu_{s}^{I}(p+\Pi,\phi) = \mu_{s}^{II}(p,0)$  Flow, rheology, molecular hydrodynamics



Viscosity of solution  $\eta = \eta(\phi)$ for dilute solution  $\eta(\phi) = \eta_0 (1 + a_1 \phi + a_2 \phi^2 + ...)$ 

**Hard spheres** Einstein  $a_1$ =2.5

 $\phi$  usually used for dispersions. Polymers: mass concentration.

 $\eta(c) = \eta_0 (1 + [\eta]c + k_{\rm H} [\eta]^2 c^2 + ...)$ [ $\eta$ ] intrinsic viscosity (cm<sup>3</sup>/g);  $k_{\rm H}$  Huggins constant



reciprocal particle density

( )

hard sphere Stokes law

1

$$f = 6\pi \eta_0 R$$

Empirical equation for viscosity a suspension of hard spheres Mooney equation

$$\frac{\eta}{\eta_0} = \exp\left(\frac{2.5\phi}{1-\frac{\phi}{\phi_c}}\right)$$

$$\phi_c \text{ (maximum packing fraction)}$$

#### models used for polymer (hydro)dynamics



#### finite dimensions (Stokes law)

*friction coefficient* total resistance

*intrinsic viscosity* additional stress

$$\begin{aligned} \left[\eta\right]_{\theta} &= \Phi_{0} \frac{\left\langle R^{2} \right\rangle_{0}^{3/2}}{M} \implies \left[\eta\right]_{\theta} \sim M^{1/2} \qquad \frac{f_{\theta}}{\eta_{0}} = \left[f\right]_{\theta} = P_{0} \left\langle R^{2} \right\rangle_{0}^{1/2} \implies \left[f\right]_{\theta} \sim M^{1/2} \\ \Phi_{0} &= 2.2 - 2.9 \, 10^{23} \text{ mol}^{-1} \qquad P_{0} = 5.2 - 6.0 \quad \text{hydrodynamic radii of HES } R_{f} < R_{\eta} \\ \text{good solvents} - Flory Fox theory: one expansion factor } \alpha_{R} = \alpha_{\eta} = \alpha_{f} \\ \left[\eta\right] = \left[\eta\right]_{\theta} \alpha_{\eta}^{-3} = \Phi_{0} \frac{\left\langle R^{2} \right\rangle^{3/2}}{M} \implies \left[\eta\right] \sim M^{0.8} \qquad \left[f\right] = \left[f\right]_{\theta} \alpha_{f} = P_{0} \left\langle R^{2} \right\rangle^{1/2} \implies f \sim M^{0.6} \end{aligned}$$

Strictly speaking,  $\alpha_{\rm R} \neq \alpha_{\rm \eta} \neq \alpha_{\rm f}$ 

Empirical Mark-Houwink Eq.  $[\eta] = KM^{a}$ a=0.5 (theta) to 0.8 (athermal) < (rigid)

#### semidilute/ concentrated solutions, polymer melts



 $\eta \sim M$  for short-chain polymers well described by Rouse model hydrodynamic interaction is shielded

Steeper increase  $\eta \sim M^{3.4}$  above certain  $M_{\rm c}$  chain entaglement



entanglement of polymer chains= temporal crosslinking  $\Rightarrow$  viscoelasticity

#### reptation model



while the chain sneaks through the polymer, the confining **tube** disappears and renews

$$\eta \sim M^3$$

Light Scattering by Macromolecular Solution

#### Static Light Scattering by macromolecular solutions

elastic scattering by independent small particles Raleigh scattering (L< $\lambda$ /20; general solution of Maxwell eqs. $\rightarrow$  Mie)

oscillating induced dipole



$$\frac{I_{s}}{I_{0}} = \frac{16\pi^{4}\alpha^{2}}{\lambda^{4}r^{2}} \frac{cM}{N_{A}} = \frac{4\pi^{2}n^{2}}{\lambda^{4}r^{2}} \left(\frac{dn}{dc}\right)^{2} \frac{cM}{N_{A}}$$
$$R_{\theta} = \frac{I_{s}r^{2}}{I_{0}} = \frac{4\pi^{2}n^{2}}{\lambda^{4}} \left(\frac{dn}{dc}\right)^{2} \frac{cM}{N_{A}} = KcM$$

 $I_{\rm s} \sim \lambda^{-4} \Rightarrow$  blue sky/red sunset

dn/dc refractive index increment

 $R_{\theta}$  Raleigh ratio

K optical constant

vertically polarized light observed in the horizontal plane

scattering by solution

destructive interference in regular structures (crystals, polyelectrolytes) fluctuation in polarizability ~ fluctuation in concentration  $\leftarrow$  free energy

$$\frac{Kc}{R_{\theta}} = \frac{1}{RT} \left(\frac{\partial \Pi}{\partial c}\right)_{T} = \frac{1}{M} + 2A_{2}c + \dots$$

#### scattering by larger particles

phase difference



position vector incident wavevector **q**<sub>i</sub> scattered wavevector **q**<sub>s</sub> scattering wavevector **q** 

$$\vec{q} = \vec{q}_i - \vec{q}_s$$
  $|\vec{q}_i| = |\vec{q}_s| = \frac{2\pi n}{\lambda}$   $|q| = \frac{4\pi n}{\lambda} \sin\left(\frac{\theta}{2}\right)$ 

Angular scattering function

$$S(q) = \frac{I_s(\theta)}{I_s(0)} = \left\langle \left| \frac{1}{P^2} \sum_{j=1}^{P} \exp(i\vec{q}\vec{r}_j) \right| \right\rangle = \frac{1}{P^2} \sum_{i=1}^{P} \sum_{j=1}^{P} \frac{\sin(qr_{ij})}{qr_{ij}} = \frac{1}{P^2} \sum_{i=1}^{P} \sum_{j=1}^{P} \left( 1 - \frac{q^2 r_{ij}^2}{3!} + \dots \right) = 1 - \frac{16\pi^2 n^2}{3\lambda^2} R_g^2 \sin^2\left(\frac{\theta}{2}\right) + \dots$$



 $\mathrm{SLS} \to M,\,A_2,\,R_\mathrm{g}$ 

Principles apply also to other types of radiation – neutrons, x-ray (different  $\lambda$ ; different scatterers)

#### **Dynamic (Quasi-Elastic) Light Scattering**

macroscopically homogeneous system (liquid) scatters light due to polarizability fluctuations

consequently the instantaneous intensity of scattered light fluctuates



 $I_{\rm s}$  values seems random but they are correlated as fluctuations dissipation is governed by hydrodynamics



In DLS fluctuations in concentration are probed on the scale 1/q



Memory of the state is lost when all molecules leave volume element  $q^3$  thus the correlation time is given by q and D (diffusion coefficient)

$$\langle I(q,0)I(q,t)\rangle = B + (A\exp(-q^2Dt))^2$$

 $=\frac{kT}{c}$  Einstein relation

#### Literature:

M. Rubinstein and R.H. Colby, *Polymer physics* Oxford University Press Inc.,New York, 2003

I. Teraoka, *Polymer Solutions: An Introduction to Physical Properties* Wiley, New York 2002

www.iupac.org/publications/books/pbook/PurpleBook-C3.pdf



#### UNESCO/IUPAC Postgraduate Course in Polymer Science

# **Polymer solutions in a nutshell**

• Institute of Macromolecular Chemistry ASCR, Heyrovsky sq. 2, Prague -162 06

•http://www.imc.cas.cz/unesco/index.html

•<u>unesco.course@imc.cas.cz</u>