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Introduction to X-ray
and Neutron Scattering

Miroslav Šlouf

Scattering. Incident wave is bent by an object,
propagating in different direction and
with different intensity.

Diffraction is scattering
of incident waves followed by

interference of the scattered waves.
⇒ diffraction = scattering + interference.

Incident wave
Bent

or scattered
or diffracted wave
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Introduction
Diffraction theory

Wide-angle scattering
Wide-angle scattering on polymers

Small-angle scattering
Small-angle scattering on polymers

Conclusion

Key shortcuts
WAS = Wide-Angle Scattering
SAS = Small-Angle Scattering
XRD = X-Ray Diffraction
ND = Neutron Diffraction
ED = Electron Diffraction
LS = Light Scattering
SAED = Selected Area Electron Diffraction
SAXS = Small-angle X-ray Scattering

Key symbols
X = scalar (standard font)
X = vector (bold font)
X = complex number (serif font)
Important exception: A or A(q) =
amplitude of diffracted wave, is a 
complex number.  It is denoted either
as A (correct – complex number)
or as A(q) (convention).  

Contents

+ many examples



Detector
photographic film

CCD camera, image plate

Scattering by homogeneous materials

Primary beam

Primary beam 
is not scattered

Sample
in general: any material
here: homogeneous material

Source of radiation
source: X-ray tube, neutron reactor, electron gun, laser
radiation: X-rays, neutrons, electrons, photons

Diffraction pattern
photographic film or
image file in computer
Diffraction pattern of
homogeneous material
contains only central
spot of primary beam.
⇒⇒⇒⇒ no scattering.

data
processing

4



Detector
photographic film

CCD camera, image plate

Small-Angle Scattering (SAS)

Primary beam

Primary beam is
scattered into
small angles
(θθθθ ≤≤≤≤ 2o)

Diffraction pattern
photographic film or
image file in computer
Material containing
inhomogeneities
from 10 to 1000 Å
scatters radiation
into small angles
from 0 to 2o ⇒⇒⇒⇒ SAS.

data
processing
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Sample
in general: any material
here: material containing
inhomogeneities (10 – 1000 Å)

Source of radiation
source: X-ray tube, neutron reactor, electron gun, laser
radiation: X-rays, neutrons, electrons, photons



Detector
photographic film

CCD camera, image plate

Wide-Angle Scattering (WAS)
Case I: Single crystals = Monocrystals

Primary beam
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Sample
in general: any material
here: single crystal
(inhomogeneities = atoms ≈1Å)

Primary beam

Diffracted beams
at wide-angles

(θ ≥ 2o)

Source of radiation
source: X-ray tube, neutron reactor, electron gun, laser
radiation: X-rays, neutrons, electrons, photons

Diffraction pattern
photographic film or
image file in computer
Single crystal (material
with inhomogeneities =
atoms ≈1Å) shows
diffractions spots
at wide angles
from 2o to 90o ⇒⇒⇒⇒ WAS.

data
processing



Wide-Angle Scattering (WAS)
Case II: Polycrystalline samples - Powders
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Polycrystalline samples...

6 crystals2 crystals1 crystal Powder (∞ crystals)

Diffraction patterns... 



Summary1: Scattering of materials.
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Homogeneous
material

Material with
inhomogeneities 
from 10 to 1000Å

Single
crystal
(inhomogeneities 
are atoms ≈ 1Å)

Polycrystalline
material
(inhomogeneities 
are atoms ≈ 1Å)

• No scattering

• No diffraction
pattern

• Completely homo-
geneous material
is only vacuum!

• Small-Angle
Scattering (SAS)
• Diffuse spot in
small-angle region
(from 0 to 2o)
• Polymer materials:
polymer solutions,
block copolymers

• Wide-Angle
Scattering (WAS)
• Sharp spots in
wide-angle region
(from 2 to 90o)
• Polymer materials:
polymer single
crystals (very rare)

• Wide-Angle
Scattering (WAS)
• Sharp rings in
wide-angle region
(from 2 to 90o)
• Polymer materials:
semicrystalline
polymers (frequent)

Above are general rules: exceptions do exist! Example 0: Diffraction patterns.



Summary2: Scattering of polymers.
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Homogeneous
material

Amorphous
polymer

Crystalline
polymer

Semicrystalline
polymer

• No scattering
• No inhomoge-
neities.

• No diffraction
pattern.
• This occurs only
in vacuum!

• WAS
• Inhomogeneities
are atoms.
• No periodicity
⇒ amorphous hallo.
• Amorphous poly-
mers are quite
common.

• WAS
• Inhomogeneities
are atoms.
• Crystal periodicity
⇒ sharp rings.
• Completely crystal-
line polymers are
very rare!

• WAS
• Inhomogeneities
are atoms.
• Sharp rings and

amorphous hallo.
• Semicrystalline
polymers are
common.

Common synthetic polymers are either amorphous or semicrystalline.
Low molecular weight substances are often completely crystalline.



Various forms of diffraction patterns

1
0

Small-Angle Scattering

Wide-Angle Scattering

h    k    l    Ihkl
0    0    1    32.8
0    1    1     5.6
1    0    1    29.9
0    0    2     8.5
0    1    2    12.3
2    0    1    12.5
2    1    1    11.1

q[A]     I(q)
8.160E-03     31.074
9.111E-03     22.633
1.006E-02     16.947
1.101E-02     12.904
1.196E-02     10.099
1.291E-02      8.018
1.386E-02      6.646



Some polymer structures,
which can be studied by SAS and WAS.
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[1] Polymer molecules in solution
random coil
size: 101 - 102 Å
Small-Angle Scattering

[2] Polymer micelles
micelle of diblock copolymer
size: 101 - 103 Å
Small-Angle Scattering

[3] Polymer particles
polystyrene microspheres
size: 102 - 105 Å
Small-Angle Scattering

[4] Polymer networks

ξξξξ
crosslinked polymer
average ξ: 101 - 103 Å
Small-Angle
Scattering

[5] Block copolymer structures

cubic structure
distance between
phases: 101 - 102 Å
Small-Angle
Scattering

[6] Semicrystalline polymers

crystalline

amorphous

crystalline

crystalline
lamellae
⇒WAS
long period
⇒ SAS



Diffraction theory.
(1) Geometry of diffraction experiment.
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diffraction angle θθθθ
or vector S or vector q

Final diffractogram

Radiation
source

D
E
T
E
C
T
O
R

Primary beam

Diffracted beam

Sample Diffraction
angle θθθθ

2θθθθ

Diffraction experiment

Unit vector s
Unit vector s0

Relationships θθθθ × S × q
During diffraction experiment we measure I as a function of θθθθ or S or q.

Scattering vector S is defined as S = (s-s0)/λ. 
Scattering vector q is defined as q = 2πS.

Vectors s and s0 are unit vectors: |s| = |s0| = 1.

Magnitude of |S| = S = 2 × sin(θ) × |s/λ| = 2sinθ/λ
Magnitude of |q| = q = |2πS| = 4π·sinθ/λ

s/λ

s0/λ

θθθθ
θθθθ

S=(s-s0)/λ

It holds: θθθθ ≈ S ≈ q, i.e. high θθθθ means also high S and high q and vice versa.



Diffraction theory.
(2) Waves & intensity of waves.
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Verbally: wave is a move of oscillations through space.

Graphically:
y

x

(2) Ψ(x,t)=Aexp[i(ωt-kx+Φ)] ..equation (1) in exponential form
(3) Ψ(x,t)=Aexp[i(ωt-kx+Φ)] ..plane wave propagating along axis x

Mathematically:
(1) Ψ(x,t)=Acos[ωt-kx+Φ] ..plane wave propagating in arbitrary direction x

(4) Ψ(x,t)=Aexp[iΦ]exp[i(ωt-kx)] ..equation (3) re-written with complex amplitude

A = Aexp[iΦ] = complex amplitude of the wave

A

λ = 2π/k
Ψ(x,t) = wave
I = intensity of the wave
A = amplitude
λ = wavelength 
v = speed of propagation
ω = angular speed (of oscillations)
k = ω/v = wave vector
Φ = initial phase

I ≈ |A|2

(5) I ≈ |A|2 ..intensity of the wave is proportional to the square of the amplitude
⇒ during diffraction experiments we measure intensity of the waves I. 
⇒ during derivations we calculate A, which are related to experimental I.

Example 1: Wave equation, wave propagation, wave intensity.



Diffraction theory.
(3) Interference = wave addition.
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Ψ1(x,t) = A1exp[i(ω1t-k1x+Φ1)]
Ψ1(x,t) = A1exp[iΦ1]exp[i(ωt-kx)]
Here: Φ1 = π/12, ω1 = ω, k1 = k

Ψ2(x,t) = A2exp[i(ω2t-k2x+Φ2)]
Ψ2(x,t) = A2exp[iΦ2]exp[i(ωt-kx)]
Here: Φ2 = 5π/8, ω2 = ω, k2 = k

Conclusion – interference in SAS and WAS:
[1] Interfering waves are plane and monochromatic ⇒ v, ω, k are the same.
[2] Interfering waves may differ in amplitude and phase ⇒ A and Φ may be different.
[3] Amplitude of resulting wave is complex, depending on phases of the interfering waves.

Example 2: Wave interference, equivalence of [cos-waves] and [exp-waves].

Ψ3(x,t) = Ψ1(x,t)+Ψ2(x,t)

Ψ3(x,t) = {A1exp[iΦ1]+A2exp[iΦ2]}×{exp[i(ωt-kx)]}
Ψ3(x,t) = {A1exp[iΦ1]+A2exp[iΦ2]}×{exp[i(ωt-kx)]}

Wave Ψ2(x,t) with
complex amplitude:
A2 = A2exp[iΦ2].

Wave Ψ3(x,t) = Ψ1+Ψ2 with complex amplitude: A3 = A1+ A2 = A1exp[iΦ1]+A2exp[iΦ2].

Wave Ψ1(x,t) with
complex amplitude:
A1 = A1exp[iΦ1].



scattering center
or scatterer

Diffraction theory.
(4) Scattering = wave bending.
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Scattering by one volume element dr

Scattering. Incident wave is bent 
by an object, changing its
direction and intensity.

incident wave

bent or
scattered or

diffracted wave

Wave-particle duality.
Particles may have wave
aspect and vice versa.
Examples:
light × photons
electron beam × electrons

De Broglie waves:
λ = h/mv

Incident wave Incident particle λλλλ [Å] Scatterer Methods

X-ray beam X-ray photon 0.5-2 electron XRD, WAXS, SAXS
neutron beam neutron 0.5-6 atom nucleus (ND), WANS, SANS
electron beam electron 0.001-2 el. potential (ED), SAED, CBED...
light beam photon 4..8000 different n (LS), SALS, WALS...

A(q) = const × number_of_scatterers_in_unit_volume × volume_element
A(q) = b × n(r) × dr ...b = diffraction length = different for X-rays, neutrons, electrons..

I(q) ≈ |A(q)|2 ...intensity of the scattered wave depends on its direction ≈ θ ≈ S ≈ q

A(q) = ρ(r) × dr ...ρ(r) = b × n(r) = electron density in XRD, nuclear density in ND...
Example 3: Scattering by one atom in XRD, ND, ED.



Diffraction theory.
(5) Diffraction = scattering + interference.
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Interference: Ψ3 = Ψ1 + Ψ2
Ψ3 = resulting wave after interference of Ψ1 and Ψ2.

Diffraction – we measure amplitude A3 of the diffracted wave Ψ3:
We have already shown that: A3 = A1exp[iΦ1]+A2exp[iΦ2]
It can be also shown that: A3 = A1+A2 = A1exp[iqr1]+A2exp[iqr2].
Example 4: Scattering by two electrons, justification of A3 = A1exp[iqr1]+A2exp[iqr2]

Scattering. Incident waves
are scattered and then
they interfere.

incident wave Ψ1

scattered
wave Ψ1

incident wave Ψ2

scattered
wave Ψ2

r1

r2
Arbitrary origin

Scattering vector q=2πS
characterizes direction
of the scattered wave.

s0/λ

s/λS

q=2πS



Diffraction theory.
(6) Key formula of diffraction theory.
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We have already derived:
(1) I(q) ≈ |A(q)|2 ..intensity of wave
(2) A(q) = ρ(r)dr ..scattering by 1 volume element
(3) A(q) = A1exp[iqr1]+A2exp[iqr2] ..scattering by 2 volume elements

this is a "summation with phases"
Generalization of (3):
(4) A(q) = ΣAjexp[iqrj] ..scattering by N volume elements

summation runs from j=1 to N
Combination of (2) and (4):
(5) A(q) = Σρ(rj)×exp[iqrj]×dr ..scattering by N volume elements

summation runs from j=1 to N

Generalization of (5):
(6) A(q) = ∫ρ(r)×exp[iqr]×dr ..key formula of diffraction theory

scattering by ∞ volume elements
i.e. scattering by any object
integration runs through the object volume V

By means of equations (6)+(1)
it is possible to calculate any
diffraction pattern if we know
the structure ≈ ρ(r). Example 5: Illustration of equation (6). 

Example 6: Relationship I(q) x ρ(r). 



Diffraction theory.
(7) Phase problem.
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Verbally:
We can calculate diffraction pattern from known structure but
we cannot calculate structure from diffraction pattern directly.

Schematically:

Ok

???

diffraction pattern structure

Amplitude and phase
of complex numbers:

A = A×exp[iΦ]

Φ = phase
amplitude = |A| = A

Mathematically:
(1) I(q) ≈ |A(q)|2 ..intensity of wave
(2) A(q) = ∫ρ(r)×exp[iqr]×dr ..scattering by any object
(3) ρ(r) = 1/(2π)3×∫A(q)×exp[-iqr]×dq ..Fourier theorem applied on (2)
I(q) represents diffraction pattern, ρ(r) represents structure.
Calculation of I(q) from known ρ(r): Ok ⇒ eq.2 gives A(q), eq.1 gives I(q). 
Direct calculation of ρ(r) from known I(q): impossible ⇒ eq.1 gives only |A(q)|, not A(q).

Note: Fourier theory & Fourier theorem ⇒ textbooks, wikipedia...



Wide-angle scattering
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[1] WAS is connected with crystals.
In other words: diffraction by crystals is observed in wide-angle region.

[2] Simplified model for diffraction by crystals is Bragg Law.
Bragg Law gives distance of the diffraction rings/spots from the centre.

[3] Precise model for diffraction by crystals is Kinematic diffraction theory.
KDT gives not only distance, but also position and intensity of rings/spots.

[4] Polymers usually do not crystallize very well and so their diffraction 
patterns are not as clear as those of low molecular weight compounds. 
Nevertheless, WAS on polymers still can yield a lot of information about 
their structure.



WAS: Crystals
(1) Crystal structure.
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dimensions of
crystals of
low molecular

weight compounds
around 1 mm

polymer
crystalline
lamella

amorphous region

amorphous region

amorphous region

amorphous region

crystal of low 
molecular 
weight 

compound

Crystals of low molecular weigh compounds (cesium chloride)

Crystals of synthetic polymers (polyethylene)

Unit cells Crystal structureCrystal

dimensions of
crystals of
polymers

around 1 µµµµm



WAS: Crystals
(2) Unit cells.
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γ

β
α

a
b

c System Unit cell parameters
cubic a = b = c; α = β = γ = 90o
hexagonal a = b; α = β = 90o; γ = 120o
tetragonal a = b; α = β = γ = 90o
trigonal a = b = c; α = β = γ  ≠ 90o
orthorhombic α = β = γ = 90o
monoclinic β = 90o
triclinic no constraints

Seven crystal systems

Cubic unit cell and
structure of CsCl

Poly(thioethylene)
orthorhombic

Poly(ethyleneterephtalate)
triclinic



WAS: Crystals
(3) Crystallographic planes.
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a

b

c

Unit cell

[100] [020] [002] [110]

Any plane in crystal

[111]

Crystallographic planes are denoted by means 
of Miller indices [hkl].
Blue plane crosses vector a in 1/3 ⇒ h = 3.
Blue plane crosses vector b in 1/1 ⇒ k = 1.
Blue plane crosses vector c in 1/2 ⇒ l = 2.
Miller indices of the plane are [312].



WAS: Crystals
(4) Crystallographic planes in crystals.

23

a
b 110

120

140

010

100

Planes [110] in cubic crystal

Distance between parallel 
crystallographic planes is
denoted as dhkl.
dhkl = f(h,k,l,a,b,c,α,β,γ)



WAS: Bragg Law
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Bragg Law represents simplified model of diffraction by crystals.

Assumptions:
[1] Crystallographic planes are semitransparent mirrors. This is incorrect: the planes

are just geometrical constructions representing the periodicity of the crystal.
[2] Waves are reflected by these crystallographic planes. This is incorrect: in fact the

waves are scattered by atoms and then they interfere – i.e. they are diffracted.
[3] Maximum interference (= diffraction peak) occurs, if phase difference of reflected

waves is 0, 2π, 4π.. = 2n×π (n = integer), i.e. if the path difference is 0, λ, 2λ.. = n×λ.
This is true: diffraction peaks are really observed under these conditions.

[Conclusion] Although the assumptions are not completely true, the results are correct!

Graphically: Mathematically:
2dhklsinθhkl = n×λ

path difference
between waves

Ψ1 andΨ2

integer
multiplication
of wavelength

Ψ1

Ψ2

hkl plane 1

hkl plane 2

dhkl

θθθθhklθθθθhkl

λλλλ

2 × (dhkl × sinθhkl) = path difference between Ψ1 and Ψ2

Example7: Bragg Law
and diffraction pattern.



WAS: Kinematic diffraction theory
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[3] KDT completely describes:
(a) position of the diffraction spots – given by q
(b) intensity of the diffraction spots – given by I(q)

[4] KDT enables:
(a) calculate single-crystal diffraction pattern
(b) calculate powder diffraction pattern, which is even simpler
(c) calculate crystal structure from diffraction pattern – structure analysis

Example8: Structure analysis.

[1] KDT completely describes diffraction by crystals; it holds:
I(q) ≈ |A(q)|2 A(q) = ∫ρ(r)exp[iqr]dr ..key formula of diffraction
Ihkl ≈ |Fhkl|2 Fhkl =  Σfjexp[iqrj] ..diffraction by single crystal.

analogy

Fhkl = structure factor → gives information about crystal structure
fj = scattering factor and rj = position of the j-th atom in the unit cell
Σ runs from j=1 to N, where N = number of atoms in the unit cell 

[2] Other KDT results:
(a) diffraction occurs only if: aS = h, bS = k, cS = l  ...Laue’s conditions

(a,b,c = unit cell vectors, S = scattering vector, h,k,l = integers)
⇒ it implies that single-crystal diffraction pattern contains spots

(b) diffraction occurs only if : 2dsinθ = nλ ..Bragg Law
⇒ it means that Bragg Law is a special case of KDT

2πq

I(q)
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WAS on polymers: survey of possibilities

What can be determined from WAS pattern?
[1] Position of peaks  → unit cell parameters a,b,c,α,β,γ.
[2] Positions and intensities of peaks → crystal structure.
[3] Width of peaks → crystal imperfections, crystallite size.
[4] Semicrystalline polymers → degree of crystallinity.
[5] Anisotropic samples → orientation.

WAXS diffraction pattern of
poly(3-hydroxybutyrate)
The diffraction pattern contains a lot of 
quantitative information, such as
positions of diffraction peaks, intensities of 
peaks, width of peaks, amorphous hallo...
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WAS on polymers.
(1) Determination of unit cell parameters = indexing.

We have already learnt the principle!

[1] Diffraction pattern is a function I = I(θ) or I(S) or I(q). Slide 11

θ or S or q

I

[2] Relationship between θ (or S or q) and dhkl → Bragg Law. Slide 23

2dhklsinθhkl = nλ

[3] Values of dhkl are associated with unit cell parameters a,b,c,α,β,γ.

Slide 22

[Conclusion] Indexing = finding of Miller indexes h,k,l and unit cell
parameters a,b,c,α,β,γ from diffraction pattern.

Example9: Indexing.



28

WAS on polymers.
(2) Determination of crystal structure = structure analysis.

We have already learnt the principle!

[1] Diffraction pattern of crystalline samples is described by
kinematic diffraction theory. Slide 24

[2] Relationship between diffraction pattern and structure of
crystalline samples is hidden in structure factors Fhkl. Slide 24

[3] The “only” problem is the Phase problem, but it can be solved if
many diffractions are measured. Slides 17, 24

[Conclusion] If we have crystalline sample, we can find positions of
all atoms in the crystal. This is called structure analysis.
Low molecular weight compounds usually crystallize quite well → nice
diffraction patterns → thousands of diffractions → structure analysis
is relatively easy (if we have some knowledge & fast computer).
Polymers usually crystallize badly → poor diffraction patterns → quite
often just a few diffractions → structure analysis difficult or
impossible.
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WAS on polymers.
(3) Crystallite size & crystal imperfections.
Simple intuitive model:

Ideal crystal = perfect 3D periodicity
⇒ infinite size ⇒ diffraction width whkl = 0
No crystal = crystal with zero size
⇒ no diffractions, i.e. diffr. width whkl = ∞
Real crystal = crystal with finite size
⇒ diffraction width whkl ≈ 2/εhkl, where
εhkl = size of crystal in direction hkl.
Note: whkl is also influenced by crystal
imperfections and thermal motion of atoms.
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WAS on polymers.
(4) Degree of crystallinity.
We have already learned the principle!

This is caused by extremely long
polymer molecules.

Scattering by crystalline phase:
sharp peaks – total intensity Ik.

Scattering by amorphous phase:
diffuse hallo – total intensity Ia.

During data processing, it is possible to separate amorphous and crystalline
scattering and determined degree of crystallinity:

CR = const × Ik / (Ik + Ia)

Polymers are usually not completely
crystalline. Slides 8

Slide 19
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WAS on polymers.
(5) Orientation.
Simple intuitive model:

Diffraction pattern ∞ crystals
Polycrystalline sample

(unoriented)

Diffraction pattern
Polycrystalline sample

(oriented) ∞ crystals

Unoriented
sample:
⇒ rings

Oriented
sample:
⇒ half-moons

orientation
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Small-angle scattering.

Comparison of WAS and SAS.

WAS is connected with crystals.
Intensity is measured at wide diffraction angles θ>2o.
In WAS diffraction pattern there is a lot of information - many peaks.
♦ ~5 diffraction peaks enables to identify a known compound
♦ ~40 diffractions enables to determine unit cell of an unknown compound
♦ ~1000 diffractions enables to determine structure of an unknown compound

SAS can be applied to any systems with inhomogeneities from 10 to 1000 Å.
Intensity is measured at small diffraction angles θ<2o.
In SAS diffraction pattern there is little information – only a few peaks.
♦ SAS diffraction pattern usually contains only one central diffuse peak.
♦ A lot of different structures may have the same SAS pattern!
♦ Interpretation of SAS data is not so straightforward as in the case of WAS:
(a) simple structures: diffraction patterns are pre-calculated
(b) complicated structures: some knowledge about the structure needed
(c) general procedure exists: it is not sure that we will find correct structure! 

Here are general rules – exceptions do exist!
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SAS: Which systems can be studied?

[1] Dilute particulate systems.
Examples: polymer micelles, particles...
Parameters: size & shape of particles...

Solution is diluted.
Particles scatter
independently on
each other.

[2] Liquid and solid solutions.
Examples: polymer molecules in solutions...
Parameters: size & thermodynamic properties...

Particle = polymer coil.

[3] Non-particulate two-phase systems.
Examples: polymer blends, semicrystalline polymers...
Parameters: specific surface, thickness of interface...

A mixture of two
phases with any
structure.

[4] Periodic systems.
Examples: semicrystalline polymers, block copolymers...
Parameters: type of structure, periodicity...

Periodic or
quasi-periodic
packing of phases.
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SAS: Examination in terms of Bragg Law.
Bragg Law, d×q = 2πn, relates dimensions
in real space (= direct space, distances d, measured in Å)
and in diffraction space (= reciprocal space, distances q, are measured in Å-1).

Reciprocity principle ensues directly from Bragg Law:
Objects, which are big in real space (i.e. which have a big dimension d)
are small in reciprocal space (i.e. it diffracts at small θ ∼ S ∼ q) and vice versa.

Note: As it holds: S = 2dsinθ/λ, q=2πS = 4πsinθ/λ and θ ∈ (0o-90o),
the values of θ, S and q are all proportional, i.e. small θ means small S and q and vice versa. 

Note1: Calculation is based on Bragg Law and typical  values: n = 1, λ = 1Å.

Structure d [Å] θ [o] 2θ [o] S [Å-1] q [Å-1]
atom 1 30 60 1 6.28
small particle 10 2.9 5.7 0.1 0.628
large particle 1000 0.03 0.06 0.001 0.0628

Note3: Large d ⇔ small θ, S and q – this is reciprocity principle.
Note4: SAXS and SANS are for particles with d = 10 - 1000Å, i.e. θ ≈ 0 - 2o.

Note2: Strictly speaking, Bragg Law can be applied only to periodic systems!
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SAS: Simple structures.
Pre-calculated models. Example: dilute solution of identical spheres.

[1] Scattering of sphere with radius R can be derived from key formula:

[2] The formula is re-written in polar coordinates:

[3] The rest is only mathematics; results:

Complete derivation.

Conclusion: If the scattering curve has this shape,
scattering objects are homogeneous spheres. 

Dilute solution ⇒ spheres scatter independently ⇒ particulate scattering.
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SAS: Complicated structures.
Some knowledge about the system needed. Example: polymer blend.

SAXS curve of PP/PS/SEP (80/20/10)
polymer blend. More info needed to
interpret the diffraction pattern ↓ ↓ ↓

[1] SAXS of PP/PS (80/20) polymer blend.
⇒ peak at q ≈ 0.04 = long period of PP

[2] SAXS of pure SEP copolymer.
⇒ peak at q ≈ 0.01 connected with SEP

[3] STEM micrograph of SEP and PP/PS/SEP.
⇒ SEP has periodic lamellar structure
⇒ SEP structure is partially in the blend

[4] TEM micrograph of PP/PS/SEP blend.
⇒ SEP structure changed to micellarmicellar structure of SEP long period of PP

STEM of SEP; 30kx STEM of PP/PS/SEP; 10kx TEM of PP/PS/SEP; 50kx
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SAS: General procedure.
(A general procedure for interpretation of arbitrary SAS data.)

A priori information

Other techniques

NO

Structure model ..................structure model cannot be calculated directly
from diffraction pattern, only estimated.

Structure parameters: Rg, S/V... .........a few general parameters can
always be calculated.

(see next slides).

Structure (???)

YES

.............many structures can have the same diffraction
pattern! We are never 100% sure that the final
structure is correct!

Iexp(q) = Icalc(q) ................key step: comparison of experiment and model,
in fact it is trial-and-error method.

Measurement of  Iexp(q) ......... Iexp(q) ≡ experimental diffraction pattern

Calculation of Icalc(q) ......... Icalc(q) ≡ calculated diffraction pattern
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SAS: Radius of gyration.
Shapes of particles in SAS are often characterised by radius of gyration, Rg:

∫
∫=

rr

rrr

d

d
Rg

)(

)(2

2

ρ

ρ
r = vector with origin in centre of scattering length density
ρ(r) = scattering length density.

Rg of particle with constant scattering length density (≡ homogeneous particle):

∫= rrr dVRg )(12 σ σ(r) = shape function: equals 1 inside and 0 outside the particle
V = volume of the particle

Rg of some particles with simple shape:

RRg 5

3= LRg
12

1= RRg
2

1=

Sphere
with radius R

Thin rod
with length L

Thin disc
with radius R

Conclusion: from Rg it is possible to calculate dimensions of the particle,
on condition that we know its shape.

Note: why as obscure quantity as Rg is used instead of something simpler?
Because Rg can often be determined thanks to Guinier Law (slide 40).
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SAS: Size of the particles.
Applies to: Dilute particulate systems.
We have already derived scattering by sphere with radius R:

Simple model – scattering of two solutions containing spheres with different R:

Results:
[1] different radii are clearly recognizable from I(q)
[2] the differences are more pronounced if I(q) is in logarithmic scale
[3] generalization: analysis of I(q) provides size of arbitrary particles
[4] note: reciprocity principle → smaller sphere ⇔ broader scattering
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SAS: Shapes of the particles.
Applies to: Dilute particulate systems.
[1] We have already derived particulate scattering of spherical particle.
[2] In an analogous way, scattering of any particle can be derived.
[3] Results for three limiting cases – sphere (3D object), disc (2D) and rod (1D):

At small q, all scattering curves are very close.

At large q, it holds I ≈ q-αααα

..for spheres: αααα = 4
..for discs: αααα = 2
..for rods: αααα = 1

The overall shape of each curve is very different.
Conclusion: from SAS it is possible to estimate the
shape of the particle using trial-and-error method.
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SAS: Guinier Law.
Applies to: Dilute particulate systems.

Verbally: Scattering at small q is always the same, regardless of particle shape!

Mathematically: If (q < 1/Rg) then ...Guinier Law.






−= 2222
0 3

1
exp)( gRqVqI ρ

Note1:
This is why Rg is so popular
in SAS.

Conclusion:
Radius of gyration, Rg, of
any particle can easily be
determined from SAS data.

Note2:
Guinier Law holds only in
diluted solutions after
background correction!

Graphically: the SAS curves have the same shape for qRg < 1, i.e. for q < 1/Rg.
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SAS: Dense packing.
Applies to: Dilute particulate system.

Normalised intensities of scattering
from a dilute suspension of hard
spheres. Volume fraction of the

spheres is 0, 0.02, 0.04 and
0.06, respectively.

In diluted solution, 
particles are so far 
apart from each other 
that the interference 
among the waves 
scattered by different 
particles can be 
ignored, i.e. waves 
scattered by particles 
do not interfere. In 
other words, particles 
scatter independently, 
which is called 
particulate scattering.

In more concentrated solution, the interparticle interference can be no longer 
neglected, i.e. waves scattered by the particles interfere with each other. The 
scattering is no longer particulate. This is referred as effect of dense packing.
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SAS: Polymers in solution – random coil.
Applies to: Liquid and solid solutions.
Schematic drawing of a polymer molecule in solution.

in solution,
long polymer chain
is twisted into a coil

Simple model describing this shape – random coil (also called Gaussian chain).

Results of the model:

Radius of gyration: 

Scattering:

6

2
2 nl

Rg =

( ) ( )
44

22

0

12
22

g

g
Rq

Rq

Rqe
VqI

g −+
=

−

ρ

Assumptions of the model:

d

αααα1

αααα2

bond lengths d are constant
bond angles αααα = <0;2π>,uncorrelated
⇒ the random chain is very flexible

Calculated particulate scattering
of random coil:

At higher q, I ≈ q-αααα
Here α = 2.
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SAS: Polymers in solution – real coil.
Applies to: Liquid and solid solutions.

Zone1:
Lowest q ⇔ largest d.
Dimensions: q-1 < Rg.
We see the whole coil.

q [Å-1]

Guinier Law

Random coil

I(q) ≈
≈exp[-1/3×(qRg)2]

I(q) ≈ q-2
Thin rod
I(q) ≈ q-1

Slide 40

Slide 41 Slide 39

Scattering of real polymer chain – 3 zones:

1/Rg 1/a

I

Zone2:
Middle q ⇔ middle d.
Dimensions: Rg < q-1 < a.
We see large parts of
of the chain, which are
twisted and flexible.

Zone3:
Large q ⇔ small d.
Dimensions: a < q-1.
We see small parts of
of the chain, which are
rigid – as thin rods.

Small details at large q – reciprocity principle.

Note:
Dimensions are also
characterized by q-1. 
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SAS: Persistence length.
Applies to: Liquid and solid solutions.
From previous slide – I(q) of real polymer in solution – 3 zones:
[1] At small q, the polymer obeys Guinier law.
[2] At middle q, the polymer behaves as flexible Gaussian chain.
[3] At largest q, the stiff segments of polymer chain behave as a rigid thin rods.

When does the transition between zones [2] and [3] occur?
•Flexible chains: transition at higher q
•Stiff chains: transition at lower q.
•It is connected with constant a.

Persistence length a = the length 
of the largest segment, which enables 
to describe polymer chain.

Kratky plot – determination 
of persistence length.

a = 1.9/q*

q*
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SAS: Porod Law.
Applies to: Non-particulate two-phase systems.

Porod Law: If qRg >> 1 then I(q) = 2π(∆ρ)2S/q4; i.e. I(q) ≈ q-4.

From Porod law it is possible to derive also:
- specific interface area, calculated from: I(q)/Q ≈ S/V×1/q4
- average chord lengths, calculated as: l1 = 4Φ1V/S and l2 = 4Φ2V/S 

Non-particulate two phase system. Illustration of Porod Law.
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SAS: Long period.
Applies to: Periodic systems.
Synthetic polymers are either amorphous or semicrystalline.
In semicrystalline polymers, amorphous and crystalline parts alternate.
Thickness of the crystalline lamellae: d ≈ 100Å⇒ q ≈ 0.06Å-1, θ ≈ 0.3o ⇒ SAS.

crystalline

amorphous

crystalline

crystalline

amorphous

Semicrystalline polymer

LP,
long
period

Corresponding diffraction pattern

In
te
ns
it
y

q [Å-1]q = 0.05 Å

Bragg Law: dq = 2ππππ
As the structure is periodic, we can use
Bragg Law (although it comes from WAS).
Peak at I(q) corresponds to LP.
Here LP = d = 2π/q = 126 Å.
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SAS: Structure of block copolymers.
Applies to: Periodic systems.
SAXS diffraction pattern of a SB diblock
copolymer with spherical butadiene microdomains

Particulate
scattering of

microdomains

Black dots: experimental points.
Black line: calculated independent scattering from
solid spheres with average radius R=124 Å.

Peaks at small q:
periodic structure
of microdomains. 

Peaks at small q:
scattering, which
corresponds to periodic
structure of spherical
microdomains. Analogy
with WAS: larger unit
cell + microdomains
instead of atoms.

Peaks at higher q:
scattering of individual
spherical microdomains.
Standard SAS scatter-
ring of spheres.

Conclusion:
SAS of block copoly-
mers yields information
about periodicity and
type of structure.
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SAS: Orientation.
Applies to: Periodic systems.

Oriented PP
Z.Bartczak:
J.Appl.Pol.Sci
86 (2002) 1396-1404.

RD

LDCD

chain orientation

SAXS  - in two directions

modest
orientation

middle
orientation

strong
orientation

RD

CD

RD

LD

Interpretation:
SAXS shows
orientation of
crystalline
lamellae.

Conclusion:
Oriented sample
⇒ non-spherically
symmetric SAS
pattern.



Conclusion
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Diffraction on periodic structures in both WAS and SAS can be described
by means of simple model, represented by Bragg Law: 2dsinθ = nλ. 

Diffraction = scattering + interference.

X-ray, neutron, electron and light diffraction have common principle,
which can be represented by the key formula: A(q) = ∫ρ(r)exp(iqr)dr.

Wide-Angle Scattering is observed on crystals.
WAS may yield: crystal structure, unit cell parameters,
degree of crystallinity, crystallite size and orientation...

Small-Angle Scattering is observed on systems containing inhomogeneities
from 10 to 1000Å. The systems need not be periodic.
SAS may yield: size and shape of particles in diluted solutions, persistence 
length and other characteristics of polymer molecules, specific interface in
non-particulate systems, periodicity, orientation and type of structure in
periodic systems...

In SAS, Guinier Law often enables to determine radius of gyration, Rg,
which is associated with the size of the particle.
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SAS – neutron diffraction

WAS – electron diffraction SAS – X-ray diffraction

WAS – light diffraction

Example 0: Various forms of diffraction patterns.



Example 1/1: Propagation of wave in time and space.

Input for GNUplot.
(freeware program
(for plotting

The script visualizes
wave propagation.

Key part of the script:
cosine wave.

Main problem:
wave = f(a,w,t,k,x,p)

(that is why the script
(has additional lines

Solution in this script:
a = 1, constant
w = 2π, constant
k = 1, constant
p = 0, constant
t = time, parameter
x = distance, variable
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Elastic scattering, scattered wave: Ψ(x,t) = A ∗ cos(ωt - kx + Φ)
ω, k ≈ frequency and direction of wave ⇒ constants for given experiment
t, x ≈ time of measurement and detector position ⇒ constants for given experiment
A,Φ ≈ amplitude and phase ⇒ variables, depend on scattering object

Example 1/2: Propagation of wave in time and space.

GNUplot 
output: waves 
change in both 
time and space,
but in scattering 
experiments we 
can ignore the 
variations, as we 
measure just 
intensities, I, of 
scattered waves:
I ≈≈≈≈ |A|2

absolute
value of
amplitude
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Example 2/1: Interference of [cos-waves] graphically.

Case 1: maximal interference
Ψ = A ∗ cos(X+Φ); X = ωt - kx; A1 = A2 = 1
[Φ1 = 0deg and Φ2 = 0deg] ⇒ A = 2

Case 2: minimal interference
Ψ = A ∗ cos(X+Φ); X = ωt - kx; A1 = A2 = 1
[Φ1 = 0deg and Φ2 = 180deg] ⇒ A = 0

Case 3: general case. 
Ψ = A ∗ cos(X+Φ); X = ωt - kx; A1 = A2 = 1
[Φ1 = 30deg and Φ2 = 90deg] ⇒ A = 1.73

Case 4: general case. 
Ψ = A ∗ cos(X+Φ); X = ωt - kx; A1 = A2 = 1
[Φ1 = 10deg and Φ2 = 170deg] ⇒ A = 0.35
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Example 2/2: Interference of [cos-waves] mathematically.

Red rectangle:
amplitude of
resulting wave.
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Example 2/3: Interference of [exp-waves] mathematically.

Red rectangle: (complex)
amplitude of resulting wave.

56



Example 2/4: Equivalence of [cos-waves] and [exp-waves] numerically.

Screens of calculator Ti92+ or TiV200
(http://education.ti.com

Definition of final amplitude of:
a) two cosine waves

..Example 2/2, amplitude of Ψ1+Ψ2
b) two exponential waves

.. Example 2/3, |amplitude| of Ψ1+Ψ2

Final amplitude of two waves
does not depend on the description.
Both [cos-waves] and [exp-waves]
yield the same value of final amplitude.

..Ψ1+Ψ2 from Example 2/1, Case 3.

.. Ψ1+Ψ2 from Example 2/1, Case 4.

Note: In case of exp-waves, the amplitude is a complex number.
Therefore, we calculate absolute value of amplitude = |amplitude| = real number. 
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Example 3: Scattering by one center - atom in XRD, ND and ED.

f 
=

 a
to

m
ic

 s
ca

tt
er

in
g

 f
ac

to
r

sin(θ)/λ

neutrons

electrons

X-rays

Atomic scattering factor is a measure, 
how much a single atom scatters given 
radiation.

The graph shows that for intensity of 
scattering (given by f) it holds:
f(electrons) > f(X-rays) > f(neutrons)

sin(θθθθ)/λλλλ ≈ magnitude of scattering vector 
S ≈ magnitude scattering vector q ≈
scattering/diffraction angle θθθθ (θ = 0-90o). 

Scattering of electrons,
X-rays and neutrons

by an atom.

Moreover, for atomic scattering factors 
as a function of atomic number f(Z) it 
holds:
f(electrons) ≈ Z1/3

f(X-rays) ≈ Z
f(neutrons) ...no trend

⇒ size of a typical sample:
ED < XRD < ND

⇒ localization of light elements:
ED > XRD

The graph illustrates that scattering by 
one center/atom can be exactly 
calculated/measured and tabulated.

⇒ size of a typical sample:
ED < XRD < ND

(source data → C. Giacovazzo et al: 
(Fundamentals of crystallography, p.196-7
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Example 4/1: Scattering by two centers - path difference. 

s0

s0

s

s

x

y

α

Ψ2

Ψ1 Ψ2

Ψ1

Path difference between
waves Ψ1 and Ψ2:

∆p = y - x
∆p = |r|∗cos(β) - |r|∗cos(α)
∆p = |r|∗|s|∗cos(β) - |r|∗|s0|cos(α).... trick1: s, s0 = scattering vectors of unit length!
∆p = r∗s - r∗s0 ................................. trick2: vector multiplication - |a||b|cos(γ) = a∗b
∆p = r(s - s0)

r

Final result:
The difference between paths of waves Ψ1 and Ψ2.
(The additional distance that Ψ1 has to travel in comparison with Ψ2)

s0/λ
s/λ

S = (s-s0)/λ

Definition of
scattering vector S.

(λ = wavelength
(s,s0 = unit vectors

2 waves (Ψ1,Ψ2), which are scattered by 2 centers (e1,e2):

e1

e2
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λ ................... 2π
∆p .................∆Φ

β

Example 4/2: Scattering by two centers - path difference. 

s0

s0

s

s

x

y

α

Ψ2

Ψ1 Ψ2

Ψ1

Phase difference
between waves
Ψ1 and Ψ2:

∆Φ = 2π/λ ∗ ∆p = 2π/λ ∗ r(s-s0) = 2πr ∗ (s-s0)/λ = 2πr ∗ S = q∗r
∆Φ = qr ..phase of the second wave Ψ2 with respect to the first wave Ψ1

r

s0/λ
s/λ

S = (s-s0)/λ

Definition of
scattering vector S.

(λ = wavelength
(s,s0 = unit vectors
(S = (s-s0)/λ
(q = 2πS

2 waves (Ψ1,Ψ2), which are scattered by 2 centers (e1,e2):

r1

r2

arbitrary
origin

e1

e2

Generalization = final result:
Φ1 = qr1 ..phase of the fist wave Ψ1 with respect to [arbitrary origin]
Φ2 = qr2 ..phase of the fist wave Ψ2 with respect to [arbitrary origin]
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Example 4/3: Scattering by two centers - amplitude of final wave ΨΨΨΨ = ΨΨΨΨ1 + ΨΨΨΨ2. 

Derivation from
Example 2/3.

Combination of
Example 2/3 + 4/2.

Final formula:
amplitude of
2 scattered waves.

Generalization:
amplitude of
N scattered waves.
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Example5: Key formula of diffraction.

62

Model

0 x

y

Result

primary
beam

diffracted
beam

diffraction
angle2θ

Is the diffracted beam intensity
function of θ?

Calculation
We employ the key formula:

A(q) = ∫ρ(r)×exp[iqr]×dr
..here it changes into summation:

A(q) = ΣAjexp[iqrj]
..and intensity is calculated as:

I(q) ≈ |A(q)|2

Conclusions
[1] During the calculation, we used only

the formulas derived in this lecture!
[2] The intensity strongly depends on θ:

different θ means different vector q
and different complex amplitudes A(q).    
Complete calculation.



Example6: I(q) and ρρρρ(r).

63

I(q) represents diffraction pattern.
I(q) is 1D, 2D or 3D function of diffraction vector q.

ρ(r) represents structure.
ρ(r) is 1D, 2D or 3D function of position vector r.

The scattering length density ρ(r) gives density of the scatterers.

XRD ρ(r) = electron density maxima around atoms
ND ρ(r) = nuclear density maxima at atom nuclei
ED ρ(r) = electric potential density maxima around atoms
LS ρ(r) = refraction index density maxima at objects with high n

XRD,WAXS: 2D section of the electron den-
sity in a unit cell of anthraquinone crystal

r

b

a

ρ(r)

ND, SANS: ρ(r) = nuclear density
ρ(r) in a polymer micelle in solution
(origin in the centre of the micelle)



Example7: Bragg Law & diffraction pattern.

64

Alternative forms of Bragg Law.
2dhklsinθhkl = nλ ← basic form
2dsinθ = nλ ← without Miller indexes
2dsinθ = λ ← without n: because, for example 2d100sinθ100=2λ ≡ 2d200sinθ200=1λ
dq = 2πn ← with q: because q = 4πsinθ/λ
dS = n ← with S: because  S = 2sinθ/λ

Bragg Law & diffraction pattern.

Radiation
source

D
E
T
E
C
T
O
R

Primary beam
with wavelength λ

Diffracted
beam

Crystal with 
planes hkl

Diffraction
angle θθθθ

2θθθθθθθθ
θθθθ

θθθθ

dhkl

Each plane ≡ one
diffraction ring or
spot. Bragg Law
gives the position
of diffraction
ring/spot. It does
not say anything
about  the intensity
of the diffraction!

Bragg Law & relationship θ × S × q

s0

s

s0
s

S = (s-s0)/λ Magnitudes of
diffraction vectors
S and q increase
with increasing
diffraction angle θθθθ .

θθθθ
q=2πS



Example8: Structure analysis.

Calculated image of the crystal
≡ CRYSTAL STRUCTURE

Mathematical
calculations.

(instead of lens)

Magnified 
image of the

crystal

Lens
 for 

X-ray
s

(doe
s not

 exis
t!!!)
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S
tr
uc
tu
re
 a
na
ly
si
s

Image on the detector
≡ diffraction pattern

Source of
X-rays

Crystal

D
E
T
E
C
T
O
R

Primary
beam

Diffracted
beams

D
if
fr
ac
ti
on
 e
xp
er
im
en
t



Example9: Indexing.
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[1] Ag nanoparticles
T
EM

S
A
ED

[2] Unknown crystal

111
200

220
311

331+420

111

111

111
111

002

113

222

000

222
331

220

224

113

002

220

Ag [110]

004

115

113

222

331

Notes:
Each crystalline 
substance has a 
unique unit cell.

Indexing can be 
employed in two 
ways:

[1] Identification of 
a known compound.
(Easy: we know 
a,b,c,α,β,γ and 
search just h,k,l)

[2] Finding a unit 
cell of an unknown 
compound. 
(Difficult: we search 
simultaneously 
a,b,c,α,β,γ and h,k,l).
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