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Scattering. Incident wave is bent by an object,
propagating in different direction and
with different intensity.

Bent
or scattered
or diffracted wave

Diffraction is scattering

of incident waves followed by
intferference of the scattered waves.

— diffraction = scattering + interference.

Incident wave
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Key shortcuts

WAS = Wide-Angle Scattering

SAS = Small-Angle Scattering

XRD = X-Ray Diffraction

ND = Neutron Diffraction

ED = Electron Diffraction

LS = Light Scattering

SAED = Selected Area Electron Diffraction
SAXS = Small-angle X-ray Scattering

Key symbols

X = scalar (standard font)

X = vector (bold font)

X = complex number (serif font)
Important exception: A or A(q) =
amplitude of diffracted wave, isa
complex number. It is denoted either

as A (correct - complex number)
or as A(q) (convention).



Scattering by homogeneous materials

Detector

photographic film processing

data

CCD camera, image plate

Primary beam
is not scattered —

Primary beam

\

Sample
in general: any material
here: homogeneous material

Source of radiation

Diffraction pattern
photographic film or
image file in computer

Diffraction pattern of
homogeneous material
contains only central
spot of primary beam.
= nho scattering.

source: X-ray tube, neutron reactor, electron gun, laser

radiation: X-rays, neutrons, electrons, photons



Small-Angle Scattering (SAS)

Detector
photographic film
CCD camera, image plate

Primary beam is
scattered into

data

processing

small angles
(6 < 29

Primary beam

\

Sample
in general: any material

here: material containing

inhomogeneities (10 - 1000 A)

Source of radiation

Diffraction pattern
photographic film or
image file in computer

Material containing
inhomogeneities

from 10 to 1000 A
scatters radiation
intfo small angles

from O to 2° = SAS.

source: X-ray tube, neutron reactor, electron gun, laser

radiation: X-rays, neutrons, electrons, photons



Wide-Angle Scattering (WAS)

Case I: Single crystals = Monocrystals

Detector data .
phOTogr‘aphiC fllm processing ¢ 0
CCD camera, image plate sl © o @ o -
/ ® o o
Primary beam - .

% Diffraction pattern

Diffracted beams photographic film or

Primary beam af widesar e image file in computer
. | (8> 20) Single crystal (material
Sample with inhomogeneities =
in general: any material atoms =14) shows
here: single crystal diffractions spots

(inhomogeneities = atoms =14) at wide angles
Source of radiation from 2° to 90° = WAS.

source: X-ray tube, neutron reactor, electron gun, laser
radiation: X-rays, neutrons, electrons, photons




Wide-Angle Scattering (WAS)

Case II: Polycrystalline samples - Powders

Polycrystalline samples. ..

_
\a

I“‘
N e

1 crystal

|

2 crystals

\

6 crystals

|

Powder (e crystals)

\

©

Diffraction patterns...




Summaryl: Scattering of materials.

Homogeneous Material with Single Polycrystalline
material inhomogeneities crystal material
from 10 to 10004  (inhomogeneities (inhomogeneities
are atoms =1A)  are atoms = 14)
o o O
® - c o @ o -

© o o

* No scattering - Small-Angle - Wide-Angle * Wide-Angle

* No diffraction
pattern

- Completely homo-
geneous material
is only vacuum!

Scattering (SAS)
- Diffuse spot in

small-angle region

(from O to 2°)

* Polymer materials:

polymer solutions,
block copolymers

Scattering (WAS)

- Sharp spots in

wide-angle region
(from 2 to 90°)

* Polymer materials:

polymer single
crystals (very rare)

Above are general rules: exceptions do exist!

Scattering (WAS)

* Sharp rings in

wide-angle region
(from 2 to 90°)

* Polymer materials:

semicrystalline
polymers (frequent)

Example O: Diffraction patterns.



Summary2: Scattering of polymers.

Homogeneous Amorphous Crystalline Semicrystalline
material polymer polymer polymer
o @

* No scattering - WAS - WAS - WAS

* No inhomoge- * Inhomogeneities * Inhomogeneities * Inhomogeneities
neities. are atoms. are atoms. are atoms.

* No diffraction - No periodicity - Crystal periodicity * Sharp rings and
pattern. — amorphous hallo. = sharp rings. amorphous hallo.

» This occurs only - Amorphous poly- - Completely crystal- - Semicrystalline
in vacuum! mers are quite line polymers are polymers are

common. very rarel common.

Common synthetic polymers are either amorphous or semicrystalline.
Low molecular weight substances are of fen completely crystalline.



Various forms of diffraction patterns

Small-Angle Scattering

MNoermalised inensity

Wide-Angle Scattering
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Some polymer structures,
which can be studied by SAS and WAS.

[1] Polymer molecules in solution

random coil
size: 10! - 102 A
Small-Angle Scattering

[3] Polymer particles

polystyrene microspheres
Q size: 102 - 105 A
Small-Angle Scattering

[5] Block copolymer structures

cubic structure

g 2 distance between
%f qﬁy phases: 10! - 102 A
& Small-Angle
@/ % Scattering

[2] Polymer micelles
micelle of diblock copolymer
&Iké size: 10! - 103 A

7//I\§ Small-Angle Scattering

[4] Polymer networks

crosslinked polymer
average &: 10! - 103 A
Small-Angle
Scattering

[6] Semicrystalline polymers

|

crystalline ~ crystalline

- lamellae
amorphous = WAS
a long period
ﬂ crystalline  ~ Sae

11



Diffraction theory.

(1) Geometry of diffraction experiment.

Diffraction experiment Final diffractogram

Diffracted beam ‘
Unit vector s
Unit vector s,

Radiation

source / / /

Primary beam  Sample Diffraction
angle 6

»

A 4

POAOMAMQo

Intensity
(signal on detector)

Relationships 6 x S = q

During diffraction experiment we measure I as a

Vectors s and s, are unit vectors: |s| = |s
Scattering vector S is defined as S = (s-
Scattering vector q is defined as q =

Magnitude of |S| = S = 2 x sin(0
Magnitude of |q| = q = [27S
It holds: 6 =S = q,i.e. hi




Diffraction theory.
(2) Waves & intensity of waves.

Verbally: wave is a move of oscillations through space.

Graphically: W(x,t) = wave
by | h= 21/k | I = intensity of the wave
N »  I=|A|2 A = amplitude

AIA /\ /\ X A = wavelength
E E > Vv = speed of propagati
\/ i \/ \/ w = angular speed
k = w/v = wave v

® = initial ph

Mathematically:

(1) W(x,t)=Acos[wt-kx+D] ..plane wave propagating in ar

(2) W(x,1)=Aexpli(wt-kx+d)] ..equation (1) in exponenti

(3) W(x,t)=Aexpli(wt-kx+d)] ..plane wave propagati

(4) tP(x,’r)erxgli dlexp[i(wt-kx)] ..equation (3) re-
A = Aexp[i®] = complex ampli

(5) I =|Al|? .intensity of the wave is pr

= during diffraction ex
= during derivation

Example 1: Wave equation, wave propagation, wave intensity.



Diffraction theory.

(3) Interference = wave addition.

W, (x,1) = Aexpli(wyt-kix+®;)] Wave W (x,1) with ~aay
W, (x,1) = Arexpli®;Jlexpli(wt-kx)] | complex amplitude: | 7 L \./ >
Here: P, = T[/lz, W =W, kl =k A1: Alexp[icbl].

W,(x,1) = Azexpli(wt-kox+®,)] Wave W,(x,t) with
W,(x,1) = Asexplid,lexpli(wt-kx)] | complex amplitude:
Here: CDZ = 5T[/8, Wy = W, k2 =k AZ: AzeXp[icbz].

Wa(x,1) = Wi(x,1)+W,(x,1)
W3(x,1) = {Arexpli®]+Aexp[i®; [}x{exp[i(wt-kx)]}
Ws(x,1) = {Ajexp[i®]+Azexpli®; [} x{exp[i(wt-kx)1}

Wave W5(x,t) = W+W, with complex amplitude: A = A+

Conclusion - interference in SAS and WA
[1] Interfering waves are plane and monochro
[2] Interfering waves may differ in ampli
[3] Amplitude of resulting wave is com

Example 2: Wave interference, equivalence of [cos-waves] and [exp-waves].



Diffraction theory.
(4) Scattering = wave bending.

Wave-particle duality.

Scattering. Incident wave is bent Particles may have wave

b}’ an ijecT, {:hangi.ng its bent or  aspect and vice versa.
direction and intensity. scattered or  Examples:

AWVAY diffracted wave light x photons

electron beam x electrons

scattering center De Broglie waves:
incident wave or scatterer A = h/mv
Incident wave Incident particle A [A] Scatterer Methods
X-ray beam X-ray photon 05-2 electron XRD, WAXS, SAXS
neutron beam heutron 05-6 atom nucleus (ND), WANS, SANS
electron beam electron 0001-2 el. potential (ED), SAED, CBED...
light beam photon 4.8000 differentn (LS), SALS, WALS...

Scattering by one volume element dr

I(g) = |A(q)|? ..intensity of the scattered wave depends on its direction=0=8 =q

A(q) = const x number_of_scatterers_in_unit_volume x volume_element

A(q) =bxn(r) xdr ..b=diffraction length = different for X-rays, neutrons, electrons..
A(q) = p(r) x dr ..p(r) = b x n(r) = electron density in XRD, nuclear density in ND...
Example 3: Scattering by one atom in XRD, ND, ED. 15



Diffraction theory.
(5) Diffraction = scattering + interference.
Scattering vector q=21S

characterizes direction
of the scattered wave.

scattered
wave Y,

Scattering. Incident waves
are scattered and then
they interfere.

scattered
wave W,
incident wave ¥,

AT
/N

incident wave W,

N\
V. e

Arbitrary omgm

Interference: W, =¥, + Y,

W, = resulting wave af ter interference of W, and W¥,.

rz -1 F

0 T 2n 3 4 5| HIT
Diffraction - we measure amplitude A, of the diffracted wave ¥:

We have already shown that: A; = Aexp[i®,]+Aexp[iP,]
It can be also shown that: A; = A+A, = Aexpliqr,]+A.expliqr,].

Example 4: Scattering by two electrons, justification of Az = Ajexpliqri]+A,expliqr,] 16



Diffraction theory.

(6) Key formula of diffraction theory.

We have already derived:

(1) I(a) = |A(a)|?

(2) A(q) = p(r)dr

(3) A(q) = Aexpligr,J+Aexpliqr,] .

Generalization of (3):
(4) A(q) = ZA;expl[iqr;]

Combination of (2) and (4):
(5) A(@) = Zp(r)<expliqr;Jxdr

Generalization of (5):
(6) A(a) = Ip(r)xexpliqrixdr

By means of equations (6)+(1)
it is possible to calculate any
diffraction pattern if we know
the structure = p(r).

.intensity of wave
..scattering by 1 volume element

.scattering by 2 volume elements
this is a "summation with phases"

..scattering by N volume elements

summation runs from j=1 fo N

..scattering by N volume elements

summation runs from j=1 to N

..key formula of diffraction theory

scattering by o volume elements

i.e. scattering by any object
integration runs through the object volume V

Example 5: Illustration of equation (6).
Example 6: Relationship I(q) x p(r). 17



Diffraction theory.
(7) Phase problem.

Verbally:
We can calculate diffraction pattern from known structure but
we cannot calculate structure from diffraction pattern directly.

Schematically: Amplitude and phase
£ ok |® of compleic numbers:
A = Axexpli®]
M 2?7? y 0 amplitude = |A| = A
> \CD = phase
diffraction pattern structure >

Mathematically:

(1) I(q) = |A(q)|? .intensity of wave

(2) A(q) = [p(r)xexp[igrixdr .scattering by any object

(3) p(r) = 1/(2m)3x|A(q)xexp[-iqrixdq ..Fourier theorem applied on (2)
I(q) represents diffraction pattern, p(r) represents structure.

Calculation of I(q) from known p(r): Ok = eq.2 gives A(q), eq.1 gives I(q).
Direct calculation of p(r) from known I(q): impossible = eq.1 gives only |A(q)|, not A(q).

Note: Fourier theory & Fourier theorem = textbooks, wikipedia... 18



Wide-angle scattering

[1] WAS is connected with crystals.
In other words: diffraction by crystals is observed in wide-angle region.

[2] Simplified model for diffraction by crystals is Bragg Law.
Bragg Law gives distance of the diffraction rings/spots from the centre.

[3] Precise model for diffraction by crystals is Kinematic diffraction theory.
KDT gives not only distance, but also position and intensity of rings/spots.

[4] Polymers usually do not crystallize very well and so their diffraction
patterns are not as clear as those of low molecular weight compounds.
Nevertheless, WAS on polymers still can yield a lot of information about
their structure.

19



WAS: Crystals
(1) Crystal structure.

Crystals of low molecular weigh compounds (cesium chloride)

Crystals of synthetic polymers (polyethylene)

amorphous region

amorphous region

dimensions of crys’ral of low
crystals of
molecular
low molecular ah
weight compounds weight
around 1 mm compound
Crystal Unit cells Crystal structure

dimrsionsof | [ potymer €SI
Sl crystalline .(¥ .(}' .(‘ '2' g)
around il lamella ) /.)’ {) ,)' ,)'

amorphous region amorphous region E)Q

20



WAS: Crystals
(2) Unit cells.

Seven crystal systems

System Unit cell parameters
cubic a=b=ca=B=y=90°
hexagonal a=b; a=p=90° vy=120°
tetragonal a=b;a=pB=y=90°
trigonal a=b=ca=pB=y #90°
orthorhombic a=pB=y=90°

monoclinic B=90°

triclinic no constraints

Cubic unit cell and Poly(thioethylene) PoIy(e’rhylene‘rereph’rala’re)
structure of CsCl orthorhombic triclinic

21



WAS: Crystals

lographic planes.

(3) Crysta

C

a

Unit cell

24
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Crystallographic planes are denoted by means
of Miller indices [hkl].

Blue plane crosses vector ain 1/3 = h =
Blue plane crosses vector b in 1/1 = k
Blue plane crosses vector ¢ in1/2 = |

3.
1.
2.

Miller indices of the plane are [312].

Any plane in crystal

=

e
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Crystals
(4) Crystallographic planes in crystals.

WAS

>
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Planes [110] in cub

2hk

y

2

sin

Distance between parallel

b (cosa cos B —cosy)

-

a

crystallographic planes is

denoted as d,.

2lh

2kl
+ —(cos B cosy —cosa) +

(cos ¥ cosa — cos /S)i'

ca

bc

f(h,k,la,b,c,aBy)

hkl ~

d

/(l +2 cosa cosB cosy — cos* o —coszﬁ—coszy)
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WAS: Bragg Law

Bragg Law represents simplified model of diffraction by crystals.

Assumptions:

[1] Crystallographic planes are semitransparent mirrors. This is incorrect: the planes
are just geomeftrical constructions representing the periodicity of the crystal.

[2] Waves are reflected by these crystallographic planes. This is incorrect: in fact the
waves are scattered by atoms and then they interfere - i.e. they are diffracted.

[3] Maximum interference (= diffraction peak) occurs, if phase difference of reflected
waves is 0, 2, 41.. = 2nx11 (N = integer), i.e. if the path differenceis O, A, 2\.. = nxA.
This is true: diffraction peaks are really observed under these conditions.

[Conclusion] Although the assumptions are not completely true, the results are correct!

Graphically: Mathematically:
2d,,,SinB,, | = NxA
J

path difference integer

hkl plane 1
Example7: Bragg Law

hkl plane 2

A 4

2 % (dyy * sin,,) = path difference between W, and ¥,

qﬁﬂ\ 0 7/ between waves multiplication
: hki W, and¥, of wavelength

hkl and diffraction pattern.

24



WAS: Kinematic diffraction theory

[1] KDT completely describes diffraction by crystals; it holds:

I(q) = |A(q)|2  A(q) = Ip(r)expliqr]dr .key formula of diffraction analogy
Ly = |Fal? Fw = Zfiexpliqr;]  .diffraction by single crystal.

Fr = structure factor - gives information about crystal structure
f; = scattering factor and r; = position of the j-th atom in the unit cell
2 runs from j=1to N, where N = number of atoms in the unit cell

[2] Other KDT results:
(a) diffraction occurs only if: a8 =h, bS = k, €S = | ..Laue's conditions
(a,b,c = unit cell vectors, S = scattering vector, h,k,| = integers)
— it implies that single-crystal diffraction pattern contains spots

(b) diffraction occurs only if : 2dsin® = nA ..Bragg Law
= it means that Bragg Law is a special case of KDT .
: I(q)
[3]1 KDT completely describes: o o A
(a) position of the diffraction spots - given by q e o '/:n .
(b) intensity of the diffraction spots - given by I(q) o o o
[4] KDT enables: .
(a) calculate single-crystal diffraction pattern

(b) calculate powder diffraction pattern, which is even simpler
(c) calculate crystal structure from diffraction pattern - structure analysis

Example8: Structure analysis. 25



WAS on polymers: survey of possibilities

WAXS diffraction pattern of
poly(3-hydroxybutyrate)
_ The diffraction pattern contains a lot of
20 - quantitative information, such as
positions of diffraction peaks, intensities of

o peaks, width of peaks, amorphous hallo...
. |
_

0 L 1lﬂ ‘ E.‘ID 3:ﬂ 4I'EI SID E:CI

a0 +

26 (degrees)

What can be determined from WAS patter
1] Position of peaks - unit cell paramete
2] Positions and intensities of peaks
(3] Width of peaks — crystal imper
4] Semicrystalline polymers -
5] Anisotropic samples — ori




WAS on polymers.

(1) Determination of unit cell parameters = indexing.

We have already learnt the principlel!
[1] Diffraction pattern is a function I = I(0) or I(S) or I(q). Slide 1l

1

eorSorq'

[2] Relationship between 6 (or S or q) and d,,, — Brag
2d,,,SinB,,, = nA

[3] Values of d,,, are associated with unit ce

k
i + (cosa cos B —cosy)
hkl

1| #?sin*a n k? sin’ 4 12 siny  2h
a? b? c? ab

2kl 2lh
+ —(cos B cosy —cosa) + —(cosy cosa — cosﬂ)]
bc ca

/(142 cosa cos B cosy — cos’*a — cos’ B — cos’ y)

[Conclusion] Indexing

parameters ab,c,q,f
Example9: Indexing.



WAS on polymers.

(2) Determination of crystal structure = structure analysis.

We have already learnt the principlel

[1] Diffraction pattern of crystalline samples is described by
kinematic diffraction theory. Slide 24

[2] Relationship between dif fraction pattern and structure of
crystalline samples is hidden in structure factors F,,.  slide 24

[3] The "only" problem is the Phase problem, but it can be solved if
many diffractions are measured. Slides 17, 24

[Conclusion] If we have crystalline sample, we can find positions of
all atoms in the crystal. This is called structure analysis.
Low molecular weight compounds usually crystallize quite well - nice
diffraction patterns — thousands of diffractions - structure analysis
is relatively easy (if we have some knowledge & fast computer).
Polymers usually crystallize badly — poor diffraction patterns — quite
often just a few diffractions — structure analysis difficult or
impossible.

28



WAS on polymers.

(3) Crystallite size & crystal imperfections.
Simple intuitive model:

o u u 5 T T
E . Ideal erystal : No erystal

Z 3 203
g &
= =
g2 g 2

1 r 1

0 i i . 0

(} 3 14} 15 2 (}
g [degrees|
5 T T H
Real crystal

4 L H
Z 3
a
1a
= 2

1 -

{)

(}



WAS on polymers.

(4) Degree of crystallinity.

We have already learned the principle!

Intensity

.

T Polymers are usually not completely

Ditfractions swssss= crystalline. )
Amorphony hallo e 4 ry Slides 8

This is caused by extreme
polymer molecules. Slide 19

Scattering by ¢
sharp peaks -

0 3 10 |5 20)
B |degrees)

During data processing, it is possi
scattering and determined d

CR=constxI /(I +1I)




WAS on polymers.

(5) Orientation.

Simple intuitive model:

/

\

/

y

~

N7

Polycrystalline sample
(unoriented)

1V 1
V71
1\\|/

Polycrystalline sample
(oriented)

UOILDLUDIIO




Small-angle scattering.

Comparison of WAS and SAS.

WAS is connected with crystals.

Intensity is measured at wide diffraction angles 6>2°.

In WAS diffraction pattern there is a lot of information - many peaks.

¢ ~5 diffraction peaks enables to identify a known compound

¢ ~40 diffractions enables to determine unit cell of an unknown compound

¢+ ~1000 diffractions enables to determine structure of an unknown compound

SAS can be applied to any systems with inhomogeneities from 10 to 1000 A.
Intensity is measured at small diffraction angles 6<2°.
In SAS diffraction pattern there is little information - only a few peaks.
¢ SAS diffraction pattern usually contains only one central diffuse peak.
¢ A lot of different structures may have the same SAS pattern!
¢ Interpretation of SAS data is not so straightforward as in the case of WAS:
(a) simple structures: diffraction patterns are pre-calculated
(b) complicated structures: some knowledge about the structure needed
(c) general procedure exists: it is not sure that we will find correct structure!

Here are general rules - exceptions do exist! 32



SAS: Which systems can be studied?

[1] Dilute particulate systems.
Examples: polymer micelles, particles...
Parameters: size & shape of particles...

[2] Liquid and solid solutions.
Examples: polymer molecules in solutions...
Parameters: size & thermodynamic properties...

[3] Non-particulate two-phase systems.
Examples: polymer blends, semicrystalline polymers...

Parameters: specific surface, thickness of interface...

[4] Periodic systems.

Examples: semicrystalline polymers, block copolymers...

Parameters: type of structure, periodicity...

Solution is diluted.
Particles scatter
independently on
each other.

Particle = polymer coil.

A mixture of two
phases with any
structure.

Periodic or
quasi-periodic
packing of phases.

33



SAS: Examination in terms of Bragg Law.

Bragg Law, dxq = 2mn, relates dimensions
in real space (= direct space, distances d, measured in A)
and in diffraction space (= reciprocal space, distances q, are measured in A-1).

Note: As it holds: S = 2dsin6/\, g=27S = 41sin6/A and 6 O (0°-90°),
the values of 6, S and q are all proportional, i.e. small 8 means small S and q and vice versa.

Structure d[A] 6] 20[] S[A'] q[A1]
atom 1 30 60 1 6.28
small particle 10 2.9 5.7 0.1 0.628
large particle 1000 003 006 0001 0.0628

Notel: Calculation is based on Bragg Law and typical values:n=1, A = 14.
Note2: Strictly speaking, Bragg Law can be applied only to periodic systems!
Note3: Large d = small 6, S and q - this is reciprocity principle.

Note4: SAXS and SANS are for particles with d = 10 - 10004, i.e.8=0 - 2°.

Reciprocity principle ensues directly from Bragg Law:
Objects, which are big in real space (i.e. which have a big dimension d)
are small in reciprocal space (i.e. it diffracts at small 8 0S [0q) and vice versa.

34



SAS: Simple structures.

Pre-calculated models. Example: dilute solution of identical spheres.

Dilute solution = spheres scatter independently = particulate scattering.

[1] Scattering of sphere with radius R can be derived from key formula:

Aq) = / p(r)exp liqr| dr
Jv

[2] The formula is re-written in polar coordinates:
o iy 27
A(q) = / / / p(r,0, D) exp [igr cos O] r? sin O dr dO dd
Jr=0 JO=0.Pd=0

[3] The rest is only mathematics; results: Sphice.

Alq) = poV .
1, o ("1‘[‘}}'5

( SR o5 9(sin(qgR) — qgR cos (qR) 2
I(q) = |A(q)" = pV? (sin (g ‘)[ I{)‘l‘ (q1))
qR

Ml i=ed imiensiny

Complete derivation. 0

Conclusion: If the scattering curve has this shape,

scattering objects are homogeneous spheres. 35



SAS: Complicated structures.

Some knowledge about the system needed. Example: polymer blend.

100 F o
..........
»
&

g

=

Inlensity

"'—.___ PP/PS/SEPR, 80/20/ 1) =—

pare SEP s

0.01

micella'r structure of SEP

STEM of SEP; 30kx

q LA™

STEM of PP/PS/SEP; 10kx TEM of PP/PS/SEP; 50kx

long period of PP

SAXS curve of PP/PS/SEP (80/20/10)
polymer blend. More info needed to
interpret the diffraction pattern i | |

[1] SAXS of PP/PS (80/20) polymer blend.
— peak at g = 0.04 = long period of PP

[2] SAXS of pure SEP copolymer.
= peak at g = 0.01 connected with SEP

[3] STEM micrograph of SEP and PP/PS/SEP.
— SEP has periodic lamellar structure
— SEP structure is partially in the blend

[4] TEM micrograph of PP/PS/SEP blend.
— SEP structure changed to micellar

'%h’ " .‘nf
...&*W'}i.

36



SAS: General procedure.
(A general procedure for interpretation of arbitrary SAS data.)

Measurement of I, (q)

......... L.«,(q) = experimental diffraction pattern

Structure para

meters: R, S/V...| . a few general parameters can

always be calculated.

<

A priori information (see next slides).

<

y

Structure model

A

v

Other techniques

cereeennSTructure model cannot be calculated directly

Calculation of I, (a)

y

NO

Loo(@) = Tegc(a)

YES

y

Structure (2?2?)

from diffraction pattern, only estimated.

......... I...(q) = calculated diffraction pattern

.e..e.KY STep: comparison of experiment and model,

in fact it is trial-and-error method.

many structures can have the same diffraction
pattern! We are never 100% sure that the final
structure is correct!
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SAS: Radius of gyration.

Shapes of particles in SAS are often characterised by radius of gyration, R;:

2
= Ir pr)dr r = vector with origin in centre of scattering length density
J o(r)dr p(r) = scattering length density.

R, of particle with constant scattering length density (= homogeneous particle):

2 _ o(r) = shape function: equals 1 inside and O outside the particle
Ry =t J.r g V = volume of the particle

R, of some particles with simple shape:

3 1 1
= |2 =——L =—R
R \E-,R AR "7
Sphere Thin rod Thin disc
with radius R with length L with radius R

Conclusion: from R_ it is possible o calculate dimensions of the particle,
on condition that we know its shape.

Note: why as obscure quantity as R is used instead of something simpler?
Because R, can of ten be determined thanks to Guinier Law (slide 40).
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SAS: Size of the particles.
Applies to: Dilute particulate systems.

We have already derived scattering by sphere with radius R:
0 (sin (1) — gRcos (¢R))”

I (q = 01 2 .
(q) =1A(q))* = R

Simple model - sca‘r’rer'mg of Two solutions con’rammg Spher'es with differe
]l ' -

le :
Sphere, R=10 A . Sphere, R =10 A
kY Sphere, R =20 3& — Sphew R=20:
08 1Y% . le—01 . |
= = : %
,‘.:-_(_ﬁ 0.6 ;, .......................................................................................................... . ,‘.:-_(_ﬁ |t .,_
s s
‘,::; 04 b "hj_“. le—03 F
F T S v— "-. ............................................................................................ ! Te—(4 -
() - - '
{] (0.2 (3.4 (.6 (0.8 1
Results: q A7

[1] different radii are clearly recogni
[2] the differences are more pro
[3] generalization: analysis of
[4] note: reciprocity princi



SAS: Shapes of the particles.

Applies to: Dilute particulate systems.

[1] We have already derived particulate scattering of spherical particle.
[2] In an analogous way, scattering of any particle can be derived.
[3] Results for three limiting cases - sphere (3D object), disc (2D) and rod (1D):

1.0 At small g, all scattering curves are very close.
aral - The overall shape of each curve is very different.
Conclusion: from SAS it is possible to estimate the
Gl shape of the particle using trial-and-error method.
= 0.
f At large q, it holds T = q-¢
S 04} .for spheres: a = 4
.fordiscs:a =2
Al .forrods:a=1
0 |




SAS: Guinier Law.

Applies to: Dilute particulate systems.

Verbally: Scattering at small q is always the same, regardless of particle shapel!

Mathematically: If (q«< 1/R)) then 1(q)=pV* exp(—%qujj ...Guinier Law.

Graphically: the SAS curves have the same shape for qR < 1, i.e. for q <1/

FANAO CO1|  —
CGruimnier Law

04t

Normalised intensity

)
-l
)
":-
o
g, 3
J—'
A
:
L)
f'.




SAS: Dense packing.
Applies to: Dilute particulate system.

. , - , In diluted solution,
Normalised intensities of scattering particles are so far

from a dilute suspension of hard apart from each o

spheres. Volume fraction of the .
spheres is 0, 0.02, 0.04 and that the inter
0.06, respectively.

1.0

0.8

0.6

1)/ N(gu)?

0.4

0.2

In more concentrated sol
neglected, i.e. waves s
scattering is no lo



SAS: Polymers in solution - random coil.
Applies to: Liquid and solid solutions.

Schematic drawing of a polymer molecule in solution.

in solution,
« long polymer chain
is twisted into a coil

Simple model describing this shape - random coil (also called Gaussian chai

Assumptions of the model: Calculated particulate scatteri
of random coil:

S

bond lengths d are constant

bond angles a = <0;2m,uncorrelated
= the random chain is very flexible

At higher q, I =q™®
Herea = 2.

Results of the model:
Radius of gyration: (R?)

Normalised intensity

2(e'

Scattering: | (@)= v



SAS: Polymers in solution - real coil.
Applies to: Liquid and solid solutions.

Zonel:
1 + Scattering of real polymer chain - 3 zones: Lowest q < largest d.
: : Dimensions: 1 < R,
. Random coil . Thin rod We see the who

I(q)=q? - I()=q

Guinier Law Slide 41 Slide 39

I(q) =
~exp[-1/3x(qR, )2

Slide 40

Small detai




SAS: Persistence length.
Applies to: Liquid and solid solutions.

From previous slide - I(q) of real polymer in solution - 3 zones:

[1] At small g, the polymer obeys Guinier law.

[2] At middle q, the polymer behaves as flexible Gaussian chain.

[3] At largest q, the stiff segments of polymer chain behave as a rigid thin rods.

When does the transition between zones [2] and [3] occur?
‘Flexible chains: transition at higher g

-Stiff chains: transition at lower q. Kratky plot - determination
It is connected with constant a. of persistence length.

Persistence length a = the length
of the largest segment, which enables a=19/q*
to describe polymer chain.

—> 1(Q)q°
N '<

—)-q



SAS: Porod Law.

Applies to: Non-particulate two-phase systems.

Porod Law: If qR, >> 1 then I(q) = 21(Ap)2S/q*; i.e. I(q) = q**.

From Porod law it is possible to derive also:
- specific interface area, calculated from: I(q)/Q = S/Vx1/q*
- average chord lengths, calculated as: |, = 4$,V/S and |, = 4®,V/

Non-particulate two phase system.  TIllustration of Por

mOHOdiSperse Spheres ----------------
polydisperse spheres
Guinier law s

Porod law

le-01 }

Normalised intensity




SAS: Long period.

Applies to: Periodic systems.

Synthetic polymers are either amorphous or semicrystalline.
In semicrystalline polymers, amorphous and crzs’ralline parts alternate.
Thickness of the crystalline lamellae: d = 100A = q = 0.06A1, 8 = 0.3° = SAS.

Semicrystalline polymer Corresponding diffraction pattern

J """" LP,
- | Tong

crystalline

amorphous 5 3

_crystalline

amorphous

n ﬂ crystalline




SAS: Structure of block copolymers.

Applies to: Periodic systems.

SAXS diffraction pattern of a SB diblock Peaks at small g:

copolymer with spherical butadiene microdomains scaftering, which
corresponds to periodi

Peaks at small a: structure of spheri
Ao iliedli Lk = microdomains. A

% periodic structure (%) 5 : :
s ., of microdomains. Q§$J \ge';rr +V:/nf\csr. I
D ©ra

% Instea

4r

Particulate
scattering of
l microdomains

|

0 | L | | L I epe—
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14

g (A

Black dots: experimental poi

Black line: calculated in

solid spheres with

log intensity
N
|
5.
)




SAS: Orientation.

Applies to: Periodic systems.

Oriented PP

Z Bartczak:
J.ApplPol.Sci

86 (2002) 1396-1404.

A

UO14D4U1J0 UIDYD

RD

CD LD

SAXS - in two directions
RD RD

modest
orientation

middle
orientation

strong
orientation

Interpretation:
SAXS shows

orientation of
crystalline
lamellae.




Conclusion

Diffraction = scattering + interference.

X-ray, neutron, electron and light diffraction have common principle,
which can be represented by the key formula: A(q) = [p(r)exp(igr)dr.

Wide-Angle Scattering is observed on crystals.
WAS may yield: crystal structure, unit cell parameters,
degree of crystallinity, crystallite size and orientation...

Small-Angle Scattering is observed on systems containing inhomogeneities
from 10 to 1000A. The systems need not be periodic.

SAS may yield: size and shape of particles in diluted solutions, persistence
length and other characteristics of polymer molecules, specific interface in
nhon-particulate systems, periodicity, orientation and type of structure in
periodic systems...

Diffraction on periodic structures in both WAS and SAS can be described
by means of simple model, represented by Bragg Law: 2dsin® = nA.

In SAS, Guinier Law often enables fo determine radius of gyration, R;,
which is associated with the size of the particle.

50



Example O: Various forms of diffraction patterns.

SAS — neutron diffraction WAS - light diffraction

WAS - electron diffraction SAS - X-ray diffraction
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Example 1/1: Propagation of wave in time and space.

=10l %]

L3 Viewer [CAMIREK'SPREDN.MS\UNES CO.IMCV DIFF 2waves
Files Edit Search Yiew Options
# Propagation of wave in time {(time t) and space {axis x).

set terminal postscript enhanced color “Times-Roman'
set output “2waves.ps”

pi=3.1815926536

set xrange[B:{4*pi)]; set Format = '%.8Ppi'; set xtics @,pi,4=pi; set mxtics 8
set yrange[-1:1]; set format y "%.1F°; set yties -1,8.5,1; set mytics 2
set grid xtics ytics mxtics mytics

set key samplen A1

## a = amplitude; w = ang_speed; k = wave vect; p = init_phase

# v = prop_speed; 1 = lambda = wavelength

a=1; p=28

w = 2%pi; k = 1

U = uw/k; 1 = 2%pifk

condition of final prop_speed

set multiplot

set size 8.5,08.25

set origin 0.088,0.75; plot g{x,8.680) w i 1w 2

set origin 0.6808,0.58; plot g{x,8.15) w i 1w 2

set origin 0.688,8.25; plot g(x,0.25) w i 1u 2

set origin 0.0808,0.88; plot g(x,8.50) w i 1w 2

set origin 0.58,08.75; plot g{x,8.75) w i 1w 2

set origin 0.58,0.58; plot g{x,1.680) w i 1w 2

set origin 8.58,8.25; plot g{x,1.58) w i 1u 2

set origin 0.58,0.808; plot g(x,2.80) w i 1w 2 T

unset multiplot

[

Input for GNUplot.
(freeware program
(for plotting

The script visualizes

wave propagation.

| Key part of the script:

cosine wave.

Main problem:

wave = f(a,w,t,k,x,p)
(that is why the script
(has additional lines

Solution in this script:
a = 1, constant
w = 271, constant
k =1, constant
p = 0, constant
t = time, parameter

X = distance, variable
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Example 1/2: Propagation of wave in time and space.

1.0 10 o GNUplot

Al B output: waves

o5 b e ‘Ill[ml“ change in both

1.0 L 1.0 time and space,
but in scattering

1.0 1.0 :

os b o expgrlments we

0.0 (U 0.0 {Ul can ignore the

03 0 0.5 variations, as we

0 0 measure just

1.0 R LR R LR R 1.0 IntenSItIeS’I’Of

0.5 J[[[l”ﬂ”’lmh ‘ 0.5 : Scattered waves:

0.0 0.0 ~ 2

0.5 - -0.5 [t = Al

-1.0 .“ -1.0 B

1O A AERSRSRRERSREN || NARERRIRARELEN N absolute

05 po 0-5 it g 11 value of

0.0 R 101 0.0 -: : :4: - . --;‘-: ! TS DT i i

05 it 05 P T amplitude

-1.0 B -1.0

Opi 1pi 2pi 3p1 4pi

Elastic scattering, scattered wave: W(x,t) = A [Icos(wt - kx + ®)

w, k= frequency and direction of wave = constants for given experiment

t, X =time of measurement and detector position = constants for given experiment
A,® = amplitude and phase = variables, depend on scattering object 53



Example 2/1: Interference of [cos-waves] graphically. <

2.0

-2.0

2.0

0.0

-1.0 |-

-2.0

2.0

-2.0

2.0

-2.0

1.0 |-
00 F
10 F

1.O p

1Ok
0.0
o

1.0 p
0.0 =~
-1.0

Case 1: maximal interference
W =ALlcos(X+®P); X=wt-kx; A1l =A2=1
[®1 = 0deg and P2 = O0deg] => A=2

Case 2: minimal interference
W =Alcos(X+P); X=wt-kx; Al=A2=1
[@1 = Odeg and ®2 = 180deg] = A=0

Case 3: general case.
W =Alcos(X+P); X=wt-kx; A1l =A2=1
[@1 = 30deg and ®2 = 90deg] = A=1.73

Case 4. general case.
W = Alcos(X+®P); X=wt-kx; Al=A2=1
[@1 = 10deg and ®2 = 170deg] = A=0.35
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Example 2/2: Interference of [cos-waves] mathematically. <

Two cosine waves (U1, Uy)
with the same amlitudes (4 = A; = A5) and different phases (¢; # ¢2).

Input waves (X = (wt — k) = constant for given experiment):

U, = Acos(wt — kx + 1) = Acos(X + o)
Vo = Acos(wt — kx 4+ d2) = Acos(X + ¢2)

Uy 4+ Uo = Acos(X 4+ 1) + Acos(X + ¢2) = Afcos(X + ¢1) 4+ cos(X + ¢2)]

Trick (not universal, possible only on condition that A; = A, = A):

cos(a) +cos(b) = 2cos((a+b)/2)cos(a—D)/2)
cos(X + ¢1) +cos(X + @) = 2 xcos (X n o —;— ,:__.;;..2) . ('53'1 ; (_.':)2)

Result (amplitudes separated, phases just partially):

by — by Red rectangle:
U+, = X [COE (ﬁ + T)} amplitude of
\ resulting wave.
Z v, = 77 . ..generalization is impossible
1=1
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Example 2/3: Interference of [exp-waves] mathematically.

Two exponential waves (U, Us)
with the same amlitudes (A = A; = A;) and different phases (¢ #= ¢5).

Input waves (X = (wt — k) = constant for given experiment):

Uy = Aexp(i(wt — kx + 1)) = Aexp(i(X 4+ ¢1))
Uy = Aexp(i(wt — kx 4+ ¢2)) = Aexp(i(X + ¢2))

Uy + Uy = Aexp(i(X 4+ 1)) + Aexp(i( X 4 ¢2))

No tricks (standard treatment, universal, not only for 4; = A, = A):

exp(a +b) = exp(a) x exp(h)
Aexp(i(X + 1)) + Aexp(i(X + ¢2)) = (Aexp(iody) + Aexp(iga)) x exp(iX)

Result (amplitudes-and-phases completely separated):

Uy 4+ Ty — % [exp(iX)] Red rectangle: (co_mplex)
N amplitude of resulting wave.
Z T, = lexp(iX)] ...generalization is simple
j=1

Conclusion: as for calculations, exp-waves are better than cos-waves.
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Example 2/4: Equivalence of [cos-waves] and [exp-waves] numerically.

Tw T Fuw <« Screens of calculator Ti92+ or TiV200
Al fhraloale|other Pramiolcl |_|| | . )
[= £ gebralcaeotherprantofoiean up (http://education.ti.com

Bl 2 "Amplitudes of coscexp—waves:'

Lrue

[~ a) two cosine waves
;| - ..Example 2/2, amplitude of ¥.+Y
“Define exp2ipl,p2)=la- (et P+ et P2)led b) two exrlglonential WF;ves bl
Oore
Pause .. Example 2/3, |amplitude| of W +W¥,

MFRAL EAD AUTO FUMC 4/30 FALSE

Oorne

« Final amplitude of two waves
Fzr Fyr FE Far T
r {—TFllgebr*a Calc Dther‘TF'r*ngDTEIEEH UF'l | does not depend on the description.
|
L irHome |, Hane Both [cos-waves] and [exp-waves]
22 "Equivalence of cossexp-waves: i ) 5
Lrue yield the same value of final amplitude.

B =fine a=1 Danq

B Foyndcos 2030 ° , 02 00 1.732 4___l.|J1+L|J2 from Example 2/1, Case 3.
B Foundl expdl 302 , 902 00 1.732

B roundlcos20 102 , 172 1 . o7 -

m roundlexp2i 182 L 172 1) 247 .. ¥Y,+W¥, from Example 2/1, Case 4.
Pause

MFRAL RAD AUTO FUNC 7730 FALSE

Note: In case of exp-waves, the amplitude is a complex number.

Therefore, we calculate absolute value of amplitude = [amplitude| = real number. 57



Example 3: Scattering by one center - atom in XRD, ND and ED.

1 Scattering of electrons,
X-rays and neutrons
by an atom.

electrons

atomic scattering factor

neutrons

f

sin(B)/A

Atomic scattering factor is a measure,
how much a single atom scatters given
radiation.

sin(B)/A = magnitude of scattering vector
S = magnitude scattering vector q =
scattering/diffraction angle 6 (6 = 0-90°).

<

The graph illustrates that scattering by
one center/atom can be exactly
calculated/measured and tabulated.

(source data —» C. Giacovazzo et al:
(Fundamentals of crystallography, p.196-7

The graph shows that for intensity of
scattering (given by f) it holds:
f(electrons) > f(X-rays) > f(neutrons)

= size of a typical sample:
ED < XRD < ND

Moreover, for atomic scattering factors
as a function of atomic number f(2) it
holds:
f(electrons) = 713
f(X-rays) = Z
f(neutrons) ...no trend
= localization of light elements:
ED > XRD
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Example 4/1: Scattering by two centers - path difference.

2 waves (W¥,,W,), which are scattered by 2 centers (e,,e,):

N
4 N so/A
Y, o X e, -
—q So
W, So W,
—#
e, .
Definition of
_ scattering vector S.
Path difference between (\ = wavelength

waves W, and W,: (s,S, = unit vectors

Ap =y -X
Ap = |r|Ctos(B) - |r|Ctos(a)
Ap = |r|s|Ccos(B) - |r|C]sy|cos(a).... trickl: s, s, = scattering vectors of unit length!

AP =TEB - IEBj e, trick2: vector multiplication - |a||b|cos(y) = alb
Ap =r1(s - S;)
Final result:

The difference between paths of waves W, and V..
(The additional distance that W, has to travel in comparison with ¥,) 59



Example 4/2: Scattering by two centers - path difference.

2 waves (W¥,,W,), which are scattered by 2 centers (e,,e,):

N
4 N Sy/A
Y, o X e, -
—q .
W, So W,
—#
e, .
Definition of
Phase difference scattering vector S.
between waves (A = wavelength

W and V. ® . s,S, = Unit vectors
! ? arbitrary ES Z (5-5.)/A
A e, 2T origin o= TS

JAY o BT AD
A® = 217\ UAp =210\ Ur(s-s,) = 21 U(S-Sp)/A = 2mr 1S = qlt <—I
A® = gr ..phase of the second wave ¥, with respect to the first wave ¥,

Generalization = final result:
®, =qgr, ..phase of the fist wave W, with respect to [arbitrary origin]

®, =qr, ..phase of the fist wave W, with respect to [arbitrary origin]
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Example 4/3: Scattering by two centers - amplitude of final wave W =W, + Y.,

Summation of two exponential waves (the same amplitudes): )
Uy =W, + Uy =[Aexp(idy) + Aexpligs)] x exp(iX) o
- Derivation from
Summation of two exponential waves (different amplitudes): Example 2/3.
Uy =Wy 4+ Wy = [Ay exp(icy) + As explig)] x exp(iX) )
Re-writing for two scattered waves (®; = qr,): _ Combination of
Uy =0y + W, =[A) expliqry) + A exp(iqry)] x exp(iX) Example 2/3 + 4/2.
=
Complex amplitude of two scattered waves: Final formula:
A; =A; 4+ Ay = [A exp(iqry) + Az exp(iqr,)] ~ amplitude of
- 2 scattered waves.
Generalization for NV waves with different amplitudes:
N N
v = le'j = Z A exp( :qr x exp(iX)
=1 =1 v
N N Generalization:
A = > A=) Ajexp(iqr)) > amplitude of
7=1 =1 N scattered waves.
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Example5: Key formula of diffraction.

Model
Is the diffracted beam intensity

function of 6? diffracted
/ beam

RN //{
primary J

P

e

beam o diffraction
- angle
0 >x
Calculation

We employ the key formula:
A(q) = Ip(r)xexpliqrixdr

..here it changes into summation:
A(q) = ZAexpliqr;]

.and intensity is calculated as:
I(a) = |A(aq)l?

Normalised Intensily

Result
1.0 3 ............. , —_—

0.8 |
0.7 }
0.6 |
05 |
04 |
0.3 |
02 |
0.1 f
0.0

Diffraction angle 263 [deg]

Conclusions

[1] During the calculation, we used only
the formulas derived in this lecture!

[2] The intensity strongly depends on 6:
different 6 means different vector q
and different complex amplitudes A(q).

Complete calculation.
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Example6: I(q) and p(r).

I(q) represents diffraction pattern.
I(q) is 1D, 2D or 3D function of diffraction vector q.

p(r) represents structure.
p(r) is 1D, 2D or 3D function of position vectorr.

The scattering length density p(r) gives density of the scatterers.

XRD p(r) = electron density maxima around atoms
ND p(r) = nuclear density maxima at atom nuclei
ED p(r) = electric potential density maxima around atoms
LS p(r) = refraction index density maxima at objects with high n

XRD,WAXS: 2D section of the electron den- ND, SANS: p(r) = nuclear density
sity in a unit cell of anthraquinone crystal p(r) in a polymer micelle in solution
(origin in the centre of the micelle)




Example7: Bragg Law & diffraction pcn‘l"rer'r:|

Bragg Law & diffraction pattern.

Crystal with Diffracted D | Eachplane =one
Primary beam  planes bkl - E dlffrrch‘rlon rl'—mg or
with wavelength A \ d T | spot.Pragg Law
\ E | gives the position
D of diffraction
SRC(dIClTIOh T — > f_ ring/spot. It does
ol Diffraction hot say anything
angle 6 O | about the intensity
. _ R | of the diffraction
Bragg Law & relationship 6 x S x g
s Magnitudes of
diffraction vectors
S0 \ 0 S and q increase
g with increasing
diffraction angle 6.
Alternative forms of Bragg Law.
Zdhk|5inehk| = n\ « basic form
2dsinB = nA — without Miller indexes
2dsinB = A — without n: because, for example 2dqgsinB;gg=2A = 2d,pSinB,0p=1A
dq = 2m — with g: because q = 4715in6/A
dS=n — with S: because S = 2sin6/A
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Diffraction experiment

Structure analysis

Example8: Structure analysis.

4 Primary Diffracted Df.
beam beams E
\ \ | Magnified
L agnifie
Source of E | I B
< X-rays * Crystal C 'mGCQre ::arhe
Tl 4
O .
R}~
N
/" Image on the detector Calculated image of the crystal
= diffraction pattern = CRYSTAL STRUCTURE
H2
ey
Mathematical

e

calculations. O3

(instead of lens)




Example9: Indexing.

[2] Unknown crystal

oSl

TEM

SAED

[1] Ag nanoparticles

2s8

331+420

Notes:

Each crystalline
substance has a
unique unit cell.

Indexing can be
employed in two
ways:

[1] Identification of
a known compound.
(Easy: we know
a,b,c,a,B,yand
search just hk,l)

[2] Finding a unit
cell of an unknown
compound.
(Difficult: we search
simultaneously
a,b,c,a,B,yand hk,|).
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