

UNESCO/IUPAC Postgraduate Course in Polymer Science

Lecture:

Vibrational Spectroscopy of Polymers: Contemporary Methods

Jiří Dybal

Institute of Macromolecular Chemistry ASCR, Heyrovsky sq. 2, Prague -162 06 http://www.imc.cas.cz/unesco/index.html unesco.course@imc.cas.cz

Vibrational spectroscopy

- Infrared spectroscopy
- Raman scattering

interaction of electromagnetic radiation with matter, **10**⁻¹⁴ – **10**⁻¹¹ s structure, dynamics

- theoretical background
- experimental techniques

Vibrational spectroscopy of polymer systems

- poly(N-methyllaurolactam), blend with poly(vinylphenol)
 - crystallinity
 - conformational structure
 - hydrogen bonding
- aggregation of PC in solution
 - time-dependent measurements
 - 2D correlation spectroscopy
- PE/PP blends
 - near infrared spectroscopy
 - Raman microscopy, imaging

an inclusion of the management is not make

Vibrational spectroscopy

Vibrational degrees of freedom

normal vibrations (3N - 6): normal frequency v_i normal coordinate q_i force constants f_{ij}

$$T = 1/2\sum_{i} q_{i}^{2} \qquad \qquad V = 1/2\sum_{i,j} f_{ij}q_{i}q_{j}; \qquad f_{ij} = \left(\frac{\partial^{2}V}{\partial q_{i}\partial q_{j}}\right)_{0}$$

E = T + V

 $E_{n_i} = h \cdot V_i (n_i + 1/2), \ n_i = 0, 1, 2, \dots$

symmetry: selection rules (inversion center - complementary IR, Ra)

Characteristic frequencies

Vibration	Region [cm ⁻¹]	Intensity	
		Raman	IR
O-H str	3650-3000	weak	strong
N-H str	3500-3300	medium	medium
=C-H str	3100-3300	weak	strong
-C-H str	3000-2800	strong	medium
C=O str	1820-1680	strong-weak	very strong
C=C str	1900-1500	very strong	very weak
C=N str	1680-1610	strong	medium
CH_2 bend	1470-1410	medium	medium
CH_3 asym. bend	1470-1400	medium	medium
CH_3 sym. bend	1380	medium-weak	strong-medium
C-O-C asym. str	1150-1060	weak	strong
C-O-C sym. str	970-800	strong	weak

Diagram of an dispersive IR instrument

Renishaw inVia Reflex Raman microscope

- high efficiency 250 mm focal length spectrograph equipped by 20x50x100 objectives, the resolution of 0.5 cm-1/pixel (grating 3000 lines/mm).
- the HeNe 633 nm and Argon-ion 514 nm lasers are available.
- XYZ maping sample stage with joystick and software control allows scatter, line and area mapping.
- the NExT filtr allows the measurement of the Raman spectrum to 5 cm⁻¹.
- Additional Macro Sampling Kit is available.

Principle of a confocal microscope

Observation of a sample through a microscope

A confocal hole rejects the shadowed light and facilitates a more accurate indepth analysis ($\Delta z conf < \Delta z$).

NA: Numerical Aperture n is the refractive index of the medium separating the objektive from the Hample.

REFLECTION-ABSORPTION INFRARED SPECTROSCOPY

EMISSION SPECTROSCOPY Support

PHOTOACOUSTIC SPECTROSCOPY

(generation of an acoustic signal by a sample exposed to modulated light, enclosed chamber – helium)

Step-scan application

Golden Gate Diamond ATR System

Sensitivity is achieved using high-pressure contact against a type IIa diamond

Applications

Solids, liquids, pastes, powders, pellets Microsamples, fibers, paint chips Pharmaceutical preparations Hard and soft polymer pellets Forensics Rocks and geochemicals Coated wires Air sensitive samples

Polymer systems

• **Structure analysis** $(10^{-11} - 10^{-13} \text{ s})$

conformational structures (crystallinity) complexes, aggregation interactions (hydrogen bonding) polymer blends polymer surfaces and interfaces deformation of polymers orientation induced by drawing longitudinal acoustic modes (LAM, Raman) – lamellar structure

Polymer systems

Time-dependent phenomena in polymers
 crystallization
 curing of polymers
 heating effects
 dynamic deformation (stress-strain behaviour)
 time-resolved spectroscopy (step-scan instruments)

• Polymer chemistry

analytical technique (different sample types

variety of environmental conditions)

oxidation

irradiation damage

poly(N-methyllaurolactam)/poly(4-vinylphenol) (PNMLL/PVPh)

PNMLL:
$$-NCH_3-CO-(CH_2)_{11}$$
 semicrystalline

amorphous (atactic)

blends prepared by casting from solutions in THF weight ratios: mol. ratios of monomer units: 88/12 4:1 64/36 1:1

31/69 1:4

Dynamic spectrum

 $y(v,t) = y_s(v,t) - y_s(v)$ for $-T/2 \le t \le T/2$

 $y_s(v) = \frac{1}{T} \int_{-T/2}^{T/2} y_s(v,t) \, \mathrm{d}t \, \mathrm{static spectrum}$

otherwise

 $y_s(v,t)$

= 0

Complex 2D correlation spectrum

$$Y_1(\omega) = \int_{-\infty}^{\infty} y(\nu_1, t) e^{-i\omega t} dt = Y_1^{\text{Re}}(\omega) + iY_1^{\text{Im}}(\omega)$$

$$Y_2^*(\omega) = \int_{-\infty}^{\infty} y(v_2, t) e^{i\omega t} dt = Y_2^{\text{Re}}(\omega) - iY_2^{\text{Im}}(\omega)$$

$$\Phi(v_1, v_2) + i\Psi(v_1, v_2) = \frac{1}{\pi T} \int_0^\infty Y_1(\omega) \cdot Y_2^*(\omega) d\omega$$

Polycarbonate in toluene

Polycarbonate in toluene

UNESCO/IUPAC Postgraduate Course in Polymer Science

Institute of Macromolecular Chemistry ASCR, Heyrovsky sq. 2, Prague -162 06
http://www.imc.cas.cz/unesco/index.html
<u>unesco.course@imc.cas.cz</u>