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Paragon mean-field spin-glass model

Ising Hamiltonian (classical spins) SI = ±1

H [J ,S ] =
∑

i<j

JijSiSj + h
∑

i

Si

Long-range random spin couplings Jij Gaussian random variables

N 〈Jij〉av =
N
∑

j=1

Jij = 0, N
〈

J 2
ij

〉

av
=

N
∑

j=1

J 2
ij = J 2

Free energy (self-averaging) – summation over lattice sites
⇔ averaging over spin couplings (ergodic theorem)

F = −
1

β
lim
N→∞

ln TrS [exp {−βH [J ,S ]}] = −
1

β
lim
N→∞

〈ln TrS [exp {−βH [J ,S ]}]〉av

Averaging the logarithm (quenched disorder) – complicated
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Replica symmetry breaking

Averaging the partition function (annealed disorder) – straightforward

Replica trick
βFav = − lim

n→0
(Z n − 1)/n

Z n =
∫

D[J ]µ[J ]
n
∏

α=1

N
∏

i=1

d [S αi ]ρ[S
α
i ] exp

{

−β
n
∑

α=1

H [J ,S α]

}

Averaging over Jij – coupling of spin replicas
Replica symmetric ansatz: Qαβ = 〈S αi S

β
i 〉 = q for α 6= β

results in the SK solution (inconsistent)
Parisi RSB scheme – ansatz for a replica symmetry breaking

Qαβ has a hiearachical structure
Analytic continuation n → 0 (n < 1)
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Replica trick – analytic continuation

Only specific matrices n × n allow for analytic continuation to real n
The most general case – hierarchical orthogonal embeddings (K = 2)























0 q0 q1 q1 q2 q2 q2 q2
q0 0 q1 q1 q2 q2 q2 q2
q1 q1 0 q0 q2 q2 q2 q2
q1 q1 q0 0 q2 q2 q2 q2
q2 q2 q2 q2 0 q0 q1 q1
q2 q2 q2 q2 q0 0 q1 q1
q2 q2 q2 q2 q1 q1 0 q0
q2 q2 q2 q2 q1 q1 q0 0























Ultrametric structure — only bloc matrices of identical elements
— larger blocks multiples of smaller blocks
— hierarchy of embeddings around diagonal
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Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Parisi RSB scheme solution – implicit representation

Infinite-many hierarchical levels K & Continuous limit
(sums in the limit n → 0 go over to integrals (continuous functions))

∆ql = ql+1 − ql ����→
K→∞

dq , ∆ml = ml−1 −ml ����→
K→∞

dm

f [q] = −
β

4

[

1 − 2q(1) +
∫1

0

dmq(m)2
]

−
1

β

∫∞

−∞

d η
√
2π

eη
2/2f

(

0, h +
√

q(0)η
)

∂f

∂m
= −

1

2

dq

dm

[

∂2f

∂h2
+m

(

∂f

∂h

)2
]

, f (1, h) = ln cosh(βh)

fT = max
q(x)

f [q]
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Unclear aspects of the Parisi construction

Order parameters

What is the meaning of the order-parameter function q(m)?
Where do the order parameters come from?
Are thermal or random fluctuations responsible for RSB?

Parisi’s solution

What is the phase space on which we have to maximize f [q]?
How does the stationarity equation for q(m) look like?
Is the Parisi continuous RSB exact?
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Homogeneity of thermodynamic potentials

Homogeneity in the phase space

S (E ) =kB ln Γ(E ) = kB
1

ν
ln Γ(E )ν = kB

1

ν
ln Γ(νE )

F (T ) = − kBT
1

ν

〈

ln
[

Tre−βH
]ν
〉

av

Homogeneity of thermodynamic potentials (Euler)

α F (T ,V ,N , . . . ,Xi , . . .) = F (T , αV , αN , . . . , αXi , . . .)

Density of the free energy f = F/N
– function of only densities of extensive variables Xi/N

The existence and uniqueness of the
thermodynamic limit N → ∞ are guaranteed
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Real replicas – stability w.r.t. phase-space scalings

Real replicas – means to probe thermodynamic homogeneity

Replicated Hamiltonian: [H ]ν =
ν
∑

a=1
H a =

ν
∑

α=1

∑

<ij> JijS
a
i S

a
j

Coupling between different replicas: ∆H (µ) = 1
2

∑

a 6=b
∑

i µ
abS a

i S
b
i

Averaged replicated free energy with coupled replicas

Fν(µ) = −kBT
1

ν

〈

ln Tr exp

{

−β
ν
∑

a

H a − β∆H (µ)

}〉

av

Eventually – analytic continuation of the replicated free energy to real ν

Stability w.r.t. phase space scaling: lim
µ→0

dFν(µ)
d ν

≡ 0
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TAP free energy

Free energy for one (typical) configuration of spin couplings

FTAP =
∑

i

{

mi η
0
i −

1

β
ln 2 cosh[β(h + η0i )]

}

−
1

2

∑

ij

[

Jijmimj +
1

2
βJ 2

ij (1 −m2
i )(1 −m2

j )
]

Stationarity equations

mi = tanh[β(h + η0i )] , η0i =
∑

j

Jijmj −mi

∑

j

βJ 2
ij (1 −m2

j )

Standard averaging over disorder – Gaussian randomness

〈ηi ηj〉av = β2J 2δij〈m2
i 〉av

results in the SK solution (unstable)

Properties of TAP theory

Multiple solutions (unstable, metastable, nonexistent)
Thermodynamically inhomogeneous
Lack of convergence in the thermodynamic limit
(equlibrium state not uniquely defined)
Specific rules for averaging over random spin couplings
(accounting for many TAP solutions via the replica trick)
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TAP with ν real replicas

Replicated free energy for one configuration of Jij (linear reponse to µ→ 0) :

Fν =
1

ν

ν
∑

a=1

{

∑

i

ma
i

[

ηai + βJ
2
a−1
∑

b=1

χabmb
i

]

+
βJ 2N

2

a−1
∑

b=1

(χab)2

−
1

2

∑

i ,j

Jijm
a
i m

a
j −

1

4

∑

i ,j

βJ 2
ij

[

1 − (ma
i )

2
] [

1 − (ma
j )

2
]

}

−
1

β

∑

i

ln Tr exp

{

1

2
(βJ )2

ν
∑

a 6=b
χabS a

i S
b
i + β

ν
∑

a=1

(h + ηai ) S
a
i

}

New averaged order parameters: χab = N−1
∑

i

[

〈S a
i S

b
i 〉 −ma

i m
b
i

]

Gaussian fluctuating fileds ηai =
∑

j Jijm
a
j −
∑ν

b=1m
b
i

∑

j βJ
2
ij χ

ab
jj

covariance 〈ηai ηbj 〉av = δi ,j
∑

l J
2
ilm

a
l m

b
l = δi ,j J 2qab
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Replicated TAP – equivalence of replicas I

Equivalence of spin replicas – hierarcical ordering of classes of TAP solutions

ma
i ≡ 〈S a

i 〉T = mi ,

χab = χba ,

{χa1, . . . , χaν} = {χb1, . . . , χbν}

Example: One RSB TAP free energy – two hierarchies of TAP solutions
(exchanging energy)

F1(χ, ν) = −
1

4

∑

i ,j

βJ 2
ij (1−m2

i )(1−m2
j )−

1

2

∑

i ,j

Jijmimj+
βJ 2N

4
χ[(ν−1)χ+2]

+
∑

i

mi

[

ηi +
1

2
βJ 2(ν − 1)χmi

]

−
1

βν

∑

i

ln

∫

Dλi
[

2 cosh[β(h+λi J
√
χ+ηi )]

]ν
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Replicated TAP – equivalence of replicas II

Local magnetization

mi =
〈

ρ(ν)(h + ηi ; λ, χ) tanh[β(h + ηi + λJ
√
χ)]
〉

λ
≡ 〈ρνi ti〉λ

where

ρνi ≡ ρ(ν)(h + ηi ; λ, χ) =
coshν[β(h + ηi + λJ

√
χ)]

〈

coshν[β(h + ηi + λJ
√
χ)]
〉

λ

Dλl ≡ dλl e−λ
2
l /2/
√
2π, t ≡ tanh

[

β
(

h + η
√
q +

∑K
l=1 λl

√
∆χl
)]

with

〈X (λl )〉λl ≡
∫∞
−∞ Dλl X (λl )

Gaussian fluctuating field – Legendre conjugate variable to mi

ηi =
∑

j

Jijmj −mi

[

βJ 2(ν − 1)χ +
∑

j

βJ 2
ij (1 −m2

j )

]
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Replicated TAP – equivalence of replicas III

Local susceptibility

χ =
1

N

∑

i

[

〈

ρνi t
2
i

〉

λ
− 〈ρνi ti〉

2
λ

]

RSB parameter – Legnedre conjugate to χ

β2J 2

4
χ(2q + χ)ν

=
1

N

∑

i

[

〈ln cosh[β(h + ηi + λJ
√
χ)]〉λ − ln 〈coshν[β(h + ηi + λJ

√
χ)]〉1/νλ

]
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Stability of TAP with 2 hierarchies

TAP stability – convergence criterion: 1 ≥
β2J 2

N

∑

i

(1 −m2
i )

2

Stability criteria – when RSB parameters relevant?

1 ≥
β2J 2

N

∑

i

〈

ρνi (1 − t2i )
2
〉

λ

1 ≥
β2J 2

N

∑

i

[

1 − (1 − ν)
〈

ρνi t
2
i

〉

λ
− ν 〈ρνi ti〉

2
λ

]2

Overlap susceptibility: χ ∝ β2J 2〈(1 −m2
i )

2〉av − 1 > 0

Replication parameter (at AT instability line): ν0 =
2〈m2

i (1 −m2
i )

2〉av
〈(1 −m2

i )3〉av

Standard averaging of TAP ⇒ SK (RS) solution
Standard averaging of 1RSB-TAP ⇒ 1RSB
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1 − (1 − ν)
〈

ρνi t
2
i

〉

λ
− ν 〈ρνi ti〉

2
λ

]2

Overlap susceptibility: χ ∝ β2J 2〈(1 −m2
i )

2〉av − 1 > 0

Replication parameter (at AT instability line): ν0 =
2〈m2

i (1 −m2
i )

2〉av
〈(1 −m2

i )3〉av

Standard averaging of TAP ⇒ SK (RS) solution
Standard averaging of 1RSB-TAP ⇒ 1RSB
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Hierarchical TAP theory

TAP with K hierarchies of real replicas

FK (mi , ηi ; χ1, ν1, . . . , χK , νK ) = −
1

4

∑

i ,j

βJ 2
ij (1−m2

i )(1−m2
j )−

1

2

∑

i ,j

Jijmimj

+
∑

i

mi

[

ηi +
1

2
βJ 2mi

K
∑

l=1

(νl − νl−1)χl

]

+
βJ 2N

4

K
∑

l=1

(νl −νl−1)χ2l +
βJ 2N

2
χ1

−
1

βνK

∑

i

ln

[

∫∞

−∞
DλK

{

. . .

∫∞

−∞
Dλ1 {Z0}ν1 . . .

}νK /νK−1
]

Initial local partition sum

Z0 = 2 cosh

[

β

(

h + ηi +
K
∑

l=1

λl
√
χl − χl+1

)]
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Averaging of hierarchical TAP – discrete RSB scheme

Averaged TAP free energy density with K hierarchies of replicas

fK (q ;∆χ1, . . . ,∆χK , ν1, . . . , νK ) = −
β

4

(

1 − q −
K
∑

l=1

∆χl

)2

−
1

β
ln 2

+
β

4

K
∑

l=1

νl∆χl

[

2

(

q +
K
∑

i=l

∆χi

)

− ∆χl

]

−
1

β

∫∞

−∞
Dη ln ZK

∆χl = χl − χl+1 ≥ ∆χl+1 ≥ 0, νl – arbitrary positive

Hierarchical local partition sums Zl =
[∫∞
−∞ Dλl Z

νl
l−1
]1/νl

Initial condition Z0 = cosh
[

β
(

h + η
√
q +

∑K
l=1 λl

√
∆χl
)]
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Properties of the hierarchical solution

Degeneracy in the hierarchical free energy (χK+1 = 0, ν0 = 1)

fK (∆χK−1 = 0) = fK−1, fK (χK = 0) = fK−1

fK (νK = νK−1) = fK−1, fK (νK = 0) = fK−1,

∂

∂νK
fK (νK = νK−1) ≤ 0,

∂

∂νK
fK (νK = 0) ≥ 0

Local thermodynamic homogeneity:
∂fK
∂νl

= 0

Global thermodynamic homogeneity: χK = 0

νl > 1 – free energy minimized
νl < 1 – free energy maximized

Only if 1 > ν1 > . . . νK ≥ 0 then χl > χl+1 ≥ 0
Hierarchical scheme converges
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1RSB thermodynamic inhomogeneity
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Stability conditions

Nonnegativity of eigenvalues of the nonlocal susceptibility – resolvent

G (z) =
1

N
Tr
[

ẑ1 − χ̂−1
]−1

Relation to the homogeneous and spin-glass susceptibilities
(zero magnetic field)

χ =
1

N

∑

i

χii = −G (0) , χSG =
1

N

∑

ij

χ2ij = −
dG (z)
dz

�

�

�

�

z=0
≥ 0

K + 1 stability conditions for a solution with K hierarchies

Λl = β2
〈〈〈

1 − t2 +
l
∑

i=1

νi
(

〈t〉2i−1 − 〈t〉2i
)

〉2

l

〉

K

〉

η

≥ 0

l = 0, 1, . . . ,K , 〈t〉l (η, λK , . . . , λl+1) ≡ 〈ρl . . . 〈ρ1t〉λ1 . . .〉λl
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One-step RSB

Free energy (J 2 = 1)

f (q ; χ, ν) = −
β

4
(1 − q)2 +

β

4
(ν − 1)χ(2q + χ) +

β

2
χ

−
1

βν

∫∞

−∞
Dη ln

∫∞

−∞
Dλ
{

2 cosh
[

β
(

h + η
√
q + λ

√
χ
)]}ν

Stationarity equations

q = 〈〈t〉2λ〉η
qEA = q + χ = 〈〈t2〉λ〉η
β2χ(2q + χ)ν =

[

〈ln cosh[β(h + η
√
q + λ

√
χ)]〉λ

− ln 〈coshν[β(h + η
√
η + λ

√
χ)]〉1/νλ

]
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Stability of 1RSB

Stability conditions

Λ1 = 1 − β2〈〈(1 − t2)2〉λ〉η
Λ0 = 1 − β2〈〈

(

1 − (1 − ν)t2 − ν〈t〉2λ
)

〉2λ〉η
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Stability of 1RSB
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Continuous limit of the discrete RSB scheme

Discrete RSB solution unstable for any finite K , hence K → ∞
Continuous ansatz (homogeneous distribution) ∆χl = χ1/K
(checked explicitly near the AT instability line)
Continuous index variable x = limK→∞(K − l )/K (xP = limK→∞ l/K )
Gaussian integrals only (linear approximation) gl ≡ lnZl

gl = ln
〈

Zνll−1
〉1/νl
λl

= gl−1 +
∆χl
2

(

g ′′l−1 + νlg
′2
l−1
)

+ O(∆χ2l )

g ′l ≡
∂gl
∂h

Parisi’s differential equation (opposite overall sign)

∂g(x , h)
∂x

=
χ̇(x)
2

[

∂2g(x , h)
∂h2

+m(x)
(

∂g(x , h)
∂h

)2
]

χ̇(x) ≡
dχ(x)
dx
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Physical interpretation of the RSB order parameters

νlN active spins in the volume
νlV affected by the replicated
spins from the next hierarchy

N

V
lnZl−1(β, h l )

��
N

νlV
ln

∫

Dλl Z νl
l−1

(

β, h l + λl
√

∆χl
)

λl – effective magnetic fields,
∆χl – interaction strength
Effective weight of replicated
spins in thermal averaging

ρl =
Z νl
l−1

〈Z νl
l−1〉λl
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Integral representation of the Parisi free energy

Continuous limit – independently of the stability of the discrete
scheme

f (q ,X ;m(λ)) = −
β

4
(1 − q − X )2 −

1

β
ln 2

+
βX

2

∫1

0

dλ m(λ) [q + X (1 − λ)] −
1

β
〈g(1, h + η

√
q)〉η

Integral representation of the intracting part

g(1, h) = E0(X , h; 1, 0) ◦ g0(h)

≡ Tλ exp
{

X

2

∫1

0

dλ
[

∂2
h̄
+m(λ)g ′(λ; h + h̄)∂h̄

]

}

g0(h + h̄)
�

�

�

�

h̄=0

T-product from quantum many-body PT

Tλ exp
{
∫1

0

dλ̂O(λ)
}

≡ 1 +
∞
∑

n=1

∫1

0

dλ1

∫λ1

0

. . .

∫λn−1

0

dλn ̂O(λ1) . . . ̂O(λn)
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Stationarity equations

Number order parameters (hη = h + η
√
q)

q =
1

β2
〈

g ′(1, hη)2
〉

η
}

X =
1

β2

[

〈

E(X , hη; 1, 0) ◦ g ′0(hη)2
〉

η
−
〈

g ′(1, hη)2
〉

η

]

Functional order parameter

λ =
1

β2X

[

〈

E(X , hη; 1, 0) ◦ g ′0(hη)2
〉

η
−
〈

E(X , hη; 1, λ) ◦ g ′(λ, hη)2
〉

η

]

Integral representation for the derivative

g ′(ν, h) = Tλ exp
{

X

∫ν

0

dλ

[

1

2
∂2
h̄
+m(λ)g ′(λ; h + h̄)∂h̄

]}

g ′0(h + h̄)
�

�

�

�

h̄=0

≡ E(X , h; ν, 0) ◦ g0(h)
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Stability conditions

Stability conditions from the continuous limit of the discrete scheme

1 ≥
1

β2
〈

E(X , hη; 1, λ) ◦ g ′′(λ, hη)2
〉

η
, ∀λ ∈ [0, 1]

g ′′(ν, h) = Tλ exp
{

X

∫ν

0

dλ

[

1

2
∂2
h̄
+m(λ)∂h̄ g ′(λ; h + h̄)

]}

g ′′0 (h + h̄)
�

�

�

�

h̄=0

Derivative of the equation for the functional order parameter

1 =
d

dλ
E(X , h; 1, λ) ◦ g ′(λ, h)2 = −XE(X , h; 1, λ) ◦ g ′′(λ, h)2 .

Consequence – marginal stability in the whole SG phase

β2 =
〈

E(X , hη; 1, λ) ◦ g ′′(λ, hη)2
〉

η
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Conclusions I

Mean-field theory of spin glasses

Free energy self-averaging
Typical distribution of spin couplings – multitude of solutions
(thermodynamic inhomogeneity incurred)
Generations of real replicas – successive embeddings of spin
replicas (TAP solution may interchange energy to reach
homogeneity)
Homogenepous order parameters even without averaging over
randomness (regulate interaction between replica generations)
Standard averaging – within linear response and with FDT

Nonmeasurable order parameters – needed to describe measurable
quantities
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Conclusions II

Discrete RSB scheme

Hirarchical structure –
number of hierarchies K
determined from stability
Stable or marginally stable
solution
Probably too many order
parameters: q , {νl ,∆χl}Kl=1
Physical interpretation of the
order parameters

Continuous RSB scheme

Continuous limit of the
discrete scheme
Exists independently of the
stability of the discrete
scheme
Only marginally stable solution
Minimal set of order
parameters: q , qEA = q + X ,
m(λ), λ ∈ [0, 1]

How does the continuous solution look like
when 1RSB becomes stable (Potts glass)?
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