Understanding of the mean-field theory of spin glasses

Václav Janiš

FZÚ AV ČR, v. v. i. June 10, 2008

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

HAIR USANE

(미) (@) (동) (동) - 동 - 990

Outline MFT SG Discrete vs. continuous Conclusions

Understanding of the mean-field theory of spin glasses

Václav Janiš

FZÚ AV ČR, v. v. i. June 10, 2008

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

HAIR USANE

Collaborators: Antonín Klíč, Matouš Ringel, Lenka Zdeborová

Outline MFT SG Discrete vs. continuous Conclusions

Outline

- *1 Mean-field theory for spin-glass models*
	- Averaging partition function Replica trick and RSB solution
	- **Thermodynamic homogeneity**
	- Thermodynamic approach TAP with real replicas
- *2 Discrete vs. continuous scheme*
	- Stability and number of hierarchies in the discrete scheme
	- Integral representation of the Parisi continuous RSB solution

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

EXILES

(ロ) (<mark>日</mark>) (불) (불) (불) (불) 2000

3 Conclusions

Paragon mean-field spin-glass model

 \blacksquare Ising Hamiltonian (classical spins) $S_I = \pm 1$

$$
H[J, S] = \sum_{i < j} J_{ij} S_i S_j + h \sum_i S_i
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Long-range random spin couplings J_{ij} **Gaussian random variables**

$$
N \langle J_{ij} \rangle_{\mathsf{av}} = \sum_{j=1}^N J_{ij} = 0, \quad N \langle J_{ij}^2 \rangle_{\mathsf{av}} = \sum_{j=1}^N J_{ij}^2 = J^2
$$

Free energy (self-averaging) – summation over lattice sites

$$
F = -\frac{1}{\beta} \lim_{N \to \infty} \ln \text{Tr}_S \left[\exp \left\{ -\beta H[J, S] \right\} \right] = -\frac{1}{\beta} \lim_{N \to \infty} \left\{ \ln \text{Tr}_S \left[\exp \left\{ -\beta H[J, S] \right\} \right] \right\}
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Averaging the logarithm (quenched disorder) – complicated
 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Paragon mean-field spin-glass model

 \blacksquare Ising Hamiltonian (classical spins) $S_I = \pm 1$

$$
H[J, S] = \sum_{i < j} J_{ij} S_i S_j + h \sum_i S_i
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Long-range random spin couplings J_{ij} Gaussian random variables

$$
N \langle J_{ij} \rangle_{av} = \sum_{j=1}^{N} J_{ij} = 0, \quad N \langle J_{ij}^2 \rangle_{av} = \sum_{j=1}^{N} J_{ij}^2 = J^2
$$

$$
F = -\frac{1}{\beta} \lim_{N \to \infty} \ln \text{Tr}_S \left[\exp \left\{ -\beta H[J, S] \right\} \right] = -\frac{1}{\beta} \lim_{N \to \infty} \left\langle \ln 1 \right|
$$

Averaging the logarithm (quenched disorder) – complicated

Paragon mean-field spin-glass model

Iomich Hamiltonian (classical spins) $S_I = \pm 1$

$$
H[J, S] = \sum_{i < j} J_{ij} S_i S_j + h \sum_i S_i
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Long-range random spin couplings J_{ij} Gaussian random variables

$$
N \langle J_{ij} \rangle_{av} = \sum_{j=1}^{N} J_{ij} = 0, \quad N \langle J_{ij}^2 \rangle_{av} = \sum_{j=1}^{N} J_{ij}^2 = J^2
$$

 \blacksquare Free energy (self-averaging) – summation over lattice sites ⇔ averaging over spin couplings (ergodic theorem)

$$
F = -\frac{1}{\beta} \lim_{N \to \infty} \ln \text{Tr}_S \left[\exp \left\{ -\beta H[J, S] \right\} \right] = -\frac{1}{\beta} \lim_{N \to \infty} \left\{ \ln \text{Tr}_S \left[\exp \left\{ -\beta H[J, S] \right\} \right\} \right\}_{av}
$$

Averaging the logarithm (quenched disorder) – complicated

 $=$ 940

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Averaging the logarithm (quenched disorder) – complicated

Replica symmetry breaking

Averaging the partition function (annealed disorder) – straightforward Replica trick

$$
\beta F_{av} = -\lim_{n \to 0} \left(Z^n - 1 \right) / n
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

$$
Z^{n} = \left[D[J]\mu[J] \prod_{a=1}^{n} \prod_{i=1}^{N} d[S_{i}^{a}] \rho[S_{i}^{a}] \exp \left\{-\beta \sum_{a=1}^{n} H[J, S^{a}] \right\} \right]
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

ANDRO $-299C$

 $(\Box \rightarrow \langle \bar{\partial} \rangle \rightarrow \langle \bar{\Xi} \rangle \rightarrow \langle \bar{\Xi} \rangle$

Averaging over J_{ij} – coupling of spin replicas *Replica symmetric ansatz:* $Q_{a\beta} = \langle S_i^a S_i^\beta \rangle = q$ for $a \neq \beta$ results in the SK solution (*inconsistent*)

- Q_{*aβ*} has a hiearachical structure
- Analytic continuation $n \to 0$ $(n < 1)$

Replica symmetry breaking

Averaging the partition function (annealed disorder) – straightforward Replica trick

$$
\beta F_{av} = -\lim_{n \to 0} \left(Z^n - 1 \right) / n
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

$$
Z^{n} = \left[D[J]\mu[J] \prod_{a=1}^{n} \prod_{i=1}^{N} d[S_{i}^{a}] \rho[S_{i}^{a}] \exp \left\{-\beta \sum_{a=1}^{n} H[J, S^{a}] \right\} \right]
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

 \bigotimes

 000

 $\Box \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right)$

Averaging over J_{ij} – coupling of spin replicas *Replica symmetric ansatz:* $Q_{a\beta} = \langle S_i^a S_i^\beta \rangle = q$ for $a \neq \beta$ results in the SK solution (*inconsistent*) Parisi RSB scheme – ansatz for a replica symmetry breaking

- **■** Q_{αβ} has a hiearachical structure
- Analytic continuation $n \to 0$ $(n < 1)$

Replica trick – analytic continuation

n Only specific matrices $n \times n$ allow for analytic continuation to real n

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

The most general case – hierarchical orthogonal embeddings ($K = 2$)

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

larger blocks multiples of smaller blocks

hierarchy of embeddings around diagonal
 $\frac{1}{2}$
 $\frac{1$

Replica trick – analytic continuation

n Only specific matrices $n \times n$ allow for analytic continuation to real n

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

The most general case – hierarchical orthogonal embeddings $(K = 2)$

 $\sqrt{ }$ q_2
 q_2 0 q_0 q_1 q_1 q_2 q_2 q_2 q_0 0 q_1 q_1 q_2 q_2 q_2 q_2 q_1 q_1 0 q_0 q_2 q_2 q_2 q_2 q_1 q_1 q_0 0 q_2 q_2 q_2 q_2 q_2 q_2 q_2 q_2 0 q_0 q_1 q_1 q_2 q_2 q_2 q_2 q_0 0 q_1 q_1 q_2 q_2 q_2 q_1 q_1 0 q_0 q_2 q_2 q_2 q_1 q_1 q_0 q_2 $\overline{0}$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Ultrametric structure — only bloc matrices of identical elements larger blocks multiples of smaller blocks — hierarchy of embeddings around diagonal

Parisi RSB scheme solution – implicit representation

Infinite-many hierarchical levels K & Continuous limit
\n(sums in the limit
$$
n \to 0
$$
 go over to integrals (continuous functions))
\n
$$
\Delta q_l = q_{l+1} - q_l \xrightarrow[K \to \infty]{} dq, \quad \Delta m_l = m_{l-1} - m_l \xrightarrow[K \to \infty]{} dm
$$
\n
$$
f[q] = -\frac{\beta}{4} \left[1 - 2q(1) + \int_0^1 dmq(m)^2 \right] - \frac{1}{\beta} \int_{-\infty}^{\infty} \frac{d\eta}{\sqrt{2\pi}} e^{\eta^2/2} f(0, h + \sqrt{q(0)}\eta)
$$
\n
$$
\frac{\partial f}{\partial m} = -\frac{1}{2} \frac{dq}{dm} \left[\frac{\partial^2 f}{\partial h^2} + m \left(\frac{\partial f}{\partial h} \right)^2 \right], \quad f(1, h) = \ln \cosh(\beta h)
$$
\n
$$
f_T = \max_{q(x)} f[q]
$$
\n
$$
\frac{f}{\sqrt[3]{2\pi}} \int_{\frac{\partial f}{\partial n} \times \frac{\partial f}{\partial n}} \frac{\partial f}{\partial n} \cdot \frac{\partial f}{\partial n} \cdot \frac{\partial f}{\partial n} \cdot \frac{\partial f}{\partial n} \cdot \frac{\partial f}{\partial n}}{\partial n} \cdot \frac{\partial f}{\partial n}}{\partial n} \cdot \frac{\partial f}{\partial n}}{\partial n} \cdot \frac{\partial f}{\partial n} \
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Unclear aspects of the Parisi construction

Order parameters

What is the meaning of the order-parameter function $q(m)$?

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

- Where do the order parameters come from?
- Are thermal or random fluctuations responsible for RSB?

-
-

Unclear aspects of the Parisi construction

Order parameters

What is the meaning of the order-parameter function $q(m)$?

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

- Where do the order parameters come from?
- Are thermal or random fluctuations responsible for RSB?

Parisi's solution

What is the phase space on which we have to maximize $f[q]$?

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

PARTIES

(ロ) (<mark>5</mark>) (불) (불) (불) (불) 990

- How does the stationarity equation for $q(m)$ look like?
- Is the Parisi continuous RSB exact?

Homogeneity of thermodynamic potentials

Homogeneity in the phase space

$$
S(E) = k_B \ln \Gamma(E) = k_B \frac{1}{\nu} \ln \Gamma(E)^{\nu} = k_B \frac{1}{\nu} \ln \Gamma(\nu E)
$$

$$
F(T) = -k_B T \frac{1}{\nu} \left\langle \ln \left[\text{Tr} e^{-\beta H} \right]^{\nu} \right\rangle_{\text{av}}
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Homogeneity of thermodynamic potentials (Euler)

$$
a F(T, V, N, ..., X_i, ...)=F(T, aV, aN, ..., aX_i, ...)
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

 $(\Box) \langle \bar{\oplus} \rangle \langle \bar{\oplus} \rangle$

Homogeneity of thermodynamic potentials

Homogeneity in the phase space

$$
S(E) = k_B \ln \Gamma(E) = k_B \frac{1}{\nu} \ln \Gamma(E)^{\nu} = k_B \frac{1}{\nu} \ln \Gamma(\nu E)
$$

$$
F(T) = -k_B T \frac{1}{\nu} \left\langle \ln \left[\text{Tr} e^{-\beta H} \right]^{\nu} \right\rangle_{\text{av}}
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Homogeneity of thermodynamic potentials (Euler)

$$
a F(T, V, N, \ldots, X_i, \ldots) = F(T, aV, aN, \ldots, aX_i, \ldots)
$$

Density of the free energy $f = F/N$ – function of only densities of extensive variables $X_i\,/\,N$

Homogeneity of thermodynamic potentials

Homogeneity in the phase space

$$
S(E) = k_B \ln \Gamma(E) = k_B \frac{1}{\nu} \ln \Gamma(E)^{\nu} = k_B \frac{1}{\nu} \ln \Gamma(\nu E)
$$

$$
F(T) = -k_B T \frac{1}{\nu} \left\langle \ln \left[\text{Tr} e^{-\beta H} \right]^{\nu} \right\rangle_{\text{av}}
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Homogeneity of thermodynamic potentials (Euler)

$$
a F(T, V, N, \ldots, X_i, \ldots) = F(T, aV, aN, \ldots, aX_i, \ldots)
$$

Density of the free energy $f = F/N$ – function of only densities of extensive variables Xⁱ */*N

> The existence and uniqueness of the thermodynamic limit $N \rightarrow \infty$ are guaranteed

> > *Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ*

 \bigotimes_i

 000

Real replicas – means to probe thermodynamic homogeneity

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Replicated Hamiltonian:
$$
[H]_{\nu} = \sum_{a=1}^{\nu} H^{a} = \sum_{a=1}^{\nu} \sum_{\langle ij \rangle} J_{ij} S_{i}^{a} S_{j}^{a}
$$

Real replicas – means to probe thermodynamic homogeneity

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Replicated Hamiltonian: [H]*^ν* = P*ν* $a=1$ $H^a = \sum_{n=1}^{\nu}$ *α*=1 $\sum_{\langle ij\rangle} J_{ij} S_i^a S_j^a$ α coupling between different replicas: $\Delta H(\mu) = \frac{1}{2} \sum_{a \neq b} \sum_i \mu^{ab} S^a_i S^b_i$ Averaged replicated free energy with coupled replicas

$$
F_{\nu}(\mu) = -k_B T \frac{1}{\nu} \left\langle \ln \text{Tr} \exp \left\{-\beta \sum_{a}^{\nu} H^a - \beta \Delta H(\mu) \right\} \right\rangle_{av}
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

(ロ) (個) (重) (重)

RATIFICATION ORC

Real replicas – means to probe thermodynamic homogeneity

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Replicated Hamiltonian: [H]*^ν* = P*ν* $a=1$ $H^a = \sum_{n=1}^{\nu}$ *α*=1 $\sum_{\langle ij\rangle} J_{ij} S_i^a S_j^a$ α coupling between different replicas: $\Delta H(\mu) = \frac{1}{2} \sum_{a \neq b} \sum_i \mu^{ab} S^a_i S^b_i$ Averaged replicated free energy with coupled replicas

$$
F_{\nu}(\mu) = -k_B T \frac{1}{\nu} \left\langle \ln \text{Tr} \exp \left\{-\beta \sum_{a}^{\nu} H^a - \beta \Delta H(\mu) \right\} \right\rangle_{av}
$$

Eventually – analytic continuation of the replicated free energy to real *ν*

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

FIRENCE $\frac{1}{2}$

 $(\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle) \rightarrow \langle \Xi \rangle$

Real replicas – means to probe thermodynamic homogeneity

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Replicated Hamiltonian: [H]*^ν* = P*ν* $a=1$ $H^a = \sum_{n=1}^{\nu}$ *α*=1 $\sum_{\langle ij\rangle} J_{ij} S_i^a S_j^a$ α coupling between different replicas: $\Delta H(\mu) = \frac{1}{2} \sum_{a \neq b} \sum_i \mu^{ab} S^a_i S^b_i$ Averaged replicated free energy with coupled replicas

$$
F_{\nu}(\mu) = -k_B T \frac{1}{\nu} \left\langle \ln \text{Tr} \exp \left\{-\beta \sum_{a}^{\nu} H^a - \beta \Delta H(\mu) \right\} \right\rangle_{av}
$$

Eventually – analytic continuation of the replicated free energy to real *ν*

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Stability w.r.t. phase space scaling:

 $(\Box) \rightarrow (\bar{ \Box }) \rightarrow (\bar{ \Xi })$

READ ASSAULTS -290

 \equiv

TAP free energy

Free energy for one (typical) configuration of spin couplings

$$
F_{TAP} = \sum_{i} \left\{ m_i \eta_i^0 - \frac{1}{\beta} \ln 2 \cosh[\beta(h + \eta_i^0)] \right\}
$$

$$
- \frac{1}{2} \sum_{ij} \left[J_{ij} m_i m_j + \frac{1}{2} \beta J_{ij}^2 (1 - m_i^2)(1 - m_j^2) \right]
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Stationarity equations

$$
m_i = \tanh[\beta(h + \eta_i^0)]\,, \qquad \eta_i^0 = \sum_j J_{ij} m_j - m_i \sum_j \beta J_{ij}^2 (1 - m_j^2)
$$

Standard averaging over disorder – *Gaussian randomness*

 $YaClav$ Janiis $ZUAYCX$

$$
\langle \eta_i \eta_j \rangle_{\text{av}} = \beta^2 J^2 \delta_{ij} \langle m_i^2 \rangle_{\text{av}}
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

MANAGER

results in the SK solution (unstable)

TAP free energy

Free energy for one (typical) configuration of spin couplings

$$
F_{TAP} = \sum_{i} \left\{ m_i \eta_i^0 - \frac{1}{\beta} \ln 2 \cosh[\beta(h + \eta_i^0)] \right\}
$$

$$
- \frac{1}{2} \sum_{ij} \left[J_{ij} m_i m_j + \frac{1}{2} \beta J_{ij}^2 (1 - m_i^2)(1 - m_j^2) \right]
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Properties of TAP theory

- *Multiple solutions* (unstable, metastable, nonexistent)
- \blacksquare Thermodynamically inhomogeneous
- Lack of convergence in the thermodynamic limit (equlibrium state not uniquely defined)
- Specific rules for averaging over random spin couplings (accounting for many TAP solutions via the replica trick)

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

 \Box

TAP with ν real replicas

Replicated free energy for one configuration of J_{ij} (linear reponse to $\mu \rightarrow 0$):

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

$$
F_{\nu} = \frac{1}{\nu} \sum_{a=1}^{\nu} \left\{ \sum_{i} m_{i}^{a} \left[n_{i}^{a} + \beta J^{2} \sum_{b=1}^{a-1} \chi^{ab} m_{i}^{b} \right] + \frac{\beta J^{2} N}{2} \sum_{b=1}^{a-1} (\chi^{ab})^{2} \right. \\ - \frac{1}{2} \sum_{i,j} J_{ij} m_{i}^{a} m_{j}^{a} - \frac{1}{4} \sum_{i,j} \beta J_{ij}^{2} \left[1 - (m_{i}^{a})^{2} \right] \left[1 - (m_{j}^{a})^{2} \right] \right\} \\ - \frac{1}{\beta} \sum_{i} \ln \text{Tr} \exp \left\{ \frac{1}{2} (\beta J)^{2} \sum_{a \neq b}^{\nu} \chi^{ab} S_{i}^{a} S_{i}^{b} + \beta \sum_{a=1}^{\nu} (h + \eta_{i}^{a}) S_{i}^{a} \right\}
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

New averaged order parameters: $\chi^{ab} = N^{-1} \sum_i \left[\langle S_i^a S_i^b \rangle - m_i^a m_i^b \right]$

FIRENCE

TAP with ν real replicas

Replicated free energy for one configuration of J_{ij} (linear reponse to $\mu \rightarrow 0$):

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

$$
F_{\nu} = \frac{1}{\nu} \sum_{a=1}^{\nu} \left\{ \sum_{i} m_{i}^{a} \left[n_{i}^{a} + \beta J^{2} \sum_{b=1}^{a-1} \chi^{ab} m_{i}^{b} \right] + \frac{\beta J^{2} N}{2} \sum_{b=1}^{a-1} (\chi^{ab})^{2} \right. \\ - \frac{1}{2} \sum_{i,j} J_{ij} m_{i}^{a} m_{j}^{a} - \frac{1}{4} \sum_{i,j} \beta J_{ij}^{2} \left[1 - (m_{i}^{a})^{2} \right] \left[1 - (m_{j}^{a})^{2} \right] \right\} \\ - \frac{1}{\beta} \sum_{i} \ln \text{Tr} \exp \left\{ \frac{1}{2} (\beta J)^{2} \sum_{a \neq b}^{\nu} \chi^{ab} S_{i}^{a} S_{i}^{b} + \beta \sum_{a=1}^{\nu} (h + \eta_{i}^{a}) S_{i}^{a} \right\}
$$

New averaged order parameters: $\chi^{ab} = N^{-1} \sum_i \left[\langle S_i^a S_i^b \rangle - m_i^a m_i^b \right]$ Gaussian fluctuating fileds $\eta_i^a = \sum_j J_{ij} m_j^a - \sum_{b=1}^\nu m_i^b \sum_j \beta J_{ij}^2 \chi_{jj}^{ab}$ α ovariance $\langle \eta_i^a \eta_j^b \rangle_a$ _v = $\delta_{i,j} \sum_l J_{il}^2 m_l^a m_l^b = \delta_{i,j} J^2 q^{ab}$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

HAMILIAN AREA -299

 $\Box \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right)$

Replicated TAP – equivalence of replicas I

Equivalence of spin replicas – hierarcical ordering of classes of TAP solutions

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

$$
m_i^a \equiv \langle S_i^a \rangle_{\tau} = m_i ,
$$

\n
$$
\chi^{ab} = \chi^{ba} ,
$$

\n
$$
\{\chi^{a1}, \dots, \chi^{a\nu}\} = \{\chi^{b1}, \dots, \chi^{b\nu}\}
$$

Example: One RSB TAP free energy – two hierarchies of TAP solutions (*exchanging energy*)

$$
F_1(\chi,\nu) = -\frac{1}{4} \sum_{i,j} \beta J_{ij}^2 (1-m_i^2)(1-m_j^2) - \frac{1}{2} \sum_{i,j} J_{ij} m_i m_j + \frac{\beta J^2 N}{4} \chi[(\nu-1)\chi+2]
$$

+
$$
\sum_i m_i \left[\eta_i + \frac{1}{2} \beta J^2 (\nu-1)\chi m_i \right] - \frac{1}{\beta \nu} \sum_i \ln \int \mathcal{D} \lambda_i \left[2 \cosh[\beta(h+\lambda_i J\sqrt{\chi}+\eta_i)] \right]_{\substack{\xi \text{where } \xi \text{ is a point}}{\xi \text{ is a point of } \xi}}^{\xi}.
$$

Replicated TAP – equivalence of replicas II

Local magnetization

$$
m_i = \langle \rho^{(\nu)}(h + \eta_i; \lambda, \chi) \tanh[\beta(h + \eta_i + \lambda J\sqrt{\chi})]\rangle_{\lambda} \equiv \langle \rho_i^{\nu} t_i \rangle_{\lambda}
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

where

$$
\rho_i^{\nu} \equiv \rho^{(\nu)}(h + \eta_i; \lambda, \chi) = \frac{\cosh^{\nu}[\beta(h + \eta_i + \lambda J\sqrt{\chi})]}{\left\langle \cosh^{\nu}[\beta(h + \eta_i + \lambda J\sqrt{\chi})] \right\rangle_{\lambda}}
$$

 $Dλ_I ≡ dλ_I e^{−λ²_I/2 / √ 2π}$, $t ≡ tanh [β (h + η√q + Σ^K_{I=1} λ_I√Δχ_I)] with$ $\langle X(\lambda_l)\rangle_{\lambda_l} \equiv \int_{-\infty}^{\infty} \mathfrak{D}\lambda_l \; X(\lambda_l)$

Gaussian fluctuating field – Legendre conjugate variable to mⁱ

$$
\eta_i = \sum_j J_{ij} m_j - m_i \left[\beta J^2 (\nu - 1) \chi + \sum_j \beta J_{ij}^2 (1 - m_j^2) \right]
$$

PARTIES $-299C$

 $(\Box) \rightarrow (\bar{\mathbb{P}}) \rightarrow (\bar{\mathbb{P}}) \rightarrow (\bar{\mathbb{P}})$

Replicated TAP – equivalence of replicas III

Local susceptibility

$$
\chi = \frac{1}{N} \sum_{i} \left[\left\langle \rho_i^{\nu} t_i^2 \right\rangle_{\lambda} - \left\langle \rho_i^{\nu} t_i \right\rangle_{\lambda}^2 \right]
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

RSB parameter – Legnedre conjugate to *χ*

$$
\frac{\beta^2 J^2}{4} \chi(2q + \chi)\nu
$$

= $\frac{1}{N} \sum_{i} \left[\langle \ln \cosh[\beta(h + \eta_i + \lambda J\sqrt{\chi})] \rangle_A - \ln \langle \cosh^{\nu}[\beta(h + \eta_i + \lambda J\sqrt{\chi})] \rangle_A^{1/\nu} \right]$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Stability of TAP with 2 hierarchies

TAP stability – convergence criterion: $1 \geq \frac{\beta^2 J^2}{M}$ N $\sum (1 - m_i^2)^2$ i *Stability criteria* – when RSB parameters relevant? $1 \geq \frac{\beta^2 J^2}{M}$ N \sum i $\left\langle \rho_i^\nu (1-t_i^2)^2 \right\rangle_\lambda$ $1 \geq \frac{\beta^2 J^2}{M}$ N \sum i $\left[1 - \left(1-\nu\right)\left\langle \rho^{\nu}_i t^2_i \right\rangle_{\lambda} - \nu \left\langle \rho^{\nu}_i t_i \right\rangle^2_{\lambda}\right]$ $\left(\begin{matrix}2\\ \lambda\end{matrix}\right)^2$ Overlap susceptibility: $\chi \propto \beta^2 J^2 \langle (1-m_i^2)^2 \rangle_{\rm av} -1 > 0$ Replication parameter (at AT instability line): $v_0 = \frac{2(m_i^2(1-m_i^2)^2)_{av}}{(1-m_i^2)^3}$ $\langle (1 - m_i^2)^3 \rangle_{av}$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

RATIFICAL

(ロ) (何) (ミ) (ミ)

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Stability of TAP with 2 hierarchies

TAP stability – convergence criterion: $1 \geq \frac{\beta^2 J^2}{M}$ $\sum (1 - m_i^2)^2$ N i *Stability criteria* – when RSB parameters relevant? $1 \geq \frac{\beta^2 J^2}{M}$ \sum $\left\langle \rho_i^\nu (1-t_i^2)^2 \right\rangle_\lambda$ N i $1 \geq \frac{\beta^2 J^2}{M}$ $\left(\begin{matrix}2\\ \lambda\end{matrix}\right)^2$ $\left[1 - \left(1-\nu\right)\left\langle \rho^{\nu}_i t^2_i \right\rangle_{\lambda} - \nu \left\langle \rho^{\nu}_i t_i \right\rangle^2_{\lambda}\right]$ \sum N i Overlap susceptibility: $\chi \propto \beta^2 J^2 \langle (1-m_i^2)^2 \rangle_{\rm av} -1 > 0$ Replication parameter (at AT instability line): $v_0 = \frac{2(m_i^2(1-m_i^2)^2)_{av}}{(1-m_i^2)^3}$ $\langle (1 - m_i^2)^3 \rangle_{av}$ Standard averaging of TAP \Rightarrow SK (RS) solution
Standard averaging of 1RSB-TAP \Rightarrow 1RSB Standard averaging of 1RSB-TAP \Rightarrow **REA**

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

 000

Hierarchical TAP theory

TAP with K hierarchies of real replicas

$$
F_K(m_i, \eta_i; \chi_1, \nu_1, ..., \chi_K, \nu_K) = -\frac{1}{4} \sum_{i,j} \beta J_{ij}^2 (1 - m_i^2)(1 - m_j^2) - \frac{1}{2} \sum_{i,j} J_{ij} m_i m_j
$$

+
$$
\sum_i m_i \left[\eta_i + \frac{1}{2} \beta J^2 m_i \sum_{l=1}^K (\nu_l - \nu_{l-1}) \chi_l \right] + \frac{\beta J^2 N}{4} \sum_{l=1}^K (\nu_l - \nu_{l-1}) \chi_l^2 + \frac{\beta J^2 N}{2} \chi_1
$$

-
$$
-\frac{1}{\beta \nu_K} \sum_i \ln \left[\int_{-\infty}^{\infty} \mathcal{D} \lambda_K \left\{ ... \int_{-\infty}^{\infty} \mathcal{D} \lambda_1 \left\{ Z_0 \right\}^{\nu_1} ... \right\}^{\nu_K / \nu_{K-1}} \right]
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

h

Initial local partition sum

$$
Z_0 = 2 \cosh \left[\beta \left(h + \eta_i + \sum_{l=1}^K \lambda_l \sqrt{\chi_l - \chi_{l+1}} \right) \right]
$$

Averaging of hierarchical TAP – discrete RSB scheme

Averaged TAP free energy density with K hierarchies of replicas

$$
f_K(q; \Delta \chi_1, \dots, \Delta \chi_K, \nu_1, \dots, \nu_K) = -\frac{\beta}{4} \left(1 - q - \sum_{l=1}^K \Delta \chi_l \right)^2 - \frac{1}{\beta} \ln 2
$$

+ $\frac{\beta}{4} \sum_{l=1}^K \nu_l \Delta \chi_l \left[2 \left(q + \sum_{i=l}^K \Delta \chi_i \right) - \Delta \chi_l \right] - \frac{1}{\beta} \int_{-\infty}^{\infty} \mathfrak{D} \eta \ln Z_K$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

REAL PROPERTY

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

 $\Delta \chi_l = \chi_l - \chi_{l+1} \geq \Delta \chi_{l+1} \geq 0$, *ν*_l – arbitrary positive Hierarchical local partition sums $Z_l = \left[\int_{-\infty}^{\infty} {\mathbb{D}} \lambda_l \,\, Z_{l-1}^{\nu_l} \right]^{1/\nu_l}$ Initial condition $Z_0 = \cosh \left[\beta \left(h + \eta \sqrt{q} + \sum_{l=1}^K \lambda_l \sqrt{\Delta \chi_l} \right) \right]$

Properties of the hierarchical solution

Degeneracy in the hierarchical free energy ($\chi_{K+1} = 0$, $\nu_0 = 1$)

$$
f_K(\Delta \chi_{K-1} = 0) = f_{K-1}, \quad f_K(\chi_K = 0) = f_{K-1}
$$

$$
f_K(\nu_K = \nu_{K-1}) = f_{K-1}, \quad f_K(\nu_K = 0) = f_{K-1},
$$

$$
\frac{\partial}{\partial \nu_K} f_K(\nu_K = \nu_{K-1}) \le 0, \quad \frac{\partial}{\partial \nu_K} f_K(\nu_K = 0) \ge 0
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

- *∂*f^K *Local thermodynamic homogeneity*: $\frac{\partial V_{R}}{\partial v_{l}}=0$ m.
- Global thermodynamic homogeneity: $\chi_K = 0$ m.
- **■** *ν*_l > 1 free energy minimized
- **■** *ν*_l < 1 free energy maximized

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

CALL AND PQQ

 $(\Box \rightarrow \langle \bar{\partial} \rangle \rightarrow \langle \bar{\Xi} \rangle \rightarrow \langle \bar{\Xi} \rangle$

Properties of the hierarchical solution

Degeneracy in the hierarchical free energy ($\chi_{K+1} = 0$, $\nu_0 = 1$)

$$
f_K(\Delta \chi_{K-1} = 0) = f_{K-1}, \quad f_K(\chi_K = 0) = f_{K-1}
$$

$$
f_K(\nu_K = \nu_{K-1}) = f_{K-1}, \quad f_K(\nu_K = 0) = f_{K-1},
$$

$$
\frac{\partial}{\partial \nu_K} f_K(\nu_K = \nu_{K-1}) \le 0, \quad \frac{\partial}{\partial \nu_K} f_K(\nu_K = 0) \ge 0
$$

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

- *∂*f^K *Local thermodynamic homogeneity*: $\frac{\partial V_{R}}{\partial v_{l}}=0$ п
- Global thermodynamic homogeneity: $\chi_K = 0$
- **■** *ν*_l > 1 free energy minimized
- **■** $ν$ _l < 1 free energy maximized

Only if $1 > \nu_1 > ... \nu_K \ge 0$ then $\chi_l > \chi_{l+1} \ge 0$ Hierarchical scheme converges

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

 \bullet

 $(\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle)$

1RSB thermodynamic inhomogeneity

Outline MFT SG Discrete vs. continuous Conclusions Averaging over disorder Thermodynamic homogeneity TAP with real replicas

Stability conditions

Nonnegativity of eigenvalues of the nonlocal susceptibility – resolvent

$$
G(z)=\frac{1}{N}\text{Tr}\left[z\widehat{1}-\widehat{\chi}^{-1}\right]^{-1}
$$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Relation to the homogeneous and spin-glass susceptibilities (zero magnetic field)

$$
\chi = \frac{1}{N} \sum_{i} \chi_{ii} = -G(0) \,, \qquad \chi_{SG} = \frac{1}{N} \sum_{ij} \chi_{ij}^{2} = -\frac{dG(z)}{dz} \bigg|_{z=0} \ge 0
$$

 $K + 1$ stability conditions for a solution with K hierarchies

$$
\Lambda_{I} = \beta^{2} \left\langle \left\langle \left\langle 1-t^{2} + \sum_{i=1}^{I} \nu_{i} \left(\langle t \rangle_{i-1}^{2} - \langle t \rangle_{i}^{2} \right) \right\rangle_{I}^{2} \right\rangle_{K} \right\rangle_{\eta} \geq 0
$$
\n
$$
I = 0, 1, ..., K, \langle t \rangle_{I}(\eta, \lambda_{K}, ..., \lambda_{I+1}) \equiv \langle \rho_{I} ... \langle \rho_{1} t \rangle_{\lambda_{1} ... \lambda_{I}} \rangle_{\eta} \qquad \qquad \sum_{i=1}^{s_{\text{max}} \atop \text{max}} \sum_{i=1}^{s_{\text{max}} \atop \text{max}} \lambda_{i} t \rangle_{\eta}.
$$

 \circ

One-step RSB

Free energy $(J^2=1)$

$$
f(q; \chi, \nu) = -\frac{\beta}{4}(1-q)^2 + \frac{\beta}{4}(\nu-1)\chi(2q+\chi) + \frac{\beta}{2}\chi
$$

$$
- \frac{1}{\beta\nu}\int_{-\infty}^{\infty} \mathcal{D}\eta \ln \int_{-\infty}^{\infty} \mathcal{D}\lambda \left\{2\cosh\left[\beta\left(h + \eta\sqrt{q} + \lambda\sqrt{\chi}\right)\right]\right\}^{\nu}
$$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Stationarity equations

$$
q = \langle \langle t \rangle_{\lambda}^{2} \rangle_{\eta}
$$

\n
$$
q_{EA} = q + \chi = \langle \langle t^{2} \rangle_{\lambda} \rangle_{\eta}
$$

\n
$$
\beta^{2} \chi(2q + \chi)\nu = \left[\langle \ln \cosh[\beta(h + \eta\sqrt{q} + \lambda\sqrt{\chi})] \rangle_{\lambda} - \ln \langle \cosh^{2}[\beta(h + \eta\sqrt{\eta} + \lambda\sqrt{\chi})] \rangle_{\lambda}^{1/\nu} \right]
$$

Stability of 1RSB

Stability conditions

$$
\begin{aligned} \Lambda_1 &= 1 - \beta^2 \langle \langle (1 - t^2)^2 \rangle_\lambda \rangle_\eta \\ \Lambda_0 &= 1 - \beta^2 \langle \langle (1 - (1 - \nu)t^2 - \nu \langle t \rangle_\lambda^2) \rangle_\lambda^2 \rangle_\eta \end{aligned}
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

RAMIDSON AA

 \equiv

 $(\Box) \rightarrow (\bar{\partial}) \rightarrow (\bar{\Xi}) \rightarrow (\bar{\Xi})$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Stability of 1RSB

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Continuous limit of the discrete RSB scheme

- Discrete RSB solution unstable for any finite K, hence $K \to \infty$
- Continuous ansatz (homogeneous distribution) $\Delta \chi_l = \chi_l/K$ (checked explicitly near the AT instability line)
- Continuous index variable $x = \lim_{K \to \infty} (K I)/K$ $(x^P = \lim_{K \to \infty} I/K)$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Gaussian integrals only (linear approximation) $g_l \equiv \ln \zeta_l$

$$
g_l = \ln \left\langle \mathcal{Z}_{l-1}^{\nu_l} \right\rangle_{\lambda_l}^{1/\nu_l} = g_{l-1} + \frac{\Delta \chi_l}{2} \left(g_{l-1}^{\prime\prime} + \nu_l g_{l-1}^{\prime 2} \right) + O(\Delta \chi_l^2)
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

REA

 $\Box \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right) \rightarrow \neg \left(\Box \right)$

$$
g'_l \equiv \frac{\partial g_l}{\partial h}
$$

Continuous limit of the discrete RSB scheme

- Discrete RSB solution unstable for any finite K, hence $K \to \infty$
- **■** Continuous ansatz (homogeneous distribution) $\Delta \chi$ _l = χ ₁/K (checked explicitly near the AT instability line)
- Continuous index variable $x = \lim_{K \to \infty} (K I)/K$ $(x^P = \lim_{K \to \infty} I/K)$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Gaussian integrals only (linear approximation) $g_l \equiv \ln \zeta_l$

$$
g_I = \ln \left\langle \mathcal{Z}_{I-1}^{\nu_I} \right\rangle_{\lambda_I}^{1/\nu_I} = g_{I-1} + \frac{\Delta \chi_I}{2} \left(g_{I-1}^{\prime\prime} + \nu_I g_{I-1}^{\prime 2} \right) + O(\Delta \chi_I^2)
$$

$$
g'_l \equiv \frac{\partial g_l}{\partial h}
$$

 $\dot{\chi}(x) \equiv \frac{d\chi(x)}{dx}$ dx

Parisi's differential equation (opposite overall sign)

$$
\frac{\partial g(x, h)}{\partial x} = \frac{\dot{\chi}(x)}{2} \left[\frac{\partial^2 g(x, h)}{\partial h^2} + m(x) \left(\frac{\partial g(x, h)}{\partial h} \right)^2 \right]
$$

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

 \rightarrow

Physical interpretation of the RSB order parameters

■ *ν*_{*l}</sub> <i>N* active spins in the volume</sub> *ν*lV affected by the replicated spins from the next hierarchy

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

$$
\frac{N}{V} \ln Z_{l-1}(\beta, \overline{h}_l)
$$
\n
$$
\longrightarrow \frac{N}{\nu_l V} \ln \int \mathfrak{D}\lambda_l Z_{l-1}^{\nu_l} \left(\beta, \overline{h}_l + \lambda_l \sqrt{\Delta \chi_l}\right)
$$

 $\bigoplus_{i=1}^{n}$ OQ

- \blacksquare λ _l effective magnetic fields, ∆*χ*^l – interaction strength
- Effective weight of replicated spins in thermal averaging

 $\rho_l = \frac{Z_{l-1}^{\nu_l}}{(Z_{l-1}^{\nu_l})^2}$ $\overline{\langle Z_{l-1}^{\nu_l}\rangle_{\lambda_l}}$

Integral representation of the Parisi free energy

■ *Continuous limit* – independently of the stability of the discrete scheme

$$
f(q, X; m(\lambda)) = -\frac{\beta}{4}(1 - q - X)^2 - \frac{1}{\beta}\ln 2
$$

+ $\frac{\beta X}{2}\int_0^1 d\lambda m(\lambda) [q + X(1 - \lambda)] - \frac{1}{\beta} \langle g(1, h + \eta \sqrt{q}) \rangle_{\eta}$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Integral representation of the intracting part

$$
g(1, h) = \mathbb{E}_0(X, h; 1, 0) \circ g_0(h)
$$

$$
\equiv \mathbb{T}_{\lambda} \exp \left\{ \frac{X}{2} \int_0^1 d\lambda \left[\partial_{\tilde{h}}^2 + m(\lambda) g'(\lambda; h + \tilde{h}) \partial_{\tilde{h}} \right] \right\} g_0(h + \tilde{h}) \Big|_{\tilde{h} = 0}
$$

T-product from quantum many-body PT

$$
\mathbb{T}_{\lambda} \exp \left\{\int_{0}^{1} d\lambda \widehat{O}(\lambda) \right\} \equiv 1 + \sum_{n=1}^{\infty} \int_{0}^{1} d\lambda_{1} \int_{0}^{\lambda_{1}} \cdots \int_{0}^{\lambda_{n-1}} d\lambda_{n} \widehat{O}(\lambda_{1}) \ldots \widehat{O}(\lambda_{n}) \underset{\underset{n=1}{\text{min}}}{\overset{\underset{n=1}{\text{min}}}{\text{min}}}\right\}
$$

Stationarity equations

Number order parameters (h*^η* = h + *η* √ q)

$$
\begin{aligned} q &= \frac{1}{\beta^2} \left\langle g'(1,h_\eta)^2 \right\rangle_\eta \} \\ X &= \frac{1}{\beta^2} \left[\left\langle \mathbb{E}(X,h_\eta;1,0) \circ g_0'(h_\eta)^2 \right\rangle_\eta - \left\langle g'(1,h_\eta)^2 \right\rangle_\eta \right] \end{aligned}
$$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

Functional order parameter

$$
\lambda = \frac{1}{\beta^2 X} \left[\left\langle \mathbb{E}(X, h_{\eta}; 1,0) \circ g_0'(h_{\eta})^2 \right\rangle_{\eta} - \left\langle \mathbb{E}(X, h_{\eta}; 1, \lambda) \circ g'(\lambda, h_{\eta})^2 \right\rangle_{\eta} \right]
$$

 \blacksquare Integral representation for the derivative

$$
g'(\nu, h) = \mathbb{T}_{\lambda} \exp \left\{ X \int_{0}^{\nu} d\lambda \left[\frac{1}{2} \partial_{\tilde{h}}^{2} + m(\lambda) g'(\lambda; h + \tilde{h}) \partial_{\tilde{h}} \right] \right\} g'_{0}(h + \tilde{h}) \Big|_{\tilde{h} = 0}
$$

$$
\equiv \mathbb{E}(X, h; \nu, 0) \circ g_{0}(h)
$$

Stability conditions

 \Box Stability conditions from the continuous limit of the discrete scheme

$$
1 \geq \frac{1}{\beta^2} \left\langle \mathbb{E}(X, h_{\eta}; 1, \lambda) \circ g''(\lambda, h_{\eta})^2 \right\rangle_{\eta}, \quad \forall \lambda \in [0, 1]
$$

Outline MFT SG Discrete vs. continuous Conclusions Stability of the discrete scheme Integral representation of the continuous solution

$$
g''(\nu, h) = \mathbb{T}_{\lambda} \exp \left\{ X \int_0^{\nu} d\lambda \left[\frac{1}{2} \partial_{\bar{h}}^2 + m(\lambda) \partial_{\bar{h}} g'(\lambda; h + \bar{h}) \right] \right\} g''_0(h + \bar{h}) \Big|_{\bar{h} = 0}
$$

Derivative of the equation for the functional order parameter

$$
1 = \frac{d}{d\lambda} \mathbb{E}(X, h; 1, \lambda) \circ g'(\lambda, h)^2 = -X \mathbb{E}(X, h; 1, \lambda) \circ g''(\lambda, h)^2.
$$

Consequence – *marginal stability in the whole SG phase*

$$
\beta^2 = \left\langle \mathbb{E}(X, h_\eta; 1, \lambda) \circ g''(\lambda, h_\eta)^2 \right\rangle_{\eta}
$$

CARL AND STATES

K □ X K 레 X K 레 X K 레 코 X X A G V Q Q Q

Conclusions I

Mean-field theory of spin glasses

Free energy self-averaging

Outline MFT SG Discrete vs. continuous Conclusions

- Typical distribution of spin couplings multitude of solutions (thermodynamic inhomogeneity incurred)
- Generations of real replicas successive embeddings of spin replicas (TAP solution may interchange energy to reach homogeneity)
- **Homogenepous order parameters even without averaging over** randomness (regulate interaction between replica generations)

Vaclav Jani ´ sˇ FZU AV ´ CR, v. v. i. ˇ

Eating General $B = 990$

■ Standard averaging – within linear response and with FDT

Nonmeasurable order parameters – needed to describe measurable quantities

Conclusions II

Discrete RSB scheme

Continuous RSB scheme

 \blacksquare Hirarchical structure – number of hierarchies K determined from stability

Outline MFT SG Discrete vs. continuous Conclusions

- Stable or marginally stable solution
- Probably too many order parameters: q, { ν ₁, Δχ_ι} ${}_{l=1}^K$
- **Physical interpretation of the** order parameters
- Continuous limit of the discrete scheme
- Exists independently of the stability of the discrete scheme
- Only marginally stable solution
- Minimal set of order parameters: q , $q_{EA} = q + X$, $m(\lambda)$, $\lambda \in [0, 1]$

 $(\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow$

How does the continuous solution look like when 1RSB becomes stable (Potts glass)?