The atomic, electronic, and magnetic structure of disordered metal surfaces - interpretation of the STM

Martin Ondráček

The research i am going to present on this occasion has been accomplished during my doctoral studies (2003-2008) as a material for my PhD thesis

under the supervision of

dr. František Máca

and in close collaboration with

dr. Josef Kudrnovský

to both of whom I am largely indebted along with all others not named here who supported me during the time of my studies.

Experimental results for the Fe₆₄Ni₃₆ (100) surface

constant current STM image with atomic resolution, I = 8 nA, U = -2 mV

- chemical resolution achieved (Fe brighter, i.e. "higher", Ni darker, i.e. "lower")
 patches of the FeNii c(2x2) structure
- 2) patches of the FeNi–*c*(2x2) structure prevail on the surface
- 3) peak of tunnelling conductance in STS at $U \approx -0.3 \text{ V}$

(a) constant current STM image (U = -1V),
(b) current map at -0.4 V (voltage corresponding to the STS peak)
(c) typical STS curves (differential conductance vs voltage) averaged over selected areas on the surface

Models of the FeNi (001) atomic surface structure

FP-LAPW calculations (WIEN2k):

- atomic structure relaxation
- total energy calculation

• $d_0 = a/2 = 1.8$ Å

model #		II		IV
δ_1 / d_0	+3.3%	+7.5%	-4.1%	+2.8%
$(d_{12}-d_0) / d_0$	-1.0%	0.0%	+1.4%	-4.5%
δ_2/d_0	0	0	+0.3%	+0.9%
$(d_{23}-d_0) / d_0$	1.4%	+2.6%	-2.3%	+2.6%
δ_3 / d_0	-1.0%	-0.1%	-0.4%	+1.5%
$(d_{34}-d_0) / d_0$	+1.2%	+1.9%	+2.3%	+1.5%
<i>E - E</i> _I [meV]	0	+13	+39	_

model #	V	VI	VII
δ_1 / d $_0$	0.0%	+2.6%	+2.2%
$(d_{12}-d_0) / d_0$	-6.0%	-3.9%	-2.1%
δ_2/d_0	0	+0.5%	0
(d ₂₃ -d ₀) / d ₀	+2.8%	-1.4%	-2.6%
δ_3 / d ₀	-0.9%	+0.2%	+0.3%
(d ₃₄ -d ₀) / d ₀	+1.5%	+2.5%	+2.7%
<i>E - E</i> _{VI} [meV]	+27	0	+127

- Fe atoms in the top surface layer always stick out, Ni atoms sit lower
- Deeper atomic layers are also influence the surface buckling.
- The c(2x2)–FeNi surface structure is especially favored in terms of total energy

The necessity of proper boundary conditions

The projected Bloch spectral function for $k_{||} = 0$ 1.8 Å above the Fe / Fe₆₄Ni₃₆ (100) surface depending on the slab thickness

Method for the calculations that aim to interpret the STS:

- TB-LMTO in ASA (tightbinding linear muffin-tin orbital method in atomic sphere approximation)
- Surface Green's function formalism (employed to account for the boundary conditions)
- CPA (coherent potential approximation) to treat the chemical disorder in the alloy

Projected densities of states (PDOS) and Bloch spectral functions for $k_{\parallel} = 0$ (BSF) at a site situated 5.4 Å above the surface (spin-resolved components and total)

Spin components

- positive half-plane: majority spin (1)
- negative half-plane: minority spin (↓)
- full line: total (all spin)

There is a peak of the LDOS for the minorityspin electrons $\approx 0.3 \text{ eV}$ below E_F originating mainly from the central part of the Brillouin zone, which appears in the vacuum above Fe-rich surfaces

Bloch spectral functions for $k_{\parallel} = 0$ (BSF) and projected densities of state (PDOS)

Fe / Fe_{0.64}Ni_{0.36}

Spin-resolved and orbital-projected BSF above the surface, on it, and beneath

BSF for $k_{||} = 0$ and PDOS 5.4 Å above the surface depending on the sub-surface composition

I. Fe / Fe / Fe $_{0.64}$ Ni $_{0.36}$ II. Fe / Fe $_{0.5}$ Ni $_{0.5}$ / Fe $_{0.64}$ Ni $_{0.36}$ III.Fe / Ni / Fe $_{0.64}$ Ni $_{0.36}$

• The surface resonance of the minority-spin electrons is centered at $k_{\parallel} = 0$ and predominantly of a d_z2-orbital character.

• Its existence depends mainly on the composition of the top surface atomic layer but its position on the energy scale also depends on the sub-surface layers.

Magnetic overlayers of *3d* transition metals on the W(100) substrate

Motivation:

- Fe / W(100) was shown to form a c(2x2) anti-ferromagnetic monolayer by an SP-STM (Kubetzka et al. 2005).
- Ab-initio calculations predict ferromagnetic monolayers of V, Cr, and Mn and c(2x2) anti-ferromagnetic monolayers of Fe and Co on the W(100). surface (Ferriani *et al.*, 2005).
- This is in contrast to the magnetic order of these metals in monoatomic layers on, e.g., Ag(100), Pd(100), W(110).
- Transition from ferromagnetic to anti-ferromagnetic configuration has been studied for Fe/Ta_xW_{1-x} (Ferriani *et al.*, 2007).

Questions:

- What would be the effect of disorder in the monolayers?
- Effect of mixing elements with different tendencies to ferromagnetic/anti-ferromagnetic order?
- Magnetism in ultra-thin (sub-monolayer) films and the effect of disorder therein?

Spin-polarized STM image of the c(2x2) anti-ferromagnetic Fe/W(100) surface (Kubetzka et al. 2005)

н																	He
Li	Ве											В	С	Ν	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															

Total energies of selected magnetic configurations for the binary surface alloys on W(100)

Selected magnetic configurations

Tendencies of alignment between magnetic moments of the 3d elements on the W(100) substrate

- parallel alignment for V, Cr, and Mn (including mixed pairs like (CrMn)
- anti-parallel alignment for Fe and Co (including FeCo)
- anti-parallel alignment also for FeMn, FeCr, CoMn, CoCr, and CoV
- weak tendency to parallel alignment also for FeV

Magnetic moments of atoms in the binary surface alloys

 magnitudes of atomic magnetic moments of *Cr*, *Mn*, *Fe*, and *Co change* only *little* with magnetic configuration and chemical composition of the alloy (well localized moments)
 magnetic moments of

• *Magnetic moments of* **V** (vanadium) are very **sensitive** to both magnetic configuration and alloy composition (more itinerant character)

Theoretical models for the magnetic interactions

$$E_{\text{mag}} = E_0 + \sum_{x_i, x_j} A_{ij} \cos \theta_{ij} + \sum_{x_i, Y_j} B_{ij} \cos \theta_{ij} + \sum_{Y_i, Y_j} C_{ij} \cos \theta_{ij}$$
We further restricted the models to
• collinear ($\theta_{ij} = \pm 1$) and
• completely **disordered** (no
correlation among sites),
so they can be described as a four-
component alloy with the **general**
formula
$$\begin{bmatrix} X^{\uparrow}_{x\uparrow} X^{\downarrow}_{x\downarrow} Y^{\uparrow}_{y\uparrow} Y^{\downarrow}_{y\downarrow} \end{bmatrix}$$

Condition for thickness of 1 ML: $x^{\uparrow} + x^{\downarrow} + y^{\uparrow} + y^{\downarrow} = 1$

$$\overline{E} = \overline{E}_{\text{DLM}} + \frac{1}{2} J_{XX} (x^{\uparrow} - x^{\downarrow})^2 + J_{XY} (x^{\uparrow} - x^{\downarrow}) (y^{\uparrow} - y^{\downarrow}) + \frac{1}{2} J_{YY} (y^{\uparrow} - y^{\downarrow})^2$$

$$J_{XX} = \sum_{i \neq j} A_{ij} / N \qquad \qquad J_{XY} = \sum_{i \neq j} B_{ij} / N \qquad \qquad J_{YY} = \sum_{i \neq j} C_{ij} / N$$

Estimate of the model parameters and test of the model against *ab-initio* calculations

J _{Cr-Cr}	= -0.292 eV
J _{Mn-Mn}	= -0.105 eV
J _{Fe-Fe}	= +0.290 eV
J _{Co-Co}	= +0.076 eV
J _{Cr-Mn}	= -0.229 <i>eV</i>
J _{Fe-Cr}	= +0.058 eV
J _{Fe-Mn}	= +0.115 eV
J _{Co-Cr}	= +0.103 eV
J _{Co-Mn}	= +0.156 eV
J _{Fe-Co}	= +0.195 eV

Estimates of the configuration with the lowest total energy (among those of the $X^{\uparrow}_{x\uparrow} X^{\downarrow}_{x\downarrow} Y^{\uparrow}_{y\uparrow} Y^{\downarrow}_{y\downarrow}$ type) also well agree with *ab-initio* results

Magnetic moments (μ) at submonolayer coverage (θ): Cr / W(100)

Fixed-spin FP-LAPW calculations for the *c(2x2)*–**Cr** / **W(100) structure:** verification of the non-magnetic ground state

Magnetic moments (μ) at submonolayer coverage (θ): overview for all elements

Surface magneto-crystalline anisotropy

Preferential orientation of the magnetic axis has been studied for monolayers of V, Cr, and Mn on W(100) (and for the Fe / W(100) monolayer previously by Kubetzka *et al.*).

- Spin-orbit coupling and dipole-dipole interaction has to be included.
- Surface Brillouin zone sampled by a mesh of 60x60 k-points.
- Plane waves up to $E_{kin} = 17$ Ry in the basis set.

composition	MAE per surface atom				
of the surface layer	$(MAE = E_{\parallel} - E_{\perp})$				
V / W(100)	–2.0 meV 📙				
Cr / W(100)	+2.6 meV ⊥				
Mn/ W(100)	+5.1 meV ⊥				
Fe / W(100)	+2.4 meV ⊥				

- Dipole-dipole interaction is almost negligible.
- *Shick et al.*: The large anisotropy of Mn/W(100) is caused by
 - 1. large SO-coupling at W atoms.
 - 2. strong exchange coupling between the Mn overlayer and the top W layer.
 - 3. large magnetic moment of Mn atoms.

Conclusion

The utility of the *ab-initio* calculations as an aid to the analysis of surface structures by the STM has been demonstrated for:

1) Invar

- The observed apparent corrugation in the STM images (chemically sensitive contrast between atoms as well as variations on a large scale) has been related to real surface buckling (actual shift of the atomic positions, Fe up and Ni down).
- The peak in the STS spectra was explained for Fe-enriched areas on the surface by a surface resonance at energy ≈ 0.3 eV below the Fermi level, arising near the center of the Brillouin zone, and derived predominantly from the d_z^2 orbitals.

2) Magnetic overlayers of 3d metals on W(100)

- Magnetic moments of Cr, Mn, Fe, and Co are almost constant. Surface alloys of these elements may be described along the lines of the Heisenberg or Ising model.
- Magnetic moment of V is very sensitive to its environment.
- Surface magnetocrystalline anisotropy: in-plane alignment for V, normal-to-plane for Cr, Mn, and Fe. Especially large anisotropy found for Mn/W(100).
- The interplay of competing alignment tendencies (different signs of J_{XY} and of the magnetic anisotropy) may lead to complex non-collinear magnetic structures.