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Brownian pumps
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Diffusion in a 2D channel

x

AHxL
jHx,y,tL

y

pHx,tL

(
∂t −D∆

)
ρ(x, y, t) = 0

+ Neumann BCs:

∂yρ = 0
∣∣∣
y=0

and

∂yρ = A′∂xρ
∣∣∣
y=A(x)

as the current density j(x, y, t) = −D∇ρ(x, y, t) at the hard walls is parallel
to them.

Is there any corresponding equation for p(x, t) =

∫ A(x)

0

ρ(x, y, t)dy ?

– Typeset by FoilTEX – 3



Exact formulation: the 1D density p(x, t) is determined by

the diffusion equation + BCs + an initial condition ρ(x, y, 0) = ρ0(x, y).
We can:

• either to solve the 2D problem

• and to map the solution ρ(x, y, t)

p(x, t) =

∫ A(x)

0

ρ(x, y, t)dy

• or to map the initial condition

• and to solve some equation

∂p(x, t)

∂t
= Q̂(x, ∂x)p(x, t)

Our goal:

to find the operator Q̂(x, ∂x) to make both treatments equivalent.
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The simplest approximations:

Fick− Jacobs equation :
∂p(x, t)

∂t
= D

∂

∂x
A(x)

∂

∂x

p(x, t)

A(x)
,

Zwanzig′s correction (1992) :
∂p(x, t)

∂t
= D

∂

∂x
A(x)

(
1−1

3
A′2(x)

)
∂

∂x

p(x, t)

A(x)

Reguera and Rub́ı (2001) concluded from the non-equilibrium TD

∂p(x, t)

∂t
=

∂

∂x
A(x)D(x)

∂

∂x

p(x, t)

A(x)

with D(x) estimated as D(x) '
(

1 +A′2(x)
)−1/3

.
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Trick #1: suppose anisotropy of the diffusion constant D

∂ρ(x, y, t)

∂t
=
(
Dx

∂2

∂x2
+Dy

∂2

∂y2

)
ρ(x, y, t) ; Dy � Dx

Rescaling time Dxt→ t ⇒ we introduce a small parameter ε = Dx/Dy ;

( ∂
∂t
− ∂2

∂x2
−1

ε

∂2

∂y2

)
ρ(x, y, t) = 0 ;

( ∂
∂y
−εA′(x)

∂

∂x

)
ρ(x, y, t)

∣∣∣
y=A(x)

= 0 .

After integration of the diffusion equation over y and using BC:

∂p(x, t)

∂t
=
∂2p(x, t)

∂x2
− ∂

∂x

(
A′(x) ρ(x,A(x), t)

)
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Zero-th order, ε→ 0:

- transverse relaxation
is so fast that ρ(x, y, t)
is flat in the transverse
direction;

ρ(x, y, t) = ρ(x,A(x), t) =
p(x, t)

A(x)
.

Then

∂p(x, t)

∂t
=
∂2p(x, t)

∂x2
− ∂

∂x

(
A′(x)

p(x, t)

A(x)

)
=

∂

∂x
A(x)

∂

∂x

p(x, t)

A(x)
= FJ eq.
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For ε > 0:

- transverse relaxation is
slower;
ρ becomes curved in the
transverse direction;

ρ(x, y, t) = ω̂(x, y, ∂x)
p(x, t)

A(x)

- this is substituted for ρ(x,A(x), t) in the mapped equation:

∂p(x, t)

∂t
=
∂2p(x, t)

∂x2
− ∂

∂x

(
A′(x) ω̂(x,A(x), ∂x)

p(x, t)

A(x)

)
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Trick #2: search for the operator of backward mapping ω̂

a) ω̂ does not depend on time, hence
∂

∂t
ω̂(x, y, ∂x) = ω̂(x, y, ∂x)

∂

∂t

b) ω̂ satisfies the inverse (unity) relation

1

A(x)

∫ A(x)

0

dy ω̂(x, y, ∂x)
p(x, t)

A(x)
=
p(x, t)

A(x)
for any solution p(x, t),

c) ω̂ can be expanded in ε : ω̂(x, y, ∂x) = 1+
∞∑

j=1

εjω̂j(x, y, ∂x)
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d) the backward mapped ρ(x, y, t) = ω̂(x, y, ∂x)
[
p(x, t)/A(x)

]
solves the

diffusion equation

∞∑

j=0

εj+1
( ∂
∂t
− ∂2

∂x2
− 1

ε

∂2

∂y2

)
ω̂j(x, y, ∂x)

p(x, t)

A(x)
= 0

with Neumann BC at y = 0 and A(x).

∂p(x, t)

∂t
= Q̂(x, ∂x)p(x, t) =

∂

∂x

[ ∂
∂x
A(x)−A′(x)ω̂(x,A(x), ∂x)

]p(x, t)
A(x)

=
∂

∂x
A(x)

(
1− εẐ(x, ∂x)

) ∂
∂x

p(x, t)

A(x)
,

where also Ẑ can be expanded in ε : εẐ(x, ∂x) =
∞∑

j=1

εjẐj(x, ∂x) .
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Recurrence relations:

∂2

∂y2
ω̂j+1(x, y, ∂x) = − ∂2

∂x2
ω̂j(x, y, ∂x)

−
j∑

k=0

ω̂j−k(x, y, ∂x)
1

A(x)

∂

∂x
A(x)Ẑk(x, ∂x)

∂

∂x

and Ẑj(x, ∂x)
∂

∂x
=
A′(x)

A(x)
ω̂j(x,A(x), ∂x) for j > 0.

- we start from ω̂0(x, y, ∂x) = 1 and Ẑ0(x, ∂x) = −1 (valid for FJ)

- use BC and the inverse relation for fixing the integration constants at
double integration of ∂2

yω̂j+1(x, y, ∂x)
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Resultant expansions of ω̂(x, y, ∂x) and Ẑ(x, ∂x):

ω̂(x, y, ∂x) = 1 + ε
(

3y2 −A′2(x)
)A′(x)

6A(x)

∂

∂x
+ ...

and

∂p(x, t)

∂t
=

∂

∂x
A

[
1−ε

3
A′2 − ε2

45
A′
(

2A
(
AA′

)′ ∂
∂x

+

+AA′A′′ +A2A(3) − 7A′3
)

+ ...

]
∂

∂x

p(x, t)

A(x)

Instead of the function D(x), we get an operator containing ∂/∂x.
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Stationary flow: D(x) can be expressed using Ẑ.

Any form of the equation for ∂tp(x, t) represents 1D mass conservation law.

J(x, t) = −A(x)D(x)
∂

∂x

p(x, t)

A(x)
; J(x, t) = A(x)

(
1− εẐ(x, ∂x)

) ∂
∂x

p(x, t)

A(x)

In the stationary state: J(x,t)=J constant;

− any stationary solution p(x) has to keep
∂

∂x

p(x)

A(x)
=

−J
A(x)D(x)

.

Final relation:
1

D(x)
= A(x)

[
1− εẐ(x, ∂x)

]−1 1

A(x)

enables us to generate D(x) as an expansion in ε.
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D(x) = 1−ε
3
A′2+

ε2

45

(
9A′4+AA′2A′′−A2A′A(3)

)
− ε3

945

(
135A′6+45AA′4A′′

−58A2A′2A′′2−41A2A′3A(3)−12A3A′A′′A(3)+8A3A′2A(4)+2A4A′A(5)
)
...

”Linear” approximation:

D(x) ' 1− ε

3
A′2 +

ε2

5
A′4 − ...+ (−ε)j

2j + 1
A′2j + ... =

arctan(
√
εA′)√

εA′

3D symmetric channels : D(x) ' 1√
1 + εR′2(x)

; R(x) is the radius
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√
ε as a scaling parameter of the transverse lengths

If we rescale
√
εy → y,

√
εA(x) → A(x) and ρ → √ερ the diffusion

becomes isotropic:

∂

∂t

ρ(x, y, t)√
ε

=

(
∂2

∂x2
+

∂2

∂(
√
εy)2

)
ρ(x, y, t)√

ε
;

the upper boundary condition:

∂ρ(x, y, t)√
ε ∂(
√
εy)

=
√
εA′(x)

∂ρ(x, y, t)√
ε ∂x

∣∣∣√
εy=
√
εA(x)

.

⇒ a narrow channel with isotropic diffusion is equivalent to a wide domain
with Dy � Dx.
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Variational approach

x

y

AHxL
jHx,y,tL

ΡHzHx,yL,tL

Q: Can we express the 2D density ρ(x, y, t) as a function of only one spatial
(curvilinear) variable z = z(x, y)?
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Variational mapping: we start from the functional F [ρ, ρ̄]

F =

∫ t1

t0

dt

∫ xR

xL

dx

∫ A(x)

0

dy

(
1

2

(
ρ̇ρ̄− ˙̄ρρ

)
+ ∂xρ̄ ∂xρ+

1

ε
∂yρ̄ ∂yρ

)

Stationary condition δF = 0 gives the diffusion and ”anti diffusion”
equation for the density ρ = ρ(x, y, t) and its complementary ρ̄ = ρ̄(x, y, t):

ρ̇ = ∂2
xρ+

1

ε
∂2
yρ ; − ˙̄ρ = ∂2

xρ̄+
1

ε
∂2
yρ̄

Next step: switching from (x, y) to (z, y) in F

F =

∫ t1

t0

dt

∫ zR

zL

dz

∫ A(xz)

0

dy
∂x

∂z

[
1

2

(
ρ̇ρ̄− ˙̄ρρ

)
+

((∂z
∂x

)2

+
1

ε

(∂z
∂y

)2
)
∂zρ̄ ∂zρ

]

x = x(z, y) is inverse to z = z(x, y) and xz = x
(
z,A(xz)

)
.
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Integration over y − along constant z = z(x, y):

F1[ρ(z, t), ρ̄(z, t)] =

∫ t1

t0

dt

∫ zR

zL

dz

[
1

2
α(z)

(
ρ̇ρ̄− ˙̄ρρ

)
+ κ(z) ∂zρ̄ ∂zρ

]
;

α(z) =

∫ A(xz)

0

dy
∂x

∂z
and

κ(z) =

∫ A(xz)

0

dy
(∂x
∂z

)−1
(

1 +
1

ε

(∂x
∂y

)2
)
.

Stationary condition δF1[ρ, ρ̄] = 0 gives
the mapped equation:

x

y
AHxzL

z = zHx,yL = const.

AHxL

∂ρ

∂t
=

1

α(z)

∂

∂z
κ(z)

∂

∂z
ρ ; −∂ρ̄

∂t
=

1

α(z)

∂

∂z
κ(z)

∂

∂z
ρ̄
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A problem: there is no condition for the transformation z = z(x, y)

− at the stationary ρ, ρ̄, F [ρ, ρ̄] = 0 for any z = z(x, y).

Simple Ansatz:

z = z(x, y) =
∞∑

j=0

εjy2jzj(x)

− the boundary conditions for ρ
(
z(x, y), t

)
have to be satisfied

∂ρ

∂z

∂z

∂y
= 0

∣∣∣∣
y=0

;
1

ε

∂ρ

∂z

∂z

∂y
= A′(x)

∂ρ

∂z

∂z

∂x

∣∣∣∣
y=A(x)

;

hence

zj(x) =
1

2j

A′(x)

A(x)
z′j−1(x) ;

z0(x) can be chosen to make the Ansatz summable.
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Test example - hyperboloidal cone

Oblate spheroidal coordinates:

x = aξη, r2 = a2(1 + ξ2)(1− η2)

ξ − longitudinal coordinate; ξ > 0
η − curved transverse coordinate,
hard walls at η = η0; 0 < η0 < 1
the points η0 < η < 1 are inside the cone

Boundary conditions:

- ξ = 0 absorbing boundary; ρ(0, η) = 0
- in infinity, ρ(ξ →∞, η)→ ρ0 = const.

Q: What is the stationary flux J through the bottleneck (x = ξ = 0)?
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... several questions:

• how to find the optimal transformation z = z(x, y) ?

• how reliable is the ”linear” formula for D(x) ?

• can we sum more terms in the ε- expansion of D(x) ?

x

y
AHxL=a0+a1x

A. M. Berezhkovskij, M. A.
Pustovoit and S. M. Bezrukov:
J Chem. Phys. 126, 134706
(2007)
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Stationary curvilinear coordinates

The mapped equation :
∂p(x, t)

∂t
=

∂

∂x
A(x)D(x)

∂

∂x

p(x, t)

A(x)

Its stationary solution :
p(x)

A(x)
= ρ0 − J

∫
dx′

A(x′)D(x′)

D(x) is fixed by using Ẑ(x, ∂x) and ω̂(x, y, ∂x) is known, hence

ρ(x, y) = ω̂(x, y, ∂x)
p(x)

A(x)
= ρ0 + J

∞∑

j=0

j∑

k=0

εjy2kzj,k(x) = ρ0 + Jz(x, y) ;

z0,0(x) =

∫
dx

A(x)
, z1,0(x) =

1

3

∫
A′2

A
dx− A

′

6
, z1,1(x) =

A′

2A2
, ...
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Correspondence to electrostatics

Conversely, the stationary ρ solves ∆ρ(x, y) = 0 plus Neumann BC at
y = 0, A(x), so D(x) can be calculated directly from

−J = A(x)D(x)
∂

∂x

[
1

A(x)

∫ A(x)

0

ρ(x, y)dy

]

for exactly solvable geometries in electrostatics.

Q: Why do we need D(x) if we have already the 2D solution ρ(x, y)?

A: Originally, we intended to use the mapped equation for description of
non stationary processes.

• the simplified mapped equation (with D(x)) is capable to describe only
quasi-stationary processes.

– Typeset by FoilTEX – 24



Linear cone:

single charge at (0, 0)

ρ(x, y) = ρ0 + c ln r

where r =
√
x2 + y2.

x

y

AHxL=Γx

Fixing c : J = −
∫ A(x)

0

∂xρ(x, y)dy ⇒ ρ(x, y) = ρ0 −
J ln r

arctan γ

D(x) =− J

γx

(
∂

∂x

[
1

γx

∫ γx

0

ρ(x, y)dy

])−1

=
arctan γ

γ

r =
√
x2 + y2 − correct curvilinear coordinate for the variational mapping.
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AHxL
y

xa0

Linear
approximation:

A(x) is approximated
by its tangent at x;

a0 = x− A(x)

A′(x)

In the linear cone,

ρ(x, y) = ρ0 −
J

2 arctan γ
ln
[
(x− a0)2 + y2] ; γ = A′(x) is constant

D(x) =
−J

γ(x− a0)

(
∂

∂x

[
1

γ(x− a0)

∫ γ(x−a0)

0

ρ(x, y)dy

])−1

=
arctanA′(x)

A′(x)
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x

y

R0
w-w

AHxL

y0
x-

JJ

Circular
approximation:

A(x) is approximated
by a circle, given by 3
parameters: radius R0,
and the shifts x0, y0;

- the circle fits A(x),
A′(x) and A′′(x) at
x = x̄.

ρ(x, y) = ρ0 −
J

2 arctan[−w/y0]
ln

(w + x− x0)2 + y2

(w − x+ x0)2 + y2
,

where w =
√
R2

0 − y2
0 and arctan of real argument ∈ (0, π).
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D(x) =
AA′′

A′(1 +A′2 +AA′′) arctan(A′)/ arctan(γ) +AA′′ −A′2(1 +A′2)
,

where γ =

√
(1 +A′2)3 − (1 +A′2 +AA′′)2

1 +A′2 +AA′′

If A is rescaled by
√
ε, its Taylor expansion is

D(x) = 1−ε
3
A′2+

ε2

45
A′2(9A′2+AA′′)− ε3

945
A′2(135A′4+45AA′2A′′+5A2A′′2)+...
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Finite channels

• the mapping procedure supposes that the function A(x) is analytic

• the mapping generates a unique stationary curvilinear system

• if the function A(x) defined for x ∈ (xL, xR) is extended by its mirrors
A(xL,R + x) = A(xL,R − x) and it remains analytic, the mapping works

ΡHx,yLΡL
ΡR

xL xR

y

AHxL
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AHxL=x

x

y

xL xR

Finite linear cone

- calculated by using electrostatics
for xL = 0, xR = 1
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DHxL
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Hierarchy of approximations of the mapping

• Zwanzig-Mori: keeps all information; the transients are hidden in the
memory

• non stationary mapping: projects out the transients, the mapped
process is again Markovian, governed by the generalized FJ equation
modified by a correction operator 1− Ẑ(x, ∂x)

• stationary mapping: fixes a unique curvilinear coordinate system; the
operator 1− Ẑ(x, ∂x) becomes a function D(x).

• next approximations of D(x). The exact stationary function is replaced
by a function D(x) corresponding to some exactly solvable model,
which approximates the true boundary.
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Can be this mapping extended to other dynamics?

forced diffusion; diffusion in an external field . . . is OK

ballistic motion - ?

quantum mechanics - ?

One has to resolve ...

... what are the transients?

... what is the small parameter ε?

... what is an equivalent of the Fick-Jacobs equation?

... what plays the role of the equilibrium in non-dissipative processes?
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