Mapping of diffusion in quasi-1D systems onto the longitudinal coordinate

Pavol Kalinay 1 and Jerome K. Percus 2,3

 1 Institute of Physics, Slovak Academy of Sciences, Bratislava 2 Courant Institute of Math. Sciences, NY University, New York ³Department of Physics, NY University, New York

Praha, December 9, 2008

– Typeset by Foil $\mathrm{T_F}\!\mathrm{X}$ –

Brownian pumps

Diffusion in ^a 2D channel

as the current density $\mathbf{j}(x,y,t) = -D\nabla \rho(x,y,t)$ at the hard walls is parallel to them.

Is theree any corresponding equation for $p(x,t) = \int_0^{A(x)} \rho(x, y, t) dy$?

– Typeset by FoilT_EX – $\hskip10mm$ 3

Exact formulation: the 1D density $p(x,t)$ is determined by

the diffusion equation $+$ $\mathsf{BCs}\,+\,$ an initial condition $\rho(x,y,0)=\rho_0(x,y).$ We can:

- either to solve the 2D problem
- $\bullet \,$ and to map the solution $\rho(x,y,t)$

$$
p(x,t) = \int_0^{A(x)} \rho(x,y,t) dy
$$

Our goal:

to find the operator \hat{Q} (x,∂_x) to make both treatments equivalent.

- or to map the initial condition
- and to solve some equation

$$
\frac{\partial p(x,t)}{\partial t} = \hat{Q}(x,\partial_x)p(x,t)
$$

The simplest approximations:

Fick – Jacobs equation :
$$
\frac{\partial p(x,t)}{\partial t} = D \frac{\partial}{\partial x} A(x) \frac{\partial}{\partial x} \frac{p(x,t)}{A(x)},
$$

Zwanzig's correction (1992) :
$$
\frac{\partial p(x,t)}{\partial t} = D \frac{\partial}{\partial x} A(x) \left(1 - \frac{1}{3} A'^2(x) \right) \frac{\partial}{\partial x} \frac{p(x,t)}{A(x)}
$$

Reguera and Rubí (2001) concluded from the non-equilibrium TD

$$
\frac{\partial p(x,t)}{\partial t} = \frac{\partial}{\partial x}A(x)D(x)\frac{\partial}{\partial x}\frac{p(x,t)}{A(x)}
$$

with $D(x)$ estimated as $D(x) \simeq (1 + A'^2(x))^{-1/3}$.

– Typeset by FoilT $\rm _F\!X$ – 5

Trick $\#1$: suppose anisotropy of the diffusion constant D

$$
\frac{\partial \rho(x, y, t)}{\partial t} = \left(D_x \frac{\partial^2}{\partial x^2} + D_y \frac{\partial^2}{\partial y^2} \right) \rho(x, y, t) ; \qquad D_y \gg D_x
$$

Rescaling time $D_x t \to t \Rightarrow$ we introduce a small parameter $\epsilon = D_x/D_y$;

$$
\left. \left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} - \frac{1}{\epsilon} \frac{\partial^2}{\partial y^2} \right) \rho(x, y, t) = 0 \; ; \quad \left. \left(\frac{\partial}{\partial y} - \epsilon A'(x) \frac{\partial}{\partial x} \right) \rho(x, y, t) \right|_{y = A(x)} = 0 \; .
$$

After integration of the diffusion equation over y and using BC:

$$
\frac{\partial p(x,t)}{\partial t} = \frac{\partial^2 p(x,t)}{\partial x^2} - \frac{\partial}{\partial x} \Big(A'(x) \, \rho(x, A(x), t) \Big)
$$

Then

$$
\frac{\partial p(x,t)}{\partial t} = \frac{\partial^2 p(x,t)}{\partial x^2} - \frac{\partial}{\partial x} \Big(A'(x) \frac{p(x,t)}{A(x)} \Big) = \frac{\partial}{\partial x} A(x) \frac{\partial p(x,t)}{\partial x} \Big|_{A(x)} = \text{FJ eq}.
$$

– Typeset by FoilT $\rm _F\!X$ – 7

- this is substituted for $\rho(x,A(x),t)$ in the mapped equation:

$$
\frac{\partial p(x,t)}{\partial t} = \frac{\partial^2 p(x,t)}{\partial x^2} - \frac{\partial}{\partial x} \Big(A'(x) \ \hat{\omega}(x, A(x), \partial_x) \frac{p(x,t)}{A(x)} \Big)
$$

– Typeset by FoilT $\rm _FX$ – $\hphantom{\rm F}8$

Trick $\#2$: search for the operator of backward mapping $\hat{\omega}$

a) $\hat{\omega}$ does not depend on time, hence

$$
\frac{\partial}{\partial t} \hat{\omega}(x, y, \partial_x) = \hat{\omega}(x, y, \partial_x) \frac{\partial}{\partial t}
$$

b) $\hat{\omega}$ satisfies the inverse (unity) relation

$$
\frac{1}{A(x)} \int_0^{A(x)} dy \, \hat{\omega}(x, y, \partial_x) \frac{p(x, t)}{A(x)} = \frac{p(x, t)}{A(x)} \qquad \text{for any solution } p(x, t),
$$

c) $\hat{\omega}$ can be expanded in ϵ : ∞ $j=1$ $\epsilon^j \hat{\omega}_j(x,y,\partial_x)$

– Typeset by FoilT_EX – $\hskip 1.6cm 9$

d) the backward mapped $\rho(x,y,t) = \hat{\omega}(x,y,\partial_x) \big[p(x,t) / A(x) \big]$ solves the diffusion equation

$$
\sum_{j=0}^{\infty} \epsilon^{j+1} \Big(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} - \frac{1}{\epsilon} \frac{\partial^2}{\partial y^2} \Big) \hat{\omega}_j(x, y, \partial_x) \frac{p(x, t)}{A(x)} = 0
$$

with Neumann BC at $y=0$ and $A(x).$

$$
\frac{\partial p(x,t)}{\partial t} = \hat{Q}(x,\partial_x)p(x,t) = \frac{\partial}{\partial x} \Big[\frac{\partial}{\partial x}A(x) - A'(x)\hat{\omega}(x,A(x),\partial_x)\Big]\frac{p(x,t)}{A(x)}
$$

$$
= \frac{\partial}{\partial x}A(x)\Big(1 - \epsilon\hat{Z}(x,\partial_x)\Big)\frac{\partial}{\partial x}\frac{p(x,t)}{A(x)},
$$
where also \hat{Z} can be expanded in ϵ :
$$
\epsilon\hat{Z}(x,\partial_x) = \sum_{j=1}^{\infty} \epsilon^j \hat{Z}_j(x,\partial_x) .
$$

Recurrence relations:

$$
\frac{\partial^2}{\partial y^2} \hat{\omega}_{j+1}(x, y, \partial_x) = -\frac{\partial^2}{\partial x^2} \hat{\omega}_j(x, y, \partial_x)
$$

$$
-\sum_{k=0}^j \hat{\omega}_{j-k}(x, y, \partial_x) \frac{1}{A(x)} \frac{\partial}{\partial x} A(x) \hat{Z}_k(x, \partial_x) \frac{\partial}{\partial x}
$$

and
$$
\hat{Z}_j(x, \partial_x) \frac{\partial}{\partial x} = \frac{A'(x)}{A(x)} \hat{\omega}_j(x, A(x), \partial_x)
$$
 for $j > 0$.

- we start from $\hat{\omega}_0(x,y,\partial_x) = 1$ and \hat{Z} $\zeta_0(x,\partial_x)=-1 \ \ \text{(valid for FJ)}$

- use BC and the inverse relation for fixing the integration constants at double integration of $\ \partial_y^2\hat\omega_{j+1}(x,y,\partial_x)$

Resultant expansions of $\hat{\omega}(x,y,\partial_x)$ and \hat{Z} (x,∂_x) :

$$
\hat{\omega}(x, y, \partial_x) = 1 + \epsilon \left(3y^2 - A'^2(x)\right) \frac{A'(x)}{6A(x)} \frac{\partial}{\partial x} + \dots
$$

and

$$
\frac{\partial p(x,t)}{\partial t} = \frac{\partial}{\partial x} A \left[1 - \frac{\epsilon}{3} A'^2 - \frac{\epsilon^2}{45} A' \left(2A (AA')' \frac{\partial}{\partial x} + \frac{\epsilon^2}{4A' A''} + A^2 A^{(3)} - 7A'^3 \right) + \dots \right] \frac{\partial}{\partial x} \frac{p(x,t)}{A(x)}
$$

Instead of the ${\bf function} \,\, D(x)$, we get an ${\bf operator}$ containing $\partial/\partial x.$

Stationary flow: $\quad D(x)$ can be expressed using \hat{Z} .

Any form of the equation for $\partial_t p(x,t)$ represents 1D mass conservation law.

$$
J(x,t) = -A(x)D(x)\frac{\partial}{\partial x}\frac{p(x,t)}{A(x)}; \quad J(x,t) = A(x)\Big(1 - \epsilon \hat{Z}(x,\partial_x)\Big)\frac{\partial}{\partial x}\frac{p(x,t)}{A(x)}
$$

In the stationary state: $\mathsf{J}(\mathsf{x},\mathsf{t}){=}\mathsf{J}$ constant; - any stationary solution $p(x)$ has to keep $\frac{\partial}{\partial x}$

$$
\frac{\partial}{\partial x}\frac{p(x)}{A(x)} = \frac{-J}{A(x)D(x)}.
$$

Final relation:

$$
\frac{1}{D(x)} = A(x) \left[1 - \epsilon \hat{Z}(x, \partial_x) \right]^{-1} \frac{1}{A(x)}
$$

enables us to generate $D(x)$ as an expansion in $\epsilon.$

$$
D(x) = 1 - \frac{\epsilon}{3}A'^2 + \frac{\epsilon^2}{45} \Big(9A'^4 + AA'^2A'' - A^2A'A^{(3)} \Big) - \frac{\epsilon^3}{945} \Big(135A'^6 + 45AA'^4A''
$$

$$
-58A^2A'^2A''^2 - 41A^2A'^3A^{(3)} - 12A^3A'A''A^{(3)} + 8A^3A'^2A^{(4)} + 2A^4A'A^{(5)} \Big) \dots
$$

"Linear" approximation:

$$
D(x) \simeq 1 - \frac{\epsilon}{3}A'^2 + \frac{\epsilon^2}{5}A'^4 - \dots + \frac{(-\epsilon)^j}{2j+1}A'^{2j} + \dots = \frac{\arctan(\sqrt{\epsilon}A')}{\sqrt{\epsilon}A'}
$$

3DD symmetric channels : $D(x) \simeq \frac{1}{\sqrt{1 + \epsilon R'^2(x)}}$; $R(x)$ is the radius

$\sqrt{\epsilon}$ as a scaling parameter of the transverse lengths

If we rescale $\sqrt{\epsilon} y \, \to \, y, \,\, \sqrt{\epsilon} A(x) \, \to \, A(x)$ and $\rho \, \to \, \sqrt{\epsilon} \rho$ the diffusion becomes isotropic:

$$
\frac{\partial}{\partial t}\frac{\rho(x,y,t)}{\sqrt{\epsilon}} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial (\sqrt{\epsilon}y)^2}\right)\frac{\rho(x,y,t)}{\sqrt{\epsilon}}\ ;
$$

the upper boundary condition:

$$
\frac{\partial \rho(x, y, t)}{\sqrt{\epsilon} \; \partial(\sqrt{\epsilon}y)} = \sqrt{\epsilon}A'(x) \frac{\partial \rho(x, y, t)}{\sqrt{\epsilon} \; \partial x}\Big|_{\sqrt{\epsilon}y = \sqrt{\epsilon}A(x)}.
$$

 \Rightarrow a narrow channel with isotropic diffusion is equivalent to a wide domain with $D_y \gg D_x$.

Variational approach

Q: Can we express the 2D density $\rho(x, y, t)$ as a function of only one spatial (curvilinear) variable $z = z(x, y)$?

Variational mapping: we start from the functional $F[\rho , \bar{\rho}]$

$$
F = \int_{t_0}^{t_1} dt \int_{x_L}^{x_R} dx \int_0^{A(x)} dy \left(\frac{1}{2} \left(\dot{\rho}\bar{\rho} - \dot{\bar{\rho}}\rho\right) + \partial_x \bar{\rho} \partial_x \rho + \frac{1}{\epsilon} \partial_y \bar{\rho} \partial_y \rho\right)
$$

Stationary condition $\delta F = 0$ gives the diffusion and "anti diffusion" equation for the density $\rho = \rho(x, y, t)$ and its complementary $\bar{\rho} = \bar{\rho}(x, y, t)$:

$$
\dot{\rho} = \partial_x^2 \rho + \frac{1}{\epsilon} \partial_y^2 \rho \hspace{2mm}; \hspace{2mm} - \dot{\bar{\rho}} = \partial_x^2 \bar{\rho} + \frac{1}{\epsilon} \partial_y^2 \bar{\rho}
$$

 ${\sf Next\ step}\colon$ switching from (x,y) to (z,y) in F

$$
F = \int_{t_0}^{t_1} dt \int_{z_L}^{z_R} dz \int_0^{A(x_z)} dy \frac{\partial x}{\partial z} \left[\frac{1}{2} \left(\dot{\rho} \bar{\rho} - \dot{\bar{\rho}} \rho \right) + \left(\left(\frac{\partial z}{\partial x} \right)^2 + \frac{1}{\epsilon} \left(\frac{\partial z}{\partial y} \right)^2 \right) \partial_z \bar{\rho} \partial_z \rho \right]
$$

$$
x = x(z, y)
$$
 is inverse to $z = z(x, y)$ and $x_z = x(z, A(x_z))$.

Integration over $y -$ along constant $z = z(x, y)$:

$$
F_1[\rho(z,t), \bar{\rho}(z,t)] = \int_{t_0}^{t_1} dt \int_{z_L}^{z_R} dz \left[\frac{1}{2} \alpha(z) \left(\dot{\rho} \bar{\rho} - \dot{\bar{\rho}} \rho \right) + \kappa(z) \partial_z \bar{\rho} \partial_z \rho \right];
$$

$$
\frac{\partial \rho}{\partial t} = \frac{1}{\alpha(z)} \frac{\partial}{\partial z} \kappa(z) \frac{\partial}{\partial z} \rho \quad ; \qquad - \frac{\partial \bar{\rho}}{\partial t} = \frac{1}{\alpha(z)} \frac{\partial}{\partial z} \kappa(z) \frac{\partial}{\partial z} \bar{\rho}
$$

A problem: there is no condition for the transformation $z=z(x,y)$

 $-$ at the stationary $\rho, \bar{\rho}, ~~F[\rho, \bar{\rho}]=0~$ for any $z=z(x,y).$

Simple Ansatz:

$$
z = z(x, y) = \sum_{j=0}^{\infty} \epsilon^j y^{2j} z_j(x)
$$

 $-$ the boundary conditions for $\rho\bigl(z(x,y),t\bigr)$ have to be satisfied

$$
\frac{\partial \rho}{\partial z} \frac{\partial z}{\partial y} = 0 \Big|_{y=0} \; ; \quad \frac{1}{\epsilon} \frac{\partial \rho}{\partial z} \frac{\partial z}{\partial y} = A'(x) \frac{\partial \rho}{\partial z} \frac{\partial z}{\partial x} \Big|_{y=A(x)} \; ;
$$

hence

$$
z_j(x) = \frac{1}{2j} \frac{A'(x)}{A(x)} z'_{j-1}(x) ;
$$

 $z_0(x)$ can be chosen to make the Ansatz summable.

Test example - hyperboloidal cone

Oblate spheroidal coordinates:

$$
x = a\xi\eta
$$
, $r^2 = a^2(1 + \xi^2)(1 - \eta^2)$

 ξ – longitudinal coordinate; $\xi > 0$ η – curved transverse coordinate, hard walls at $\eta=\eta_0;~~0<\eta_0< 1$ the points $\eta_0<\eta< 1$ are inside the cone

Boundary conditions:

- $\xi=0$ absorbing boundary; $\rho(0,\eta)=0$
- in infinity, $\rho(\xi \rightarrow \infty, \eta) \rightarrow \rho_0 = const.$

Q: What is the stationary flux J through the bottleneck $(x = \xi = 0)$?

... several questions:

- $\bullet\,$ how to find the optimal transformation $z=z(x,y)$?
- $\bullet\,$ how reliable is the "linear" formula for $D(x)$?
- $\bullet\,$ can we sum more terms in the $\epsilon\text{-}$ expansion of $D(x)$?

A. M. Berezhkovskij, M. A. Pustovoit and S. M. Bezrukov: J Chem. Phys. 126, 134706 (2007)

– Typeset by FoilT_EX – 22

Stationary curvilinear coordinates

 $\rm The$

e mapped equation :
$$
\frac{\partial p(x,t)}{\partial t} = \frac{\partial}{\partial x} A(x) D(x) \frac{\partial p(x,t)}{\partial x} \frac{p(x,t)}{A(x)}
$$

 Its

s stationary solution :
$$
\frac{p(x)}{A(x)} = \rho_0 - J \int \frac{dx'}{A(x')D(x')}
$$

 $D(x)$ is fixed by using \hat{Z} (x, ∂_x) and $\hat{\omega}(x, y, \partial_x)$ is known, hence

$$
\rho(x,y) = \hat{\omega}(x,y,\partial_x) \frac{p(x)}{A(x)} = \rho_0 + J \sum_{j=0}^{\infty} \sum_{k=0}^{j} \epsilon^j y^{2k} z_{j,k}(x) = \rho_0 + J z(x,y) ;
$$

$$
z_{0,0}(x) = \int \frac{dx}{A(x)}, \quad z_{1,0}(x) = \frac{1}{3} \int \frac{A'^2}{A} dx - \frac{A'}{6}, \quad z_{1,1}(x) = \frac{A'}{2A^2}, \dots
$$

Correspondence to electrostatics

Conversely, the stationary ρ solves $\Delta \rho(x, y) = 0$ plus Neumann BC at $y = 0, A(x)$, so $D(x)$ can be calculated directly from

$$
-J = A(x)D(x)\frac{\partial}{\partial x}\left[\frac{1}{A(x)}\int_0^{A(x)}\rho(x,y)dy\right]
$$

for exactly solvable geometries in electrostatics.

Q: Why do we need $D(x)$ if we have already the 2D solution $\rho(x, y)$?

- A: Originally, we intended to use the mapped equation for description of non stationary processes.
- $\bullet\,$ the simplified mapped equation (with $D(x))$ is capable to describe only quasi-stationary processes.

Linear cone:

Fixing c:
$$
J = -\int_0^{A(x)} \partial_x \rho(x, y) dy \Rightarrow \rho(x, y) = \rho_0 - \frac{J \ln r}{\arctan \gamma}
$$

$$
D(x) = -\frac{J}{\gamma x} \left(\frac{\partial}{\partial x} \left[\frac{1}{\gamma x} \int_0^{\gamma x} \rho(x, y) dy \right] \right)^{-1} = \frac{\arctan \gamma}{\gamma}
$$

 $r = \sqrt{x^2 + y^2}\,$ $-$ correct curvilinear coordinate for the variational mapping.

$$
\rho(x,y) = \rho_0 - \frac{J}{2\arctan\gamma} \ln\left[(x - a_0)^2 + y^2 \right]; \qquad \gamma = A'(x) \text{ is constant}
$$

$$
D(x) = \frac{-J}{\gamma(x - a_0)} \left(\frac{\partial}{\partial x} \left[\frac{1}{\gamma(x - a_0)} \int_0^{\gamma(x - a_0)} \rho(x, y) dy \right] \right)^{-1} = \frac{\arctan A'(x)}{A'(x)}
$$

Circular approximation:

 $A(x)$ is approximated by ^a circle, given by 3 parameters: radius R_0 , and the shifts $x_0,\,y_0,$ - the circle fits $A(x),$

 $A'(x)$ and $A''(x)$ at $x=\bar{x}$.

$$
\rho(x,y) = \rho_0 - \frac{J}{2 \arctan[-w/y_0]} \ln \frac{(w+x-x_0)^2 + y^2}{(w-x+x_0)^2 + y^2},
$$

where $w = \sqrt{R_0^2 - y_0^2} \;\;$ and arctan of real argument $\in (0,\pi).$

$$
D(x) = \frac{AA''}{A'(1 + A'^2 + AA'') \arctan(A')/\arctan(\gamma) + AA'' - A'^2(1 + A'^2)},
$$

where
$$
\gamma = \frac{\sqrt{(1 + A'^2)^3 - (1 + A'^2 + AA'')^2}}{1 + A'^2 + AA''}
$$

If A is rescaled by $\sqrt{\epsilon}$, its Taylor expansion is

$$
D(x) = 1 - \frac{\epsilon}{3}A'^2 + \frac{\epsilon^2}{45}A'^2(9A'^2 + AA'') - \frac{\epsilon^3}{945}A'^2(135A'^4 + 45AA'^2A'' + 5A^2A''^2) + \dots
$$

Finite channels

- \bullet the mapping procedure supposes that $\bm{\mathrm{the}}$ function $A(x)$ is analytic
- the mapping generates ^a unique stationary curvilinear system
- \bullet if the function $A(x)$ defined for $x \in (x_L,x_R)$ is extended by its mirrors $A(x_{L,R} + x) = A(x_{L,R} - x)$ and it remains analytic, the mapping works

– Typeset by FoilT_EX – $\hphantom{1}30$

Hierarchy of approximations of the mapping

- Zwanzig-Mori: keeps all information; the transients are hidden in the memory
- **non stationary mapping:** projects out the transients, the mapped process is again Markovian, governed by the generalized FJ equation modified by a **correction operator** $1-\hat{Z}$ (x,∂_x)
- **stationary mapping:** fixes a unique curvilinear coordinate system; the operator $1-\hat{Z}$ (x,∂_x) becomes **a function** $D(x).$
- $\bullet\,$ next approximations of $D(x).$ The exact stationary function is replaced by a function $D(x)$ corresponding to some exactly solvable model, which approximates the true boundary.

Can be this mapping extended to other dynamics?

forced diffusion; diffusion in an external field . . . is OK ballistic motion - ? quantum mechanics - ?

One has to resolve ...

- ... what are the transients?
- \dots what is the small parameter $\epsilon?$
- ... what is an equivalent of the Fick-Jacobs equation?
- ... what plays the role of the equilibrium in non-dissipative processes?

References

P. Kalinay and J. K. Percus: Projection of 2D diffusion in ^a narrow channel ..., J. Chem. Phys. **122**, 204701 (2005)

P. Kalinay and J. K. Percus: Extended Fick-Jacobs equation: Variational approach, Phys. Rev. ^E 72, ⁰⁶¹²⁰³ (2005)

P. Kalinay and J. K. Percus: Exact dimensional reduction of linear dynamics, J. Stat. Phys. 123, ¹⁰⁵⁹ (2006)

P. Kalinay and J. K. Percus: Corrections to the Fick-Jacobs equation, Phys. Rev. ^E 74, ⁰⁴¹²⁰³ (2006)

P. Kalinay: Calculation of the mean first passage time ..., J. Chem. Phys. 126, ¹⁹⁴⁷⁰⁸ (2007)

P. Kalinay and J. K. Percus: Approximations of the generalized Fick-Jacobs equation, Phys. Rev. ^E 78, ⁰²¹¹⁰³ (2008)

– Typeset by FoilT_EX – $\hphantom{1}$ 33