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Outline Intro Intermediate & strong coupling Conclusions What is "strong" correlation? Research objectives Models & Method Fundamental quantities and basic equations Renormalizations in perturbation theory

Outline

1 Introduction
What is "strong" correlation?
Research objectives
Models & Method
Fundamental quantities and basic equations
Renormalizations in perturbation theory

2 Intermediate & strong coupling
One-particle renormalizations – FLEX
Two-particle renormalization – Parquet approach

3 Conclusions
Two-particle vs. one-particle self-consistency
Summary
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Three regimes of correlated electrons in metals

Low-energy & low temperature physics (T = 0)
Conduction electrons – kinetic energy (band structure, hopping t)
Screening – short-range interaction (Coulomb interaction U )

Interplay between extended kinetic energy t and local interaction U

Naive (static) classification

U � t – weak coupling
U ≈ t – intermediate coupling
U � t – strong coupling

Interaction acts dynamically due to quantum fluctuations
– static classification affected by spatial diemensionality

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Fermi liquid

Adiabatic (continuous) transition from Fermi gas

Dominance of Fermi energy – the only relevant energy scale
Elementary excitations – quasiparticles near the Fermi surface
Particle interaction – weak scattering of quasiparticles
Renormalization of Fermi-gas parameters (densities), inherent mass
renormalization, no space for charge renormalization

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Intermediate coupling

Presence of strong dynamical fluctuations

Emergence of new energy (length) scales – long-range correlations
Quantum critical behavior – with or without (classical) long-range order
Cooperative phenomena – avalanche-type changes in equilibrium state
Actual interaction – dynamical and strongly renormalized
Vertex function – critical, vertex corrections & charge renormalization
indispensable

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Strong coupling

Long-range scales

Heavy-fermion liquid – no critical point from weak coupling
– Kondo strong-coupling asymptotics
(impurity models, SIAM)

Electron-hole liquid – critical transition from weak copupling
(MIT or magnetic LRO)

– insulator with satellite bands
(lattice models, 1d Hubbard)

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Ultimate objective of theoretical research

Theoretical challenge

Construct an approximation that qualitatively
reproduces Fermi-liquid properties in weak coupling,
captures dominant dynamical fluctuations due to electron
correlations,
controls analytically emerging singularities,
reproduces the Kondo asymptotics in SIAM.

The resulting theory must be
thermodynamically consistent and controllable,
viable with available analytic-numerical methods,
universal – applicable to various models and dimensions.

Most suitable framework: Renormalized diagrammatic perturbation theory

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Hubbard & Single Impurity Anderson Models

One-band model Hamiltonian
̂HH =

∑

kσ

(ε(k) − µ + σB ) c†kσckσ + U
∑

i

n̂i↑n̂i↓

Single-impurity Anderson Model

̂HSIAM =
∑

kσ

(ε(k) − µ) c†kσckσ + Ed

∑

σ

d †σ dσ

+
∑

kσ

(

Vk d
†
σ ckσ + V ∗k c

†
kσdσ

)

+ Un̂d↑ n̂
d
↓

Calculational simplifications: µ = Ed = −U/2, nd = 1,

∆(ε) = π
∑

k

|Vk|2δ(ε − ε(k)) = ∆

Conduction electrons can be integrated out
– single-site theory with dynamical fluctuations
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Many-body perturbation theory

Grand partition sum

Z =
∫

DψDψ∗ exp

{

∑

n

ψ∗n(iωn + isign(ωn)∆)ψn − U

∫β

0

d τ n̂d↑ (τ)n̂
d
↓ (τ)

}

Perturbation expansion in the interaction strength U

Bare propagator

G0(x + iy) =
1

x + isign(y)(∆ + |y |)

Grand potential – (huge) sum of connected diagrams

Ω = −kBT lnZ = Ω[G0,U ]

Renormalization of perturbation expansion –
reorganization of the sum of elementary diagrams

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Equations of motion

Dyson equation – full one-particle propagator via the self-energy
(one-particle vertex)

G (k) = G0(k) [1 + Σ(k)G (k)]

four-vector notation: k = (k, iωn)
Bethe-Salpeter equations – full two-particle vertex via irreducible
vertices (channel dependent), generically

Γ(k ; q , q ′) = Λ(k ; q , q ′) − [ΛGG � Γ] (k ; q , q ′)

Schwinger-Dyson equation – Schrödinger equation for Green functions
– connects 1P & 2P vertices

Σσ(k) =
U

βN

∑

k ′

G−σ(k ′)

−
U

β2N 2

∑

k ′q

Gσ(k + q)G−σ(k ′ + q)Γσ−σ(k + q ; q , k ′ − k)G−σ(k ′)

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Mass renormalization – Baym-Kadanoff approach I

Perturbation expansion in renormalized quantities only (one-particle level)

Free energy

Ω
{

G (0)−1,U
}

= −β−1 ln
[

Z
{

J ;G (0)−1,U
}]

= −β−1 ln
∫

DϕDϕ∗ exp
{

ϕ∗
[

G (0)−1 − J
]

ϕ + U
[

ϕ,ϕ∗
]}

Replacement in PT: G (0)−1 → G−1 + Σ, (Dyson equation) in Ω

Variational approach: new functional Ψ[G , Σ] defined from

δβΨ
δΣ

=
δβΩ

δG (0)−1 +
[

G (0)−1 − Σ
]−1

δβΨ
δG

=
1

G 2

δβΩ
δG (0)−1 − G−1

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Mass renormalization – Baym-Kadanoff approach II

Explicit functional

Ψ [G , Σ,U ] = Ω
{

G−1 + Σ,U
}

− β−1tr lnG − β−1tr ln
[

G (0)−1 − Σ − J
]

Variational conditions:

δΨ [G , Σ]
δG

= 0
δΨ [G , Σ]

δΣ
= 0

Approximations expressed entirely in terms of
renormalized quantities G , Σ

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Dynamical Mean-Field Theory (one particle)

Separation of site diagonal and off-diagonal parts

G = G diag
[

d 0
]

+ G off
[

d−1/2
]

, Σ = Σdiag
[

d 0
]

+ Σoff
[

d−3/2
]

Mean-field functional

Ψ [G , Σ] = Ω
{

G diag −1 + Σdiag
}

− β−1tr lnG diag

−β−1tr ln
[

G (0)−1 − Σdiag − J
]

where G (k, iωn)→ G diag (iωn), Σ(k, iωn)→ Σdiag (iωn)

Only local correlations matter in the generating functional
– all irreducible vertices local in DMFT

Problems with two-particle functions – ambiguous way to define
nonlocal correlation functions

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Three types of two-particle irreducibility

Ambiguity in the choice of the relevant Bethe-Salpeter equation
with the local mean-field irreducible vertex

2P irreducibility – three (independent) two-particle scattering channels
– beyond static local theory (atomic limit)

eh ladders � �� + � � �

ee ladders � �� + � � �

eh bubbles � +� + � � �

1

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Three elementary Bethe-Salpeter equations

Ring diagrams (GWA) (ΛU
↑↓ = U )

ΓGWA
↑↓ (k , k ′, q) =

U

1 − U 2X↑↑(q)X↓↓(q)

Xσσ′(q) =
1

βN
∑

k ′′

Gσ(k ′′)Gσ′(k ′′ + q)

Ladder diagrams (RPA, TMA) Λeh
↑↓ = U ∨ Λee

↑↓ = U

ΓRPA↑↓ (k , k ′; q) =
U

1 + UX↑↓(k − k ′′)

ΓTMA
↑↓ (k ; q ; q) =

U

1 + UY↑↓(k + k ′ + q ′)

Yσσ′(q) =
1

βN
∑

k ′′

Gσ(k ′′)Gσ′(q − k")

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Full Bethe-Salpeter equations I

Vertical electron-hole scattering channel (GWA)

����0

�0k0

�k

�0k0 + q

�k + q

= ��U��0 + (1 + ���0)�k00 k00 + q

�U
��00

��00�0

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Full Bethe-Salpeter equations II

Horizontal electron-hole scattering channel (RPA)

����0

�0k0

�k

�0k0 + q

�k + q

=��eh

��0 � (1 + ���0)�
k + q00

k0 + q00

�eh

��0 ���0

Horizontal electron-electron scattering channel (TMA)

�
���

0

�0k0

�k

�0k0 + q

�k + q

=�
�ee

��
0

� (1 + ���0)�
k + q � q00

k0 + q00

�ee

��
0 ���

0

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Beyond FLEX – two-particle selfconsistency

Completely 2P irreducible function I : irreducible in all 2P channels
(disconnected by cutting at least three fermion lines)
Parquet approach: I determined diagrammatically, Λα from defining
equations
Topological nonequivalence of different 2P channels (beyond local
static theory, atomic limit)

:

Γ = Λα + Kα, Λα = I +
∑

α′ 6=α
Kα′

Parquet equations – Reducible functions Kα replaced by the solutions of
the respective Bethe-Salpeter equations
Genuine charge renormalization U �� Λ in perturbation theory:

Λα = Lα [I [U ;G ,Λ];Λ,G ]

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Outline Intro Intermediate & strong coupling Conclusions What is "strong" correlation? Research objectives Models & Method Fundamental quantities and basic equations Renormalizations in perturbation theory

Beyond FLEX – two-particle selfconsistency

Completely 2P irreducible function I : irreducible in all 2P channels
(disconnected by cutting at least three fermion lines)
Parquet approach: I determined diagrammatically, Λα from defining
equations
Topological nonequivalence of different 2P channels (beyond local
static theory, atomic limit)

:

Γ = Λα + Kα, Λα = I +
∑

α′ 6=α
Kα′

Parquet equations – Reducible functions Kα replaced by the solutions of
the respective Bethe-Salpeter equations
Genuine charge renormalization U �� Λ in perturbation theory:

Λα = Lα [I [U ;G ,Λ];Λ,G ]
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Hatree & GWA

Static mean-field spin-polarized solution : Σσ = σUm/2

〈nσ〉 =
1

π

∫0

−∞
dω

∆
(ω + σ U

2 m)2 + ∆2

m =
2

π
arctan

(

Um

2∆

)

Critical interaction strength Uc = π∆ – unphysical in SIAM
Satellite split bands: ±Um/2 – no Fermi liquid in weak coupling,
insulator in strong coupling

GWA vertex function ΛU = U (Hartree 1P propagators)

Γ↑↓(z) =
U

1 − U 2χ↑↑(z)χ↓↓(z)

χσσ′(z) =
∫0

−∞

dω

π
[Gσ′(ω + z)=Gσ(ω+) + Gσ(ω − z)=Gσ′(ω+)]

diverges at the critical point Uc = π∆
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FLEX-type approximations (1P self-consistency)

Intermediate coupling – dynamical fluctuations shift the spurious MIT
to Uc = ∞
DOS at the Fermi energy (half filling) does not depend on interaction
(Fermi liquid)
Electron-electron channel (TMA) – noncritical, bounded 2P vertex
Electron-hole channels (RPA, GWA) – critical, diverging 2P vertex

FLEX-type self-energy C (z) := χ↑↓(z)Γ↑↓(z)

<Σ(ω+) = −
U 2

2

0
∫

−∞

dx {ρ(x)< [C (x − ω+) − C (x + ω+)]

+
1

π
=C (x+)< [G (x − ω+) − G (x + ω+)]

}

,

=Σ(ω+) = U 2

|ω|
∫

0

dxρ(x − |ω|)=C (x+)
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Strong-coupling asymptotics in FLEX I

Low-frequency behavior of 2P vertex Γ decisive (electron-hole part dominant)

Γ(ω+) =
U

1 + Uχ(0) − iπUρ20ω

Self-energy for a = 1 + Uχ(0)→ 0

<Σ(ω+) =
sign(ω)=G (ω+)

π2ρ20
arctan

(

πUρ20D

a

)

+
<G (ω+)
2π2ρ20

ln

[

1 +
(

πUρ20ω

a

)2
]

=Σ(ω+) =
=G (ω+)
2π2ρ20

ln

[

1 +
(

πUρ20ω

a

)2
]

G (ω+) =
1

ω − <Σ(ω) + i (∆ − =Σ(ω))
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Strong-coupling asymptotics in FLEX II

Solution: for ω/∆� a, π2ρ20w
2 = ln

πUρ20D
a

G (ω+) =
1

w

[

ω

w
− i

√

1 −
ω2

w2

]

Electron-hole bubble χ(0) = 1
π

∫0
−w dω=G (ω+)<G (ω)→ − 2

3πw

Critical interaction strength

:

1 =
2U

3πw
=

2

3

Uρ0
√

ln
[

πUρ20D
a

]

, a = πUρ20D exp

{

−
(

2

3
Uρ0

)2
}

:
Neither Kondo asymptotics nor satellite peaks

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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What is wrong with FLEX?

Positive features

Dynamical fluctuations & mass renormalization included
Fermi liquid & quasiparticles in weak coupling
No spurious MIT in SIAM

Drawbacks

No Kondo asymptotics
Quasiparticle peak either too narrow (RPA, GWA) or too broad (TMA))
MIT removed only due to mass renormalization
No charge renormalization & screening of electron-hole scatterings
(bare 2P irreducible vertex U )

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Need for a charge renormalization

What is needed in strong coupling

Electron-hole scatterings to drive the system toward MIT
Electron-hole scatterings must be screened by electron-electron
sctatterings
Two-particle self-consistency – eh and ee scatterings self-consistently
mixed up

What is sufficient in strong coupling

Two-channel parquet approximation – RPA (GWA) & TMA channels
Irreducible vertices Λeh and Λee determined self-consistently from
nonlinear equations
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Two-channel parquet approximation

Electron-hole Bethe-Salpeter equation

Γ↑↓(n, n′;m) = Λeh
↑↓ (n, n

′;m)

−
1

β

∑

n′′
Λeh
↑↓ (n, n

′′;m)G↑(n′′)G↓(n′′ +m)Γ↑↓(n′′, n′;m)

Electron-electron Bethe-Salpeter equation

Γ↑↓(n, n′;m) = Λee
↑↓(n, n

′;m)

−
1

β

∑

n′′
Λee
↑↓(n, n

′′; n′+n′′+m)G↑(n′′)G↓(n+n′+m−n′′)Γ↑↓(n′′, n′;m+n−n′′)

Parquet equation to exclude vertex Γ↑↓:

Γ↑↓ = Λeh
↑↓ + Λee

↑↓ − U

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Simplified parquet equations

Singulariry in the two-particle vertex only in Bethe-Salpeter equations
Only electron-hole scatterings contribute to the singularity
(due to the combination of the summed frequency)
Λee
↑↓ → Λ(ω) diverges at ω = 0 – remains dynamic,

frequency-dependent
Λeh
↑↓ → U finite – replaced by a static effective interaction

Simplified parquet equations (zero temperature & half filling)

U =
U

1 + 〈ΛG↑G↓〉
, 〈ΛG↑G↓〉 =

1

π

∫0

−∞
dω =

[

Λ(ω+)G (ω+)2
]

Λ(ω+) =
U

1 + Uχ↑↓(ω+)
, χ↑↓(ω+) =

1

π

∫0

−∞
dxρ(x) [G (x + ω+) + G (x − ω+)]

One-particle propagators may be bare or renormalized
( for simplicity we restrict only to the bare ones)
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Strong-coupling asymptotics I

Low-frequency singularity in the vertex Λ(ω)

Λ(ω) .=
U

a − iπUρ20ω

with a = 1 + Uχ(0) = 1 − U/π∆→ 0, ρ0 = 1/π∆ independent of U

Solution

〈ΛG↑G↓〉 = ln

[

U

π∆a

]

<χ(ω) = −
4∆2

πω(4∆2 + ω2)
arctan

ω

∆
+

∆
π(4∆2 + ω2)

ln

(

1 +
ω2

∆2

)

=χ(ω) = −
2∆2

πω(4∆2 + ω2)
ln

(

1 +
ω2

∆2

)

−
2∆

π(4∆2 + ω2)
arctan

ω

∆
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Strong-coupling asymptotics II

Kondo asymptotics

a =
U

π∆
exp

{

−
U

U

}

.= exp

{

−
U

π∆

}

Compare with the exact (Bethe-ansatz) solution

a = exp

{

−
π2

8

U

π∆

}

Full vertex function

Γ(ω+) = U + Λ(ω+) − U = U +
U

1 + Uχ(ω+)
− U

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Self-energy and 1P propagator in the parquet approach I

Self-energy from 2P vertex – non-self-consistent Schwinger-Dyson equation
with bare 1P propagators

<Σ(ω+) =
U

π

∫0

−∞
dx {= [(G (x+ + ω) − G (x+ − ω))Λ(x+)χ(x+)]

−= [Λ(x+)χ(x+)]< [G (x+ − ω) − G (x+ + ω)]}

=Σ(ω+) = −
U

π

∫|ω|

0

dx=G (x+ − |ω|)= [Λ(x+)χ(x+)]

Analytic approximation with an interpolated bubble

χ(ω + iσ0) ≈ −
1

π∆
1

1 − iσω/∆

G (x + iσ0) =
1

∆
1

ω/∆ + iσ

V. Janiš Institute of Physics AS CR, Prague FZÚ, 21/03/2006
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Self-energy and 1P propagator in the parquet approach II

Explicit solution for the self-energy

=Σ(ω+) = −
U (1 − a)

2π

(

∆2

∆2(1 − a)2 + ω2
+

∆2

∆2(1 + a)2 + ω2

)

×
[

1

2
ln

((

1 +
ω2

a2∆2

)(

1 +
ω2

∆2

))

+
ω

∆
arctan

ω

∆

]

<Σ(ω+) = −
U (1 − a)

2π

∑

σ=±1

∆2

∆2(1 − σa)2 + ω2

×
[

ω

2∆

(

ln
a2∆2

ω2 + ∆2
+ σ ln

(

ω2

∆2
+ a2

))

+(1 − σa)
(

arctan
ω

a∆
− arctan

ω

∆

)]

Kondo asymptotics (not in FLEX!) : a = exp
{

− U
π∆

}

Full 1P propagator G (ω+) = [ω − <Σ(ω+) + i (∆ − =Σ(ω+))]−1
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Self-energy and 1P propagator in the parquet approach III
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Self-energy and 1P propagator in the parquet approach IV
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Self-energy and 1P propagator in the parquet approach V
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Self-energy and 1P propagator in the parquet approach VI
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Numerical solution – non-self-consistent

Numerical solution with the full form of the two-particle bubble
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Numerical solution – 1P self-consistency I

Bare 1P propagator in the parquet equations is replaced by the
renormalized one G (z)→ G (z − Σ(z))
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Numerical solution – 1P self-consistency II

1P self-consistency smears out the satellite peaks
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Numerical solution – 1P self-consistency III

Quasiparticle peak magnified
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Numerical solution – 1P self-consistency IV

The weight of the low-frequency states is suppressed – electrons expelled
from the Fermi surface
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Two-particle scatterings in strong coupling

What is relevant for the Kondo asymptotics?

Electron-hole scatterings
Irreducible vertex Λeh regular – effective interaction U
Only low-energy behavior of the electron-hole bubble matters

χ(ω+) ∼ χ(0) + iπρ20ω

One-particle density ρ0 does not depend on interaction (Fermi liquid)

Electron-electron scatterings
Irreducible vertex singular due to eh scatterings

Λee (ω+) =
U

1 + Uχ(ω+)

Effective interaction from electron-electron scatterings

U =
U

1 + 〈ΛeeG↑G↓〉
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Self-energy & one-particle self-consistency

Self-energy & one-particle self-consistency

Self-energy from the Schwinger-Dyson equation with bare or full 1P
propagators
Asymptotic algebraic fit of the self-energy for low & high frequencies
(ω� a∆ – Kondo peak irrelevant)

Σ(ω+)
.=

U∆
ω + i∆

[

| ln a| −
iπ

2
sign

ω

∆

]

where a = 1 + Uχ(0)→ 0

One-particle and two-particle critical behavior interconnected
General trend of 1P self-consistency:

Slows down the drift to the two-partical criticality
Smears out the satellite peaks
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What is missing yet?

What yet influences the critical Kondo behavior?

Inclusion of the vertical electron-hole channel (GWA) – triplet
scatterings of virtual electron-hole pairs drive the system toward MIT
One-particle self-consistency – changes the low-frequency behavior of
1P propagator – slows down the drift toward MIT
Electron-hole asymmetric case – ρ0 depends on interaction
Lattice models ( DMFT) – 1P propagator must be renormalized
Beyond the (simplified) parquet approximation – electron-hole &
electron-electron scatterings in a balanced manner
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Conclusions

Correct extrapolation to the strong-coupling limit

Singularity in the electron-hole Bethe-Salpeter equations
Two-particle vertex – only low frequency behavior relevant
Mass renormalization only (FLEX) – insufficient
Charge renormalization needed – self-consistent binding of
electron-hole amd electron-electron scatterings
Three relevant static parameters – ρ0, χ(0), 〈ΛGG〉
Simplified parquet equations – capture the proper strong-coupling
Kondo asymptotics within the complexity comparable with FLEX

Simplified parquet approximation – a manageable impurity solver
interpolating qualitatively correctly between the Fermi-liquid and the

strong-coupling regimes
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Outlook

What do we plan to do next

Add the vertical (GWA) channel
Clear (analytically) the role of 1P self-consistency onto the Kondo
behavior
Hubbrad model in d = ∞ – existence of the Mott-Hubbard MIT
Electron-hole asymmetric situation & general band structure
Multi-band Hubbard & other models of strongly correlated electrons
Parquet approximation in low spatial dimensions – beyond mean field
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