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De�nition of graph oloring

� State: eah node has a olor� Rule (energy ost): neighbors have dif-ferent olors



Less trivial example



How diÆult is to olor a graph?Planar graphs:� 10 minutes by hand for the CZ regions map ...� Proof of 4-olorability: Appel-Haken (1976) ... probably never entirelyheked.� New proof: Robertson, Sanders, Seymour, Thomas (1994), N2 algo-rithm follows.� Cheking 3-olorability for planar graphs is NP-omplete, Dailey (1980)General graphs: given a graph G(V;E), jV j = N , and number of olors q� Is it possible to olor the graph? NP-omplete



What does it mean NP-omplete?� NP problem: If you give me a solution, I an hek it in polynomialtime (polynomial in size of the graph)� P problem: I an �nd solution in polynomial time for every instane ofthe problem (for every possible graph)� NP-omplete problem (Cook 1971): If this problem would have a poly-nomial time solution, all the NP problems do!The \million" problem: P=NP?Is there a polynomial algorithm for any of the NP-omplete problems?TOP 3: K-satis�ability, oloring, traveling salesman



Worst versus averageErd�os-R�enyi random graphs G(N; p): p probability that two vertexes are on-neted. Average degree � = p(N � 1).What is the relevant (nontrivial) value of �?First moment argument: hNi � Prob(N > 0).

hNi = qN �1� 1q�pN(N�1)=2 = exp �N �log q + p(N � 1)2 log q � 1q ��

The limit of large graphs N !1; interesting region1 < � < 2 log qlog q � log (q � 1) =q=3 5:42:



The COL/UNCOL transition

In N !1 the transition is sharp. Disontinuous even in entropy.Idea of phase transitions in purely mathematial problems - bak to 1961,Erd�os-R�enyi { giant omponent (perolation) in random graphs.



Where the Really Hard Problems are?Cheeseman, Kanefsky, Taylor (1991); Computational ost of the Davis-Putnambranh and bound algorithmWe want to understand independently of any algorithm!To know where the hard problems areis useful� to �nd them (to test algo-rithms)� to avoid them in the real worldappliations� to design new algorithms (sur-vey propagation)



Properties of random graphs� Erd�os-R�enyi random graph ensemble: eah edge present with probabil-ity p = �=N . For N !1, � �xed, the degree distribution is Poissonianpk = e�� �kk!� Regular random graphs: �xed degree r. Speial simpli�ation of theavity equations.� Both: loops length is or order logN - loally tree-like struture!



Statistial physis formulationHamiltonian (energy funtion) of antiferromagneti Potts modelH = X(i;j)2E Æ(si; sj)Graph: quenhed disorder.Average free energy hlogZi = ��F (�) = ��E + S(E)

We want to ompute average (over graphs) ground state energyEgs = lim�!1 �(�F )��If Egs also average ground state entropySgs = � lim�!1(�F )



Bethe approximation� Approximation for lattie models, equivalent to mean �eld theory.� Exat for models on random graphs, at least in presene of one or onlyfew phases (e.g. ferromagnet)
Cavity methodFormulation of the Bethe approximation, whih is generalizable to glassy sys-tems (many phases, pure states).Developed by M�ezard, Parisi (1999).



Cavity method on trees
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jDe�ne  i!jsi as a probability that node i takes olor si when edge (onstraint)(ij) is erased from the graph. Write reursive equations for these probabilities

 i!jsi = 1Zi!j YkinV (i)�jXsk e��Æsisj k!isk= 1Zi!j YkinV (i)�j[1� (1� e��) k!isi ℄



Cavity free energy on treesAfter addition of spin i and all the edges (ik) the free energy is hanged by�F i!j , whih is given by the normalizationZi!j = e���F i!j

In analogy the total free energy isF (�) =Xi �F i �X(ij) �F ij ;

where �F i is a free energy shift after addition of node i and all the edgesaround, �F ij is shift after addition of edge (ij).



From trees to sparse random graphsThe above equations are also orret on graphs with loops if the loops are longenough so that the lustering property holds (spins k are independent) k1;k2!isk1 ;sk2 �  k1!isk1  k2!isk2 ! 0

Does it hold?� Math: proof for mathing, oloring for � < q, SAT for small � et.� Physis: loal self-onsisteny (stability) hek, omputation of the spinglass suseptibility



Average over graphsFinal order parameter is distribution P( i!jsi ) of  i!jsi over the graph, thatis self-averaging (i.e. large graph is like average over graphs).The self-onsistent equation for P( i!jsi ) have to be solved numerially ingeneral (population dynamis).Simpli�ations for oloring:� Color symmetry not broken: P( i!jsi ) symmetri under olor permuta-tion.� Fatorization for regular graphs:  i!jsi the same for every edge, loallyevery edge have the same neighborhood.



1RSB: General ideaWhat if the lustering property does not hold?� Simple ase (ferromagnet): the pure phase deompose into few of them(magnetization positive, negative), within those the lustering propertyholds again!� Less simple ase (1RSB glass): the pure phase deompose into (expo-nentially) many, within those the lustering property holds again!Is that orret?� Math: No proof yet, the standard tehniques for thermodynamial limitdiÆult, sine with addition of one spin the system hanges a lot. Lessstandard tehniques are not far from suess (Montanari, Semerjian,reonstrution on trees).� Physis: loal self-onsisteny (stability) hek, omputation of the spinglass suseptibility within states and in between states.



1RSB: What do we omputeComplexity funtion �(F ) is entropy of states of internal free energy F .For omputational reasons de�ne \repliated" free energy as Legendre trans-form of the omplexity��m�(m;�) = ��mF (�) + �(F )

What is m?� Legendre parameter, the same as temperature or hemial potential� The Parisi replia symmetry breaking parameter� Number of real repliasWhat is the value of m?� To minimize the total free energy of the system F +�(F ) and keep theomplexity �(F ) positive ) m = 1 or maximize the \repliated" freeenergy �.



1RSB: Cavity equationsOrder parameter on a single graph is survey (distribution) P ( i!jsi ) of proba-bilities  i!jsi for every edge (ij). Self-onsistent equationP ( i!jsi ) = 1Zi!j Yk2V (i)�j Z dP ( k!isi )Æ( i!jsi � F(f k!isi g))e��m�F i!j

Average over graphs: Distribution of distributionsComputational simpli�ations� Zero temperature, only energeti terms - integer �elds! (Mulet, Pag-nani, Weigt, Zehina, 2002)� At m = 1, analogy with reonstrution on trees.� Regular graph - fatorized ase



Hurraaaaayyyyy

End of the Tehnial Part



Results for oloring

1) Only one luster, replia symmetry orret2) Few entropially unimportant lusters appear, replia symmetry stillorret3) The large luster truly splits into exponentially many small ones;m = 1,omplexity �(m = 1) > 0, RS free energy still exat, dynamially glassyphase4) The entropy ondensed in a few lusters, m� < 1, omplexity �(m =m�) = 0, the true free energy larger than the RS one5) No solutions anymore



Algorithmi impliations

1)+2) Monte Carlo like (simulated annealing, random walker searh) algo-rithms work3) Monte Carlo like algorithms fails, Belief Propagation, the RS update ofprobabilities  i!jsi works!4) BP fails, Survey Propagation (M�ezard, Zehina, 2002), 1RSB update,works!5) No solutions anymore, di�erent strategies for proving nonexistene ofsolution



Few numbers and large q expansionRegular graphslust. ond. COLq = 4 9 10 10q = 5 14 14 15q = 6 18 19 20
Erd�os-R�enyi graphslust. ond. COLq = 4 8.36 8.47 8.90q = 5 12.84 13.22 13.69Leading terms in q !1�rst l. lustering ondensation COL/UNCOLq q log q + q log log q 2q log q � log q � 2 log 2 2q log q � log q � 1



Results for oloring
c RSB

c COLc d max c d (m=1)

Temperature

COL/UNCOL transition

1 one cluster 1 one cluster + few "dust clusters" Many clusters No more solution

1RSB paramagnet
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Stability towards 2RSB (FRSB)

� Exept the ase of 3-oloring, the thermodynamially dominant lustersin the COL phase are stable (also at �nite temperature)� Intrinsially simpler than e.g. Sherrington-Kirkpatrik model, whereFRSB holds, yet wide variety of unexpeted transitions (given above,Bak-bone like strutures ...)



Things we do not know yet� Graphs with short loops!� The region in 3-oloring whih is not 1RSB stable� The dynamis of deimation of the BP or SP� More eÆient solution of the non-simpli�ed funtional equations� Clarify few things about the bak-bone (hard �elds), whitening proe-dure



Conlusions� In oloring (K-SAT et.) variety of strutural phase transitions� Cavity method desribes transitions exatly on random graphs, inde-pendently on any algorithm!� Diret impliation for design of eÆient algorithms!� The path towards a rigorous proof is quite advaned.

RefereneKrzakala, Montanari, Rii-Tersenghi, Semerjian, Zdeborova: Gibbs Statesand the Set of Solutions of Random Constraint Satisfation Problems : toappear this week on ond-mat, submitted to PNAS.


