
Universality Classes of Step Bunching?
� Mechanisms of step bunching

� Step-dynamical equations and continuum limit

� Scaling properties of a single bunch

� Towards a global scaling picture

Joint work with V. Tonchev, S. Stoyanov and A. Pimpinelli



Nonequilibrium mechanisms for step bunching
� Ehrlich-Schwoebel-barriers in sublimation R.L. Schwoebel (1969)

� Surface electromigration S. Stoyanov (1991)

in growth:

� Pinning of steps by impurities N. Cabrera, D.A. Vermilyea (1958)

� Step edge diffusion P. Politi, J.K. (2000)

� Chemical precursors [e.g. GaAs] A. Pimpinelli, A. Videcoq (2000)

� Dimer mobility M. Vladimirova, A. De Vita, A. Pimpinelli (2001)

� Impurity-induced mobility gradients J.K. (2002)

� Anisotropic diffusion [e.g. Si(001)] J. Mysliveček et al. (2002)



Issues: � shape and scaling of individual bunches

� global evolution of the morphology (coarsening)

Levels of description:

� step evolution equations:

dx j

dt

� f �� x j � 1

� x j��� f �� x j

� x j � 1�

[BCF 1951; Schwoebel & Shipsey 1966]
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� continuum height equation:

∂h
∂ t

� � � ∇h 	 ∇2h 	�
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[Mullins 1959; Villain 1991]
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Scaling properties of step bunches

N

W

L

� bunch height
N� W α 	 α � 1
N� L� tβ

� minimal terrace size:
l ��� � N � γ� W � N

� γ � 1� 1 � α

Experiments for electromigration-induced step bunching on Si(111):

� γ� 2 � 3 [Fujita et al., Phys. Rev. B 60, 16006 (1999)]

� β� 1 � 2 [Yang et al., Surf. Sci. 356, 101 (1996)]

Goal: Consistent derivation of power laws and prefactors



Stability of step trains
� step evolution:

dx j

dt

� f �� x j � 1

� x j��� f �� x j

� x j � 1�

f � : flux from lower/upper terrace
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� homogeneous step train: x� 0 �
j

� � f �� l�� f �� l� � t� jl l: step spacing

linear stability analysis: x j� t� � x� 0 �
j� ε j� t� � ε j� t�� eiφ j � ωt with

� � ω� φ� � � � � 1� cosφ� � f� �� l� � f� �� l� �

� step train is stable iff f� �� l� � f� �� l� � 0

� step bunching during growth requires preferential attachment from the
upper terrace



The Ehrlich-Schwoebel effect

[G. Ehrlich, F. Hudda (1966); R.L. Schwoebel, E.J. Shipsey (1966)]

ES∆Energy

� Additional energy barrier suppresses adatom descent across step edges

� Preferential attachment to step edges from the lower terrace

� stabilization during growth, destabilization during sublimation



Step bunching by steering
� Steering: Attraction of incident

atoms to the substrate implies
inhomogeneous deposition flux

Lennard-Jones trajectories for Cu(100)

[van Dijken et al., PRB 61, 14047 (2000)]

At vicinal surfaces steering leads
to enhanced deposition near
descending steps



� Flux model:

F� x� � F0 � 1� ε e

� x � λ� ε e

� � l � x � � λ �

x

F(x)

0F

0 l

λ

ε
� Burton-Cabrera-Frank (BCF) equation for stationary adatom density n� x� :

Dn� � � F� x� � 0 with boundary conditions n� 0� � n� l� � 0

� f � � f � � � 2ε � λ� 1� e

� l � λ� � 2� λ 2 � l� � 1� e

� l � λ� �� � 2ε � λ� 2� λ 2 � l� �

� f� �� l� � f� �� l� � 0, instability for all l

� Time scale for bunching: θc� � 8ε� � 1� l � λ� 2 ML



One-dimensional stochastic model
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1−p

� Atom deposited at site i reaches
upper step with probability
Pi

� 1� � i� 1� � l

� Atoms deposited at i � 1 are
“deflected” with probability p

� Simulation with l � 3 and p � 1:
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Step bunching during sublimation
� BCF equation for the stationary adatom density n� x� :

D
d2n
dx2

� n
τ

� 0 � 
 � 
 : D
dn
dx� xi� � � k � � n� xi� � n � �� xi� �

τ : adatom lifetime k � : attachment rates to ascending/descending step

� step-step interactions: n � �� xi� � n0

� � exp � β∆µ� xi� � with β � 1 � k � T and

β∆µ� xi� � � l0
xi � 1

� xi

3

� l0
xi

� xi � 1

3

l0 � � 2Ωβg� 1 � 3: interaction length g: step repulsion coefficient

� additional lengths: λD

� � Dτ diffusion length d � D � k � kinetic length

� Ehrlich-Schwoebel parameter: S � k � � k � � exp �� β∆E � � � 1



� For xi

� xi � 1� d and xi

� xi � 1� λD step dynamics become linear:

dxi

dt
� DΩn0

� �

λ 2
D �

S
1� S� xi � 1

� xi��

1
1� S� xi

� xi � 1� �
� �� ��� � � � � 	 � ��� 
 �

� exact continuum limit for slowly varying profiles: [J.K. (1997)]
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∂ t
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∂m
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� 3Ωl3
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� � S

2d� 1� S� m
∂ 2m2

∂x2

destabilizing symmetry-breaking stabilizing

m � ∂h � ∂x � 0 slope R � Ωn0

� � � τ desorption rate h0 monolayer height



Step bunching by surface electromigration
� BCF equation with an electromigration force f [Stoyanov, 1990]:

D
d2n
dx2

� βD f
dn
dx

� n
τ

� 0 � 
 � 
 : D
dn
dx

� βD f n�� x � xi

� � k � n� n � � ��
� x � xi

� linear step equations in the attachment-limited regime:
[Liu & Weeks, 1998]

dxi

dt

� DΩn0

� � f

2dk � T � xi � 1� xi � 1

� 2xi �� R� xi � 1

� xi � 1� � interaction terms

� continuum equation:
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� Neglecting the symmetry-breaking term� m � 3∂m � ∂x, the stationarity
condition J� x� � J0 takes the form of Newton’s equation for u � m2:

K
d2u
dx2

� � u� J0� B � � u� � � V� � u� 	 V� u� � � 2
3

J0u3 � 2� Bu

uu∗
u

V(u)

0

max

� Bunch shape corresponds to trajectory
0 � u� x� � u � ��

� Two types of trajectories:
K� du � dx� 2 � 2� V� u� � 0 or � 0

� How to fix J0?

� Liu & Weeks [PRB 57, 14891 (1998)]: J0
� � 1 � S

2� 1 � S � Rh0l � 0

� current remains at its initial value throughout the bunching process

� bunch is described by trajectories with u � �� � u�



� Scaling law for minimal terrace size lmin in a bunch of N steps:

lmin

l

� 24 � 3 S
1� S

1 � 3 l
d

1 � 3 λD

l

2 � 3 l0
l

N

� 2 � 3

Numerical simulations:
(V. Tonchev)
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Universality classes of step bunching?
� Generic continuum equation for step bunching:

[Pimpinelli et al., PRL 88, 206103 (2002)]

∂h
∂ t

� ∂J
∂x

� � 	 � � � 
 	 J � B mρ � K m

� k ∂ 2

∂x2
mn

with Bρ � 0, K � 0 destabilizing stabilizing

k � 0 � 1: diffusion limited/attachment limited kinetics

n: exponent of step-step interaction � V�� � �� l�� l � n �

� Postulate invariance of h� x 	 t� under scale transformation

h� x 	 t� � b

� α h� bx 	 bzt�

� α � 1� 2 �� n� k� ρ� , z � 2� 1� n� k� 2ρ� �� n� k� ρ� , β � α � z



� For sublimation and electromigration ρ � � 1, k � 1

� α � n� 2
n 	 β � 1

2 	 γ � 2
2� n

� For n � 2 this implies γ � 1 � 2, l ��� � N � 1 � 2 ???

� The scaling argument for l �� � fails because in the stationarity condition
J� x� � J0 the destabilizing current is irrelevant compared to the mean
current J0 when ρ � 0 � effectively ρ � 0 � γ � 2 �� n� 1�

� On the other hand, the numerics is consistent with the predictions of the
scaling theory for α and β with ρ � � 1

� violation of the “obvious” scaling relation γ � 1� 1 � α !!!!

� Local and global properties described by different continuum equations ?



Bunch asymmetry and bunch motion
� Bunches are distinctly asymmetric:

l �� ��� N � 1 � 3 as predicted by continuum theory, but l � � � �� N0

� Asymmetry due to symmetry-breaking term is much too weak and of the
wrong sign:

Numerically integrated bunch shape for
different values of the maximal slope

S � 0 � 3 � λD� l � d� l � 100 � l0� l � 0 � 12
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� Bunch asymmetry reflects the accelerating trajectories of steps escaping
from one bunch and attaching to the next


