(Approximate) Exact Exchange for correlated electrons.

P. Novák

Institute of Physics, Prague, Czech Republic

Plan

Hartree-Fock vs. DFT

- **LDA**+U \Rightarrow Approximate Exact Exchange
- Implementation to WIEN2k
- Examples: hcp Gd, NiO, FeF₂, (FeAl, Ni₃Ga, Ni₃Al)
- Bad and good aspects
- What next
- Conclusions

Hartree-Fock vs. DFT

H-F no correlation wrong for delocalized states one particle excitations no selfinteraction

overshoots localization

too large gaps difficult for crystals corrections transparent DFT (LSDA, GGA) only ground state selfinteraction (for localized states) wrong ground state (sometimes) too small gaps corrections difficult

Hartree-Fock

Hartree-Fock equations:

$$\begin{bmatrix} -\Delta_i + V(\vec{r}_1) + \sum_i \int d\vec{r}_2 \frac{|\varphi_i(\vec{r}_2)|^2}{|\vec{r}_1 - \vec{r}_2|} \end{bmatrix} \varphi_j(\vec{r}_1) - \sum_{\vec{s}_i \parallel \vec{s}_j} \int d\vec{r}_2 \frac{\varphi_j^*(\vec{r}_2)\varphi_i(\vec{r}_2)}{|\vec{r}_1 - \vec{r}_2|} \varphi_i(\vec{r}_1) = E_i \varphi_j(\vec{r}_1)$$

no selfinteraction, but

iteration requires knowledge of all occupied orbitals.
Program CRYSTAL
(V.R. Saunders, R. Dovesi, Daresbury, Turin)
CRYSTAL03 - LSDA as an option

 \Rightarrow hybrid HF-DFT methods F. Cora et al. 2004

Exact Exchange in DFT: construct density dependent, local functional that provides the same solution as the functional with nonlocal, exact exchange. Program EXCITING

(Graz group, Claudia Ambrosch-Draxl, 2005)

LDA+U \Rightarrow ' \approx ' Exact Exchange

Select subspace of states of correlated electrons Construct DFT functional:

$$E = E_{LSDA}(\rho) + \left[\mathcal{E}_{H-F}^{screen}(\varphi_{corr}^{m,\sigma}) - E_{dc}(\rho_{corr})\right]$$

Screened Hartree-Fock interaction

$$\mathcal{E}_{H-F}^{screen} = \frac{U}{2} tr(\hat{n}\hat{n}) - \frac{J}{2} \sum_{\sigma} tr(\hat{n}^{\sigma}\hat{n}^{\sigma})$$

Double-counting term (Fully Localized Limit)

$$E_{dc} = \frac{U}{2} N_{corr} (N_{corr} - 1) - \frac{J}{2} \sum_{\sigma = \downarrow,\uparrow} N_{corr}^{\sigma} (N_{corr}^{\sigma} - 1)$$

LDA+U problems

Is LDA+U a DFT scheme? YES, but U, J are parameters that are fixed.

Often more solutions of scf procedure depending on starting density matrix.

Several schemes for double counting:

- Fully Localized Limit
- Around the Mean Field

— . . .

U, J must be inserted \Rightarrow not fully *ab-initio*

Our proposal

Instead of double counting term: subtract all interactions between correlated electrons.

Consider only atomic spheres (as in LDA+U)
 Use unscreened H-F energy.

 $E = E_{LSDA}(\rho) + \left[\mathcal{E}_{H-F}(\varphi_{corr}^{m,\sigma}) - \mathcal{E}_{LSDA}(\rho_{corr})\right]$

 \mathcal{E}_{LSDA} includes Hartree and XC energy Hartree term is the same in H-F and LSDA

 \Rightarrow only H-F (exact) exchange remains.

Hartree-Fock term

$$\mathcal{E}_{H-F} = \mathcal{E}_{C} + \mathcal{E}_{X}; \quad V_{ee} = \frac{1}{2} \sum_{i \neq j} \frac{1}{|\vec{r_{i}} - \vec{r_{j}}|}$$

$$\mathcal{E}_{C} = \frac{1}{2} \sum_{m_{1}..m_{4}}^{\sigma,\sigma'} n_{m_{1},m_{2}}^{\sigma} < m_{1}, m_{3} | V^{ee} | m_{2}, m_{4} > n_{m_{3},m_{4}}^{\sigma'}$$

$$\mathcal{E}_{X} = -\frac{1}{2} \sum_{m_{1}..m_{4}}^{\sigma,\sigma'} n_{m_{1},m_{2}}^{\sigma} < m_{1}, m_{3} | V^{ee} | m_{4}, m_{2} > \delta_{\sigma,\sigma'} n_{m_{3},m_{4}}^{\sigma'}.$$

$$< m_{1}, m_{3} | V^{ee} | m_{2}, m_{4} > = \sum_{k} a_{k} (m_{1}, m_{2}, m_{3}, m_{4}) F^{k}$$

Slater integrals

$$F^{k} = \int_{0}^{r_{s}} \frac{r_{<}^{k}}{r_{>}^{k+1}} |u_{l}(r_{1})|^{2} |u_{l}(r_{2})|^{2} r_{1}^{2} r_{2}^{2} dr_{1} dr_{2}$$
$$r_{<} = min(r_{1}, r_{2}), \ r_{>} = max(r_{1}, r_{2})$$
$$\text{In WIEN}: \ r^{2} |u_{l}(r)|^{2} = \rho_{00}(r) / (N_{corr} \sqrt{4\pi})$$
$$F^{k} = \frac{1}{4\pi N_{corr}^{2}} \int dr \int dr' \rho_{00}(r) \rho_{00}(r') \frac{r_{<}^{k}}{r_{>}^{k+1}}$$

Implementation

Three WIEN modules modified: LAPW0 ($\rho \rightarrow V$), LAPW2 (ρ_{corr}), ORB

LAPW0	
JOBEXEX	
LAPW1 –up –orb	
I A DW/1 dn orb	
$\mathbf{LAF} \mathbf{V} \mathbf{I} - \mathbf{u} \mathbf{I} - 0 \mathbf{I} \mathbf{U}$	LAPWDM -u
LAPW2 –up	
LAPW2 –dn	LAPWDM –dı
	MIXER
LCORE –up	
LCORE –dn	

Examples:hcp Gd

Examples:hcp Gd

Seminar talk January 2005 – p.13/27

Examples:NiO

H-F calculation (CRYSTAL): Towler et al. PRB 50,5041(1994)

NiO, continue

NiO, continue

Examples:FeF₂

H-F calculation (CRYSTAL): Valerio et al. PRB **52**, 2422 1995

FeF₂ **continue**

Magnetism

		LSDA	GGA	LDA+U	AExEx	HF	exp.
hcp Gd	m_{s}	7.356	7.567	7.762	7.792		
	m_l	0.310	0.230	0.008	0.002		
	m_{tot}	7.666	7.797	7.770	7.794		7.63
FeF ₂	m_s	3.466	3.502	3.718	3.752	3.934	3.75
	m_l	0.247	0.098	0.097	0.100		
	m_{tot}	3.713	3.600	3.815	3.852		
NiO	m_s	1.199	1.378	1.734	1.913	1.924	1.90 (20)
	m_l	0.143	0.118	0.253	0.421		0.32 (5)
	m_{tot}	1.342	1.496	1.987	2.334		2.22 (25)

Bad aspects

- Still not fully ab-initio: correlated states must be selected.
- What to do with the interstitial?
 Results depend on muffin-tin radii to some extent.
- More solutions of scf procedure?
- More difficult to converge relative to LDA+U. Technical?
- **Excessive localization.**

Good aspects

No parameters.

- Simple implementation.
- Little extra CPU and memory needed.
- **Reasonable description of occupied states.**

Good starting point for

- screened exchange
- hybrid methods

What next?

Screened exchange - very simple to implement.
Hybrid functionals (1 - α)V(AExEx) + αV_{corr}(LSDA).
Implementation to FPLO - no interstitial.
More checks, more systems.

Leave LDA+U

use AExEx instead

Collaboration

Warren E. Pickett, UC Davis Jan Kuneš, UC Davis and Inst. of Physics Laurent Chaput, Univ. Nancy

Seminar talk January 2005 – p.24/27

NiO: RMT, E_{tot}

Seminar talk January 2005 – p.26/27

NiO: RMT, DOS

