First principles simulations of the mechanical and electrical properties of metallic nanocontacts submitted to tensile forces

P.Jelínek¹ , ² , R.Pérez² , J.Ortega² and F.Flores²

¹ Department of Thin Films, Institute of Physics CAS, Czech Republic

² Departamento de la Física Teórica de la Materia Condensada,

UAM, Spain

Outline

✔ **Introduction**

✔ **Experiments: Conductance quantization, Force vs conductance relation, eigenchannels & histograms.**

✔ **First-principles simulations of the whole stretching process up to the nanocontact breaking: structure and conductance**

- ✔ **Simple (sp) metals: Al nanocontacts**
	- ✔ **Thin Al (111) nanocontacts: evolution & final "dimer" configuration.**
	- ✔ **Role of the defects (impurities, vacancies).**
	- ✔ **Thick Al nanocontacts with (111) and (100) orientations.**
- ✔ **Au nanocontacts : Chain formation**
- ✔ **Au chains + impurity: fractional quantum conductance**
- ✔ **Conclusions**

Introduction I

• Ongoing miniaturization of electronic devices (CPU – 90nm)

• Progress of experimental methods (Scanning Probes etc.)

Introduction II

Atomic scale is different.....

New effects

- Breakdown of Ohm's Law
- Conductance quantization
- Spintronics
- Quant. Wells ; Quant. Dots
- Nanofriction

New material properties

- Different conduction properties on different scale (Au vs. Pb)
- Larger yield stress of metallic nanowires
- Superlubricity

New electronic devices

Experimental part 1

Conductance quantization Forces vs. conductance

J.C. Cuevas et al. PRL **81**, 2990 (1998)

- Stepwise character of **conductance**
- **Characteristic values and** shapes of conductance steps

Relation between tensile forces *G.Rubio-Bollinger et al.* PRL **87**, 26101 (2001)

- and conductance
- **Relation between geometry of** nanocontacts and conductance
- **Mechanical properties of nanowires**

Experimental part 2

Channels Conductance histogram

E. Scheer et al. Nature **394**, 154 (1998) *A. I. Yanson* PhD Thesis, Univ. Leiden (2001)

- Analysis of contributing channels and transmission probabilities of electrons
- Chemical valence determines the electrical resistance of an atom
- Reflects effects of conductance quantization and atomic rearrangements
- Favorable atomic configurations cause peaks in histogram

Experimental part 3 TEM Inelastic transport

H. Onishi et al. Nature **395**, 780 (1998) *N. Agrait et al.* PRL **88**, 216803 (2001)

- **Direct visualization of atomic** nanoconacts
- Au monoatomic chains

- Voltage dependency of the current - inelastic scattering of electrons
- Dissipation sensitive to the strain
- e-ph interaction of one-dimensional system

Theoretical calculations

● **State of the art**

- **Accuracy / scale (ab initio vs. classical potentials)**
- **Most of ab initio calculations use implicit ideal structures**
- **Non-equilibrium process (bias voltage etc.)**
- **Evolution of the system along the elongation …??** *A. Nakamura et al* PRL **82**, 1538 (1999)
- **Influence of defects, impurities, temperature etc.**

N.D. Lang PRB **52**, 5335 (1995) *J.J.Palacios et al* PRB **66**, 035322 (2002) *J.C. Cuevas et al* PRL **80**, 1066 (1998) *C.C. Wan et al* PRB **71**, 419 (1997)

Our computational approach

First-principles simulations of the whole stretching process up to the nanowire breaking: structure and conductance

● **Motivation**

- **Simulation of the whole stretching process of metallic nanocontacts**
- **Determination of the atomic structure of nanocontacts (experimentally unreachable)**
- **Explanation of distinct phenomena and material properties**
- **Relation between mechanical and electrical properties**
- **Effect of defects and impurities on the material properties**

Computational scheme

● **Part I: Structure optimization**

- Ab-initio DFT-LDA total energy calculations
- Combination of fast / accurate methods
- Local orbital-DFT (Fireball) and PW-DFT (Castep)

P. Jelinek et al cond-mat/0409509 (accepted PRB) *M.Payne et al* Rev. Mod. Phys. **64**, 1045 (1992)

● **Part II: Calculation of electrical properties**

- Keldish-Green's function formalism (beyond pert. theory)
- TB-Hamiltonian from Fireball code
- \bullet T= 0 K; no bias voltage (equilibrium conditions)

P. Jelinek et al. Surf. Sci. **566-568**, 13 (2004)

http://www.physics.byu.edu/research/lewis/fireball/index.htm

✔ Fireball as exploratory ab initio tool with favourable *fast/accuracy* balance

- ✔ real space DFT Molecular dynamics method
- ✔ local 'Fireball' pseudoatomic orbitals (*s,p,d* DN basis set)
- ✔ Harris-Foulkes functional (ρin) (*J.Harris* PRB **31**, 1770 (1985))
- ✔ 3-center approximation; integrals in tables (fast interpolation)
- norm conserving KB pseudopotencial
- parallel, linear-scaling implementation
- ✔ Multi-center average density approximation for XC matrix
- ✔ TDDFT
- ✔ spin-polarization

}**in progress**

✔ Kohn-Sham scheme + grid method

O. F. Sankey and D.J. Niklewski PRB **64**, 1045 (1989) *A. Demkov et al. PRB* **52**, 1618 (1995) *J.P. Lewis et al. PRB* **64**, 195103 (2001) *S.D. Shellman et al. J.Comp.Phys.* **188**, 1 (2003) *P. Jelinek et al.* cond-mat/0409509 (accepted PRB)

Fig. *'Fireball*' orbital

Total energy calculation

- Nanocontact: a neck sandwiched between two leads (slabs)
- Initial structure derived from ideal bulk geometry (48-145 atoms)
- PBC applied in all x,y,z-axis
- Stretching process controlled via PBC in zaxis
- Marked internal layers of slab are fixed (white box)
- For each distance atomic positions relaxed using CG
- Effect of the temperature NOT included
- Different surface orientations; impurities
- \bullet Tensile forces \sim total energy derivative with respect to the displacement
- SCF TB Hamiltonian of optimized structure to transport code

Transport calculation: formalism

conductance across the interface:

decoupling:

for details see *F.J. Garcia-Vidal et al. Prog. Surf. Sci.* **74**, 177 (2003) ...the formalism is equivalent to other approaches

Transport calculation: scheme

Fireball: non-orthogonal TB Ĥ^x(r), Ŝ(r)

k-space: $\hat{H}^x(r)$, $\hat{S}(r) \rightarrow \hat{H}^x(k)$, $\hat{S}(k)$
orthogonalization: $\hat{H}(k) = \hat{S}(k)^{-1/2} H^x(k) \hat{S}(k)^{-1/2}$
partition: $\hat{H}_1(k) + \hat{H}_2(k) + \check{T}_{12}(k)$
r-space: $\hat{H}_1(r)$, $\check{T}_{12}(r)$
$g_{ii}^{r,a} = [\omega - \hat{H}_{ii} \pm i\eta]^{-1}$

$$
G = \frac{2e^2}{h} \text{Tr}[\hat{t}(E_F)\hat{t}^+(E_F)];
$$

Al nanocontacts

3x3-4l: structure

3x3-4l: conductance

- Direct relation between tensile forces, conductance and structure
- Abrupt changes related to reconstruction of the neck Forces \sim 0.5 \div 2.7 nN

• Number of open channels depends on the geometry and changing with distance

- Ascending shape of last step
- G on steps near 3,2,1 value

P.Jelinek et al. PRB **68**, 085403 (2003)

Are these results reliable?

- Different initial conditions: different length (5l & 8l) and periodicity (4x4).
- Role of defects: Vacancies & Impurities (Si, C, H & O)
- Thicker wires with different orientations: Al(111)-(5x5-5l) & Al(100)-(5x5-4l)

Al-4x4

C

O

H

Impurities (Si,C) affect Mechanical Stability

Vacancies on the neck & electrodes

Impurities: H (weak) vs O (strong) influence

Al(111)(5x5-5l) nanowire: struc. & conductance

Large scale first principles simulation including 145 atoms

• Ascending form of the plateaus

- Final breaking:'dimer' structure
- Last plateau: $G \sim 1$ (2e²/h) (3

channels: 1 dominant & 2 minor)

Al(100)(5x5-4l) nanowire: struc. & conductance

 9.0

9.0

Surface orientation: Comparison Al – surface (111) Al – surface (100)

max. forces \sim 4.9nN (\sim 0.55 nN/atm) • max. forces \sim 6.1nN (\sim 0.7 nN/atm) \bullet breaking forces \sim 1.02 nN

• breaking forces ~ 1.03 nN

Nanowire final configuration: reordering to form a more compact (111) structure !!!

Brief summary for different Al nanowires

- \overline{V} Final breaking 'dimer-like' structure with conductance \sim 1 (2e²/h)
- ✔ Characteristic ascending shape of plateaus
- ✔ Initial number of open channels depends on the structure
- \cdot Conductance values for plateaus mostly near \sim 3,2,1 (2e²/h) in agreement with the conductance histograms
- \cdot Impurities and vacancies affect atomic rearrangement, modify the breaking distance and lower breaking value of G
- ✔ Surface orientation: reoredering to (111) compact structure
- \cdot Large breaking tensile forces with universal value \sim 1 nN

Origin of the ascending form of the conductance plateaus ??

P. Jelínek et al. PRB 68, 085403 (2003) P. Jelínek et al. Surf. Sci. **566-568**, 13 (2004) *P. Jelínek et al*. *Nanotechnology* (2005) (accepted)

Au nanocontact (3x3-4l): Structural evolution during the stretching process

Au (111)-nanowire: chain formation

Au (111)-nanowire: Conductance

• Characteristic monoatomic chains (up to 4 atoms in chain) • Final breaking distance \sim 8.0 Å

• Distance Au-Au ~ 2.6 Å

• Zig-zag vs. straight structure • Long plateau (monoatomic chain formation): $G \sim 1$ (2e²/h)

• Mostly 1 channel on last plateau • Conductance oscillation along the process of elongation of the monoatomic chain (odd & even number of atoms)

Au-wire + H: fractional quantum conductance

Sz. Csonka et al. PRL **90**, 116803 (2003)

Experiment: MCBJ presence of H₂ molecules in atmosphere $T = 20K$, $V^{bias} = 20$ meV \bullet histogram shows an additional peak ~0.6 G₀ \rightarrow new unknown structure \bullet reversible fractional quantum conductance 1 \leftrightarrow ~0.6 G_o (75% of records), time scale \sim seconds Ag, Cu do not show the fractional peaks \bullet Conclusion: the presence of H₂ molecules leads to dimerization of the Au monoatomic chains

 \bullet Does H₂ molecules react with monoatomic Au chains? \bullet Can the presence of H₂ molecules change the conductance of Au nanocontact? • Can H_2 molecules dissociate on the Au-chain?

• Does depend the reactivity on the stress in the chain?

Au-nanocontact + H² (H): simulations

Au-wire+H² : dissociation ?

Surface Au (111)+H₂: PW-GGA calculation \rightarrow no direct dissociation, E^b = 1.1 eV (*B. Hammer and J.K. Norskov Nature 376, 238 (1994)*) • Au nanocontacts: local orbital (LO) Fireball DFT-LDA \rightarrow no direct dissociation, H₂ molecule slightly bonded vertically to the chain **• PW-LDA/GGA study of a simplified case: ideal monoatomic Au wire**

Ideal Au chain + H² :

PW-LDA: direct dissociation $PW-GGA: E^b \sim 0.1$ -0.4 eV

Preliminary conclusion: dissociation barrier ~0.1-0.4 eV depending on the orientation of H₂ molecule, but still in progress...

Au-wire+H² : summary

- The simulations show the stronger reactivity of the atomic Au chains than surfaces or bulk (order of eV in the case of atomic H).
- The reactivity increases with the tension in the chain.
- \bullet H₂ molecules weakly bonded with Au chains, the conductance similar to clean Au chains near ~1.0 $\textsf{G}_{_{0}}$.
- H atoms reacts strongly with Au chains changing the conductance to \sim 0.6 G $_{\tiny{0}}$ in very good agreement to the experiment.
- \bullet The dissociation of H₂ molecule is still open question (in progess), energetic barrier ~0.3 eV.

Au-wire + O²

Conductance vs. displacement

Conclusions

- Complex first principles calculation of the whole stretching process for different metallic nanocontacts.
- Close relation between structure, electrical & mechanical properties.
- Very good agreement with experimental results (increase of the Al conductance in the last plateau reproduced for the 1st time).
- Al: "*dimer*" structure before final breaking (independent of defects,
	- Conductance before breaking \sim 1.00 (2e²/h) with 1 dominant and 2 minority channels.
	- \bullet Breaking tensile forces \sim 1 nN (\sim 0.7 nN per bond in bulk).
- Transition metals: monoatomic chain formation in Au. $(G \sim 2e^2/h, 1$
- \bullet Au-wire+H₂:The presence of H atoms strongly affects the conductance $(G \sim 0.6 e^{2/h})$; the dissociation of $H₂$ still open question.