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Introduction

Warm up: Coin tossing

A simple probabilistic model: tossing a fair coin

P{X = 1} = P{X = −1} =
1
2

{Xi} - identically independently distributed random variables

I paradigm of physical systems consisting of many
microscopic components

I self-averaging property ↔ law of large numbers

lim
N

P{| 1
N

N∑
i=1

Xi | > ε} = 0

What can we say about fluctuations?
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Structure of normal fluctuations

Typical fluctuations of the sum SN = X1 + · · ·+ XN

I take place on the scale
√

N
I have a universal form - central limit theorem

lim
N

P{a <
SN√

N
< b} =

1√
2π

∫ b

a
e−

x2
2 dx

The fluctuation on other scales are rare:

lim
N

P{a <
SN

Nα
< b} = 0 0 ≤ α ≤ 1, α 6= 1

2
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Structure of rare fluctuations
I Microscopic fluctuations (α = 0)

- Local central limit theorem:

P{a < SN < b} ' 1√
2πN

∫ b

a
e−

x2
2 dx

I Macroscopic fluctuations (α = 1)
- Large deviation behavior:

P{0 ≤ a <
SN

N
< b} ' 1√

2πN
e−NI(a)

with the rate function coinciding with the entropy

I(a) = −1 + a
2

log
1 + a

2
− 1− a

2
log

1− a
2

=
a2

2
+O(a4)
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General features of macroscopic fluctuations

The exponential law of large deviations
I describes in detail the speed of the macrovariable SN

N
self-averaging

I is a generic law for the probabilities of large fluctuations
I occurs with the rate function I which has the meaning of

“entropy”
I(a) = sup

t
(ta− log〈etX 〉)

I gives an extension of the central limit theorem

I(
a√
N

) =
a2

2N
+ o(

1
N

)
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Large deviations in classical equilibrium systems

Thermodynamic theory of fluctuations

I Boltzmann: Thermodynamic entropy has a microscopic
interpretation: S = k log W

I Einstein: Read the formula as P{M} = e
S(M)

k !
I starting point of the fluctuation theory
I since the entropy S is extensive, S(M) = Vs(M),

the entropy density s(M) is a large deviation rate function
I a usual application: analysis of normal fluctuations
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Statistical approach: Cramer’s trick

In order to compute the large deviation probability

PV{MV = Vm} =
1
ZV

∫
dσ e−βHV (σ)δ(MV (σ) = Vm)

change HV −→ HV + hMV so that

〈MV 〉h = Vm

Actually, then MV ' Vm typically!

PV{MV = Vm} = Ph
V{MV = Vm}e−βhmV Z h

V

ZV

' eβV (−hm+f h−f )

∼ eβVg(m)
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General mathematical results

I Gartner-Ellis theory: if a sequence of variables XV has a
differentiable thermodynamic limit

φ(t) = lim
V

1
V

log〈etXV 〉V

then

P{XV = Va} ∼ e−VI(a) I(a) = sup
t

(ta− φ(t))

I Bryc’s theory: analytical generating function φ(t) =⇒
normal fluctuations by expanding I to the quadratic order

I Olla’s extension: Still true in the regime of phase
transitions, where I(a) = 0
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I For a collection of macrovariables

φ(t1, . . . , tn) = lim
V

1
V

log〈e
P

i ti Xi 〉V

I Large deviations for empirical distributions (=types)

P{LX
V = ν} ∼ e−VI(ν)

I(ν) = S(ν |µeq) = −β(f X (ν)− f X )

f X (ν) = lim
V

1
V

log[

∫
(HV + XV ) dν − 1

β
S(ν)]

I Variational principle:

inf
ν

f X (ν) = f
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Large deviations in classical equilibrium systems

To Remember:

I Large deviation rate function is generically
a thermodynamical potential.

I Not true for quantum systems!
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Towards large deviations in quantum equilibrium systems

Macroscopic fluctuations in quantum systems
(1) K. Netočný and F. Redig, J. Stat. Phys., 117:521-547 (2004)
(2) M. Lenci, L. Rey-Bellet, math-ph/0406065 (2004)
Macroscopic fluctuations for a single observable:

PV{MV = Vm} =
1
ZV

∫
dσ e−βĤV (σ)δ(M̂V (σ) = Vm)

Observe:
I Cramer’s idea does not work because [H, M] 6= 0
I By the Gartner-Ellis theory we need to know the analytical

properties of the generating function

φ(t) = lim
V

1
V

log〈etMV 〉V

I Since φ(t) is not a “free energy”, usual methods to prove
the thermodynamic limit fail!

I We resort to perturbative regimes and develop convergent
perturbation expansions for φ(t)
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High-temperature regime

I Spin-lattice model: the Hilbert space H⊗Zd
and the

Hamiltonian
HV =

∑
A⊂V

ΦA

I For MV =
∑

i Mi where Mi is a one-site observable,
compute this:

〈etMV 〉β =
1
ZV

Tr[e−βHV etMV ] =
Tr[etM0 ]V

ZV
〈e−βHV 〉t

where 〈·〉t is an infinite-temperature (product) distribution
with density matrix etMV



Macroscopic Fluctuations in Statistical Physics

Towards large deviations in quantum equilibrium systems

I A trick:

〈e−βHΛ〉t = 〈
∞∑

n=0

(−β)n

n!

∑
A1,...,An⊂Λ

Φ(A1) . . .Φ(An)〉t

is the partition function of a hard-core lattice gas
I Use the cluster expansion,

log〈e−βHΛ
〉

t =
∞∑

n=1

1
n!

∑
γ1,...,γn<Λ

aT (γ1, . . . , γn)
n∏

i=1

ρt,β(γi)

where γ is a cluster of interaction sets and

ρt,β(γ = A1, . . . , Ak ) =
(−β)k

k !
gC(A1, . . . , Ak ) 〈Φ(A1) . . .Φ(Ai)〉t

is a correlation function
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Results

I For β � 1 the (limit) generating function φ(t) is analytic in
a strip = t < δ

I This implies the exponential decay of macroscopic
fluctuations of MV and gives a perturbation expansion for
the rate function

I A consequence: central limit theorem for normal
fluctuations

I A similar approach can be used for semiclassical systems
in low-temperature regime

I Open problems
I The nature of macroscopic fluctuations in the criticality?
I Large deviation theory for correlated macroscopic

fluctuations of non-commuting observables?
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Dynamical large deviations in non-equilibrium systems

Transport in chain of coupled oscillators

I Model Hamiltonian

H(p, q) =
N∑

i=1

p2
i

2
+ U(q) U(q) =

N∑
i=1

Ui(qi) +
N−1∑
i=1

λiΦ(qi+1 − qi)

I Heat baths modelled via Langevin forces −→ total
stochastic dynamics:

dqi = pidt , i = 1, . . . , N

dpi = −∂U
∂qi

(q)dt , i = 2, . . . , N − 1

dpi = −∂U
∂qi

(q)dt − γpidt +

√
2γ

βi
dWi(t), i = 1, N
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I Fokker-Planck equation:

∂ρ

∂t
= (p · ∇q −∇qU · ∇p + γ

∑
i=1,N

pi
∂

∂pi
+

∑
i=1,N

γ

βi

∂2

∂p2
i

)ρ
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Dynamical large deviations in non-equilibrium systems

Detailed balance regime

A consistency check that the model is physically meaningful:
For β1 = βN , the canonical distribution

ρβ(p, q) =
1
Z

e−βH(p,q)

is
I stationary: ∂ρβ

∂t = 0
I reversible:

ρ(q, p)P{(q, p)
t−→ (q′, p′)}

= ρ(q′, p′) P{(q′,−p′) t−→ (q,−p)}
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Breaking the detailed balance
I Time-integrated heat current into the i-heat bath, i = 1, N:

Jτ
i (ω) ≡

∫ τ

−τ

[γp2
i (t)dt −

√
2γ

βi
pi(t) ◦ dWi(t)] ω = [(pt , qt),−τ ≤ t ≤ τ ]

I Conservation of energy:

H(ωτ )− H(ω−τ ) = −
∑
i=1,2

Jτ
i (ω)

I Fluctuating entropy production:

Rτ
ρ (ω) =

∑
i=1,2

βiJτ
i (ω) + ln ρ(ω−τ )− ln ρ(ωτ )

I Mean entropy production:

〈Rτ
ρ 〉 =

∑
i=1,N

βi〈Jτ
i (ω)〉+ S(ρτ )− S(ρ−τ ) S(ρ) := −〈ln ρ〉
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Mean entropy production explicitly

The mean entropy production is

〈Rτ
ρ 〉 =

∫ τ

−τ

Ṙ(ρt) dt

where the mean entropy production rate has the form

Ṙ(ρ) ≡
∑

i=1,N

γ

βi

∫
dpdq

[e−βi p
2
i /2

√
ρ

∂

∂pi
(eβi p

2
i /2ρ)

]2

Consequences:
I Second law: Ṙ(ρ) ≥ 0
I Stationary transport:

β1 < βN =⇒ Ṙ(ρs) > 0 =⇒ 〈JN〉s = −〈J1〉s > 0
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Dynamical large deviations in non-equilibrium systems

Fluctuation symmetry
Basic observation:

Fluctuating entropy production quantifies
the breaking of the detailed balance symmetry

Rτ
ρ (ω) = log

Pτ
ρ{ω = (qt , pt)}

Pτ
ρτ
{Θω = (q−t ,−p−t)}

Time reversal of trajectories in detail:

(Θω)(t) := πω(−t) π(q, p) = (q,−p)

The fluctuation symmetry in a standard form:

P{R}
P{−R}

= eR



Macroscopic Fluctuations in Statistical Physics

Dynamical large deviations in non-equilibrium systems

Steady state fluctuation symmetry for dissipated
heat

For the entropy production in the reservoirs

Qτ (ω) =
∑

i=1,N

βiJτ
i (ω)

the fluctuation symmetry holds true in the sense
of large deviations, i.e. asymptotically for large spans τ :

lim
τ

1
τ

log
P{Qτ = qτ}

P{Qτ = −qτ}
= q

Equivalently, the generating functional

φ(z) = lim
τ

1
τ
〈e−

P
i=1,N zi J

τ
i 〉

has the symmetry
φ(z) = φ(β − z)
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Dynamical large deviations in non-equilibrium systems

Miscellaneous consequences of fluctuation
symmetry

I Second law in mean: 〈Rτ
ρ 〉 ≥ 0, respectively 〈Q〉 ≥ 0.

I In general, 〈e−R〉 = 1
I A bound on the probability of the “violation” of the second

law:
P{Rτ

ρ ≤ −∆} ≤ e−∆

I The symmetry of the generating functional implies the
(Green-)Kubo formula

χik ≡
∂〈Jτ

i 〉
∂βk

(βi = β) =
1
2
〈Jτ

i (ω)Jτ
k (ω)〉β

I Onsager relations follow: χik = χki

I Note that the fluctuation symmetry is not restricted to the
linear-response regime!
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Jarzynski identity

I Add an external driving to the dynamics:

dpi = −∂(U + Uext
t )

∂qi
dt

I Modified energy conservation:

H(ωτ )− H(ω−τ ) = −Jτ (ω) + W τ (ω) W τ (ω) =

∫ τ

−τ

∂Uext
t

∂t
(qt) dt

I Assume both the initial and final states to be in equilibrium

ρ−τ =
1
Z−τ

e−βH−τ ρτ =
1
Zτ

e−βHτ
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I The total entropy production:

R = βJ + S(ρτ )− S(ρ−τ ) = β[W −F(ρτ ) + F(ρ−τ )]

Fluctuation symmetry in the form

〈e−R〉 = 1

implies

Jarzynski identity

〈e−W 〉 = e−∆F −→ 〈W 〉 ≥ ∆F
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Microscopic origin of the fluctuation symmetry

I Gallavotti, Cohen: The first rigorous derivation in the
framework of dynamical systems

I Crooks, Jarzynski, Spohn: Derivation for stochastic
systems

I Jarzynski: Derivation for (classical) Hamiltonian systems
I Fluctuation symmetry is intimately related to the

microscopic reversibility of the underlying dynamics

A hint (from Maes-N.[2003]):
For a closed Hamiltonian system, write the detailed balance
condition in the form

log
P{M −→ N}

P{πN −→ πM}
= log ρ(N)− log ρ(M) = SB(N)− SB(M)
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Summary and open problems

I Large deviations formalism is a natural framework for the
classical equilibrium statistical mechanics but finds
non-trivial applications in the dynamical problems too

I Macroscopic fluctuations in the quantum models also have
a large deviation behavior but the rate functions do not
allow for a direct thermodynamic interpretation

I It reminds to understand the structure of correlated
macroscopic fluctuations for non-commuting observables

I Steady state fluctuation symmetry for the dissipated heat
only holds true in the large deviation regime, in contrast to
the Jarzynski identity for transient processes

I A precise formulation and meaning of the fluctuation
symmetry for quantum systems remains to be cleared up
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