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1. INTRODUCTORY REMARKS



Piezoelectric materials

↪→ more than seven decades of commercial use

↪→ a wide variety of applications ranging from crystal-controlled

oscillators to small size active elements of modern electronic devices

Piezoelectric effect

material response to electric field E = (Ei), or stress field T = (Tjk)

piezoelectric tensor d = (dijk) ∼ V [V 2] : 18 components

direct effect: stress field (e.g. sound pressure) −→ polarization,

appearance of electric field

Pi =

3∑
j,k=1

dijkTjk . . . transducers

converse effect: electric field −→ induced strain, change in shape

σjk =

3∑
i=1

dijkEi . . . actuators

piezolectric coefficient d333:

(a) P3 = d333T33 – induced polarization along [001] under stress

applied in the 3-direction

(b) σ33 = d333E3 – induced strain in the 3-direction under E ‖ [001]



Structural forms of piezoelectrics:

A single domain crystals

– SiO2 (oscillators), LiNbO3 (SAW devices), · · ·

B polycrystalline ceramics:

typical material: solid solution Pb(Zr(1−x)Tix)O3 (PZT)

compositional tuning of material parameters: doping

soft PZT ( donors ): sensors, ultrasonic imaging systems

hard PZT ( acceptors ): autofocusing in cameras, tuning of lasers

C single multidomain crystals:

1997 – ultrahigh piezoelectric coefficient d33 in rhombohedral single

crystals of ferroelectric Pb(Zn1/3Nb2/3)O3-8%PbTiO3 (PZN-PT)

poled along the non-polar direction [001]

– new generation of high sensitive actuators and transducers

Table 1. Piezoelectric response of piezoelectric materials.

structural form material d33 [pC/N ]

single domain crystals SiO2 ∼ 50

polycrystalline texture ‘soft’ PZT ∼ 600

‘hard’ PZT ∼ 200

single crystals PZN-PT > 2000



Engineered domain configurations

1999 – stable domain structure in the PZN-PT crystals after poling

suggestion: equal distribution of four equivalent domain states

with polarizations along [111], [111], [111] and [111] (S. Wada et al.)

QUERY: ¿ engineered domain configuration – is it a factor supporting

enhanced piezoelectric response to appear ?

experiments with non-lead single crystals of BaTiO3 and KNbO3

−→ similar enhancement of piezoelectric coefficient d33

Table 2. Piezoelectric properties of BaTiO3 and KNbO3 single crystals.

poling ferroic compound d33 polarization vectors
direction phase (T = 25 ◦C) [pC/N ]

[111] 4mm BaTiO3 203 [100], [010], [001]

3m (b) 145 [111](a)

[001] 4mm BaTiO3 125 [001](a)

3m (c) 350 [111], [111], [111], [111]

[110] mm2xy KNbO3 18.4 [110](a)

[001] 4mm 51.7 [101], [101], [011], [011]

(a) single domain state (b) E > 40 kV/cm
(c) T = −100 ◦C

PROBLEM:

DETERMINE ALL POSSIBLE ENGINEERED DOMAIN

CONFIGURATIONS WHICH CAN BE PRODUCED BY

EXTERNAL FIELDS



2. DOMAIN CONFIGURATIONS, AVERAGE
TENSOR PROPERTIES AND EXTERNAL

FIELDS



A simple model of a multidomain crystal

Basic characteristics:

• point groups of prototypic and ferroic phase, G and F, resp.

• n = |G|/|F| possible single domain states <1>, . . . , <n>

|G|, |F| - the number of operations in those point groups

all states equivalent under G:

<j> = gi→j<i> for any i 6= j, gi→j 6∈ Fi = StabG(<i>)

the stabilizer of the ith state

numbering through left cosets of F1 in G

cosets G = F1 + g2 F1 + · · · + gn F1

states <1>, <2>= g2<1>, . . . , <n>= gn<1>

• partial volumes vi of the n states, v1 + · · · + vn = 1

Domain configuration (DC)

C(vi) = v1<1> t v2<2> t . . . t vn<n>

. . . t ∼ coexists with

Some concepts in use:

H-orbit of the state <i>, H ⊂ G: H ? i = {h<i>; h ∈ H}

→ H-decomposition: {1, . . . , n} = H ? i1 ∪ · · · ∪ H ? ip

The closure Hc of the group H with respect to the group pair G ⊃ F:

Hc = StabG(H ? i1) ∩ · · · ∩ StabG(H ? ip) ⊇ H



Characteristics of domain configurations

1. Effective symmetry K of domain configuration C(vi)

K = {g ∈ G; gC(vi) = v1g<1> t · · · t v1g<n> = C(vi)}
. . . the stabilizer K = StabG(C(vi)) of C(vi)

stability condition of a DC C(vi) exposed to an external field F :

K ⊆ Jc, J = StabO(3)(F ) ∩ G

StabO(3)(F )={g∈O(3); gF =F } . . . orthogonal stabilizer of F

Statement 1. A subgroup H of G is the stabilizer of some DC C(vi)

if and only if it coincides with its closure, H = Hc.

2. Unique expression of any DC through coherent configurations

Coherent DC <j1, . . . , jq> with the stabilizer K:

all states <j1>, . . . , <jq> form an orbit K ? j1

=⇒ vj1 = · · · = vjq = 1
q & K = StabG(K ? j1)

Statement 2. Any DC with stabilizer K is coherent or a unique

combination of s coherent DC’s <ij,1, . . . , ij,rj
>, s ≤ n:

C(uj) = u1<i1,1, . . . , i1,r1> t · · · t us<is,1, . . . , is,rs>

– K = StabG(K ? i1,1) ∩ · · · ∩ StabG(K ? is,1)

– uj is a partial volume of the jth coherent DC, u1 + · · · + us = 1



3. Example of potassium niobate: ferroelectric Amm2-phase.
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56

7
8
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11

12 prototypic group G = m3m

ferroic group F = 2xymxymz

twelve ferroelectric states

ith state – polarization P (i)

↔ oriented line with arrow

↪→ initial non-ferroelectric

coherent DC <1, 2, . . . , 12>

Stabilizer K = m3m

Non-ferroelectric coherent DC’s produced by mechanical stress T

1

3 2

4

56

7
8

9

10

11

12
Stress field T11 = T22 6= T33

StabO(3)(T ) = ∞z/mzmm

Configurations:

<1, 2, 3, 4>,

<5, 6, 7, 8, 9, 10, 11, 12>

Stabilizer K = 4z/mzmxmxy
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56

7
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12
Stress field T11 = T22 = T33,

T23 = T31 = T12

StabO(3)(T ) = ∞xyz/mxyzmm

Configurations:

<1, 3, 5, 7, 9, 11>,

<2, 4, 6, 8, 10, 12>

Stabilizer K = 3xyz2xy/mxy

4. Average tensor properties of a DC C(vi).

The average T of a tensor property T (first approximation):

∼ T = v1T
(1) + · · · + vnT

(n)

T (i) – contribution from the ith state

Final expressions:

coherent DC <j1, . . . , jq> ∼ T = 1
q(T

(j1) + · · · + T (jq))

general DC C(uj) = u1<i1,1, . . . , i1,r1> t · · · t us<is,1, . . . , is,rs>

∼ T = u1T
(1)

+ · · · + usT
(s)

T
(j)

– contribution from the jth coherent DC



3. TENSOR PROPERTIES OF COHERENT
CONFIGURATIONS



Tensor representation S of rank m

Tensor space L : basis – {ejk...; j, k, . . .︸ ︷︷ ︸ = 1, 2, 3},
m−indices

dim L = 3m

S : O(3) 3 g → S(g) ∈ GL(L) ,

S(g)ejk... =
∑3

j′k′...=1 ε(g)Dj′j(g)Dk′k(g) · · · ej′k′... , j, k, . . .= 1, 2, 3

ε(g) =

{
1

|D(g)|
– polar

– axial

}
tensors m = 1 : S ∼

{
D1u

D1g

m ≥ 2 : a tensor property T =
∑3

jk...=1 Tjk...ejk...

permutational symmetry of m indices . . . QT ⊆ Sm

π∈QT : S(π)ej1j2... = ej′1j
′
2...

, j′k = jπ−1(k) , k = 1, 2, . . .

projection operator PQT
= 1

|QT |
∑

π∈QT
S(π): PQT

L = LT

. . . carrier space of tensor T

polar tensor T : QT = C1 =⇒ LT = L, S ∼ Dm
1u

QT 6= C1 =⇒ LT ⊂ L, S ∼ [Dm
1u]

QT . . . symmetrized power

Neumann’s principle: StabO(3)(T
(1)) ⊇ F1

⇐⇒ F1<1> = <1> ⇒ tensor property T (1)∈ LF1 ⊆ LT

LF1 = {x =
∑3

jk...=1 xjk···ejk... ∈ LT ; S(f )x = x for all f ∈ F1}
. . . stability space of F1

projection operator PF1 = 1
|F1|

∑
f∈F1

S(f ): PF1L
T = LF1

a coherent DC <j1, . . . , jp>, StabG(<j1, . . . , jp>) = K :

T = 1
p(T

(j1) + · · · + T (jp))= PKT (j1) = · · · = PKT (jp) ∈ LK



Statement 3. The average property T of a coherent configuration

<j1, . . . , jp> will have the same form as the tensor T of a single

domain crystal with equal macroscopic symmetry K if PKLFj1
= LK.

Basic observations: PKLFj1
= 0 ⇐⇒ LK ⊥ LFj1

.

Four cases: ◦ PKLFj1
= 0 =⇒ T = 0

• PKLFj1
= LK =⇒ StabO(3)(T ) = StabO(3)(T )

� 0 ⊂ PKLFj1
⊂ LK & StabO(3)(T ) = StabO(3)(T )

4 0 ⊂ PKLFj1
⊂ LK ⇐= StabO(3)(T ) ⊃ StabO(3)(T )

Similar four cases after projection PRqi :LT → LT ,Rqi , T → T Rqi

Rqi
- an irreducible representation (irep) of G

LT ,Rqi - maximal G-invariant subspace of LT whose G-irreducible

subspaces afford just the irep Rqi

LFj1
→L

Rqi
Fj1

= LFj1
∩ LT ,Rqi , LK→L

Rqi
K = LK ∩ LT ,Rqi

Ferroelectric monoclinic coherent DC produced by electric field

5

9

Electric field (E1, E1, E3),

|E1| < |E3|
StabO(3)(E) = ∞[11κ]mxym·
Configuration

<5, 9>

Stabilizer K = mxy



TENSOR PROPERTIES OF A COHERENT DOMAIN CONFIGURATION

with average symmetry K= mx-y  in  KNbO3

coherent DC  <5,9> single domain state

stabilizer K= mx-y

Polarization

P  ~  V

Strain tensor

e  ~   [V   ]2

Piezoelectric
tensor

d ~ V [V   ]2

P₁  P₂  P₃

tensor
components

e₁₁  e₁₂  e₁₃
       e₂₂  e₂₃
               e₃₃

d     :   i =1,2,3
           λ =1,...,6

d    =  d      ,     λ = j

d    = 2d       ,   j ≠ k ,
                         λ = 9 - j - k
                          

i λ

i λ  i j j

i λ i j k

· = 0

• ≠ 0

•−• equal components

•−•ο 2 x  former comp.

•– – –•¦•
2 dashed lines intersect 
in the sum of connected comps.

L= Stab      (T) - orthogonal stabilizer of a tensor TO(3)

L=  ∞     mm|| P

L= 2x-y / mx-y

L= mx-y



4. FERROELECTRIC COHERENT
CONFIGURATIONS OF Amm2-PHASE OF

POTASSIUM NIOBATE CRYSTALS



Coherent configurations

1

5

8

9

10

Electric field (E1, E1, 0)

StabO(3)(E) = ∞xymxymz

Configurations

<1> and <5, 8, 9, 10>

Stabilizer K = 2xymxymz

56 Electric field (0, 0, E3)

mech. stress T11, T22, T33

StabO(3)(E) = ∞zmxmy

StabO(3)(T ) = mzmxmy

Configuration

<5, 6>

Stabilizer K = mxmy2z



Minimal incoherent configurations

1

2

5

8

9

10

Electric field (E1, E2, 0)

StabO(3)(E) = ∞[1κ0]mzm·

Configurations

u1<1> t u2<2>,

u1<5, 8> t u2<9, 10>,

u1<1> t u2<5, 8>,

u1<2> t u2<9, 10>

Stabilizer K = mz

Non-coherent DC C(uj):

C(uj) = u1<i1,1, . . . , i1,r1> t · · · t us<is,1, . . . , is,rs>

StabG(<ij,1, . . . , ij,rj
>) = Kj, j = 1, . . . , s

StabG(C(uj)) = K = K1 ∩ · · · ∩ Ks =
⋂s

j=1 Kj

K 6=
⋂

j 6=k Kj, k = 1, . . . , s =⇒ minimal incoherent DC



FORM OF STRAIN  TENSOR  e and its orthogonal stabilizer  L = Stab      (e)  

DOMAIN CONFIGURATIONS IN POTASSIUM NIOBATE:

single domain state
                              

coherent DC  <5,6>
stabilizer K= mx my 2z 

coherent DC  <1> (SDS) coherent DC  <5,8,9,10>
stabilizer K= 2xy mx-y mz

L= mx my mz L=  ∞x/mx m m

L= mxy mx-y mz L=  ∞z/mz m m

Minimal incoherent configurations

u₁ <1>  v   u₂ <2> u₁ <5,8>  v   u₂ <9,10> u₁ <1>  v   u₂ <5,8>

stabilizer K= mz

L= mxy mx-y mz L= mx my mz L= 2z / mz

O(3)



5. CONCLUSIONS



Tensor properties (summary):
Coherent DC’s vs. single domain states

Table 3. Non-equivalent coherent DC’s produced by electric field.

Comparison with hypothetic single domain states of same symmetry.

Electric field

E
Coherent DC’s

Stabilizer

K of DC

Stabilizers:

T vs. T

Tensor

form

(0, 0, E3) <5, 6, 9, 12> 4zmxmxy = =

(E1, E1, E1) <1, 5, 9> 3xyzmxy = 6=
(E1, E1, 0) <1>; <5, 8, 9, 10> 2xymxymz = ; 6= = ; 6=
(E1, E1, E3)

|E1| < |E3|
<5, 9> mxy = 6=

Minimal incoherent

DC’s

(E1, E2, 0)

u1<1> t u2<2>;

u1<5, 8> t u2<9, 10>;

u1<1> t u2<5, 8>;

u1<1> t u2<6, 7>

mz

6=
6=
=

=

6=
6=
6=
6=

DC’s will not have minimal free energy in electric field alone

Table 4. Non-equivalent coherent DC’s produced by electric field

and mechanical stress.

El. field

E

Stress

T

Coherent

DC’s

Stabilizer

K of DC

Stabilizers:

T vs. T

Tensor

form

(0, 0, E3) T11, T22, T33 <5, 6> mxmy2z 6= 6=

(E1,−E1, 0)
T11 = T22, T33,

T23 = T31
<5, 11> 2xy = 6=



Main results

• 6 non-equivalent coherent DC’s can be, theoretically, produced by

electric field, possibly in combination with additional stress

• In 5 coherent DC’s form of odd rank and/or even rank tensors

differs from tensor form in a single domain crystal with same

symmetry:

– for 2 orthorhombic coherent DC’s the stabilizers of even rank

tensors are different than for respective single domain states

– in 4 cases, 3xyzmxy, mxmy2z, 2xy and mxy, pseudo-spontaneous

tensor components are forbidden in the ferroelectric Amm2-phase

– for coherent DC’s whose stabilizer is one of ferroic groups,

certain spontaneous tensor component(s) will be zero due to the

orthogonality of relevant stability spaces, e.g.

<5, 8, 9, 10> : L
T2g

K=2xymxymz
⊥ L

T2g

F5=mx2yzmyz
⇒ e12 = 0

• Quite similar features were established for 4 incoherent DC’s

with the monoclinic stabilizer mz.



Concluding remarks

non-equivalent coherent configurations −→ new materials

• stabilizer K of a coherent DC stands as ‘fake’ ferroic symmetry

• average properties are given by single domain parameters

Five basic cases:

Comparison of average tensor form with single domain

form for odd- and even-parity tensors.

tensor parity stabilizer K of

case odd even coherent DC [T ]

A same same 4mm

B different different mxy

C same different mxmy2z, 2xymxymz

D different same -

a1 same mixed case -

a2 mixed case same 3m [P ] ≈ D

E b1 different mixed case -

b2 mixed case different 2xy [P ] ≈ B

c mixed case mixed case -

mixed case - not for all tensors with same parity both forms

coincide

[T ] - both forms coincide/differ for tensor T


