TENSOR PROPERTIES OF COHERENT DOMAIN CONFIGURATIONS IN POTASSIUM NIOBATE CRYSTALS

OUTLINE

1. INTRODUCTORY REMARKS

2. DOMAIN CONFIGURATIONS, AVERAGE TENSOR PROPERTIES AND EXTERNAL FIELDS

3. TENSOR PROPERTIES OF COHERENT CONFIGURATIONS

4. FERROELECTRIC COHERENT CONFIGU-RATIONS OF *Amm2*-PHASE OF POTASSIUM NIOBATE CRYSTALS

5. CONCLUSIONS

1. INTRODUCTORY REMARKS

Piezoelectric materials

 \hookrightarrow more than seven decades of commercial use

 \hookrightarrow a wide variety of applications ranging from crystal-controlled oscillators to small size active elements of modern electronic devices

Piezoelectric effect

material response to electric field $\boldsymbol{E} = (E_i)$, or stress field $\boldsymbol{T} = (T_{jk})$ piezoelectric tensor $\boldsymbol{d} = (d_{ijk}) \sim V[V^2]$: 18 components direct effect: stress field (e.g. sound pressure) \longrightarrow polarization, appearance of electric field

$$P_i = \sum_{j,k=1}^{3} d_{ijk} T_{jk} \qquad \dots \text{ transducers}$$

converse effect: electric field \longrightarrow induced strain, change in shape

$$\sigma_{jk} = \sum_{i=1}^{3} d_{ijk} E_i \qquad \dots \text{ actuators}$$

piezolectric coefficient d_{333} :

(a) $P_3 = d_{333}T_{33}$ – induced polarization along [001] under stress applied in the 3-direction

(b) $\sigma_{33} = d_{333}E_3$ – induced strain in the 3-direction under $\boldsymbol{E} \parallel [001]$

Structural forms of piezoelectrics:

A single domain crystals

- SiO₂ (oscillators), LiNbO₃ (SAW devices), \cdots

B polycrystalline ceramics:

typical material: solid solution $Pb(Zr_{(1-x)}Ti_x)O_3$ (PZT)

compositional tuning of material parameters: doping

soft PZT (donors): sensors, ultrasonic imaging systems

hard PZT (acceptors): autofocusing in cameras, tuning of lasers C single multidomain crystals:

1997 – ultrahigh piezoelectric coefficient d_{33} in rhombohedral single crystals of ferroelectric Pb(Zn_{1/3}Nb_{2/3})O₃-8%PbTiO₃ (PZN-PT) poled along the non-polar direction [001]

– new generation of high sensitive actuators and transducers

structural form	material	$d_{33}\left[pC/N\right]$
single domain crystals	SiO_2	~ 50
polycrystalline texture	'soft' PZT	~ 600
	'hard' PZT	~ 200
single crystals	PZN-PT	> 2000

 Table 1. Piezoelectric response of piezoelectric materials.

Engineered domain configurations

1999 – stable domain structure in the PZN-PT crystals after poling suggestion: equal distribution of four equivalent domain states with polarizations along [111], $[\overline{11}1]$, $[\overline{11}1]$ and $[1\overline{1}1]$ (S. Wada *et al.*) QUERY: ¿ engineered domain configuration – is it a factor supporting enhanced piezoelectric response to appear?

experiments with non-lead single crystals of $BaTiO_3$ and $KNbO_3$

 \longrightarrow similar enhancement of piezoelectric coefficient d_{33}

poling direction	ferroic phase	$\begin{array}{l} compound \\ (T = 25\ ^\circ C) \end{array}$	$d_{33}\\[pC/N]$	polarization vectors
[111]	4mm	$BaTiO_3$	203	[100], [010], [001]
	3m	(b)	145	$[111]^{(a)}$
[001]	4mm	$BaTiO_3$	125	$[001]^{(a)}$
	3m	(c)	350	$[111], [\overline{11}1], [\overline{1}11], [1\overline{1}1]$
[110]	$mm2_{xy}$	KNbO ₃	18.4	$[110]^{(a)}$
[001]	4mm		51.7	$[101], [\overline{1}01], [011], [0\overline{1}1]$
(a) single	domain s	state	(b) E > 4	40 kV/cm

Table 2. Piezoelectric properties of $BaTiO_3$ and $KNbO_3$ single crystals.

 $^{(c)} T = -100 \,^{\circ}C$

PROBLEM:

DETERMINE ALL POSSIBLE ENGINEERED DOMAIN CONFIGURATIONS WHICH CAN BE PRODUCED BY EXTERNAL FIELDS

2. DOMAIN CONFIGURATIONS, AVERAGE TENSOR PROPERTIES AND EXTERNAL FIELDS

A simple model of a multidomain crystal

Basic characteristics:

- \bullet point groups of prototypic and ferroic phase, ${\sf G}$ and ${\sf F},$ resp.
- n = |G|/|F| possible single domain states <1>,..., <n>
 |G|, |F| the number of operations in those point groups

all states equivalent under **G**:

$$\langle j \rangle = g_{i \to j} \langle i \rangle$$
 for any $i \neq j, g_{i \to j} \notin \mathsf{F}_i = Stab_{\mathsf{G}}(\langle i \rangle)$
the stabilizer of the *i*th state

numbering through left cosets of F_1 in G

- cosets $G = F_1 + g_2 F_1 + \cdots + g_n F_1$ states $<1>, <2>=g_2<1>, \ldots, <n>=g_n<1>$
- partial volumes v_i of the *n* states, $v_1 + \cdots + v_n = 1$

Domain configuration (DC) $C(v_i) = v_1 < 1 > \sqcup v_2 < 2 > \sqcup \ldots \sqcup v_n < n >$ $\ldots \sqcup \sim \text{coexists with}$

Some concepts in use:

 $\textbf{H-orbit of the state <} i >, \textbf{H} \subset \textbf{G}: \qquad \textbf{H} \star i = \{h < i >; h \in \textbf{H}\}$

 \rightarrow H-decomposition: $\{1, \ldots, n\} = H \star i_1 \cup \cdots \cup H \star i_p$

The closure H^c of the group H with respect to the group pair $G \supset F$:

$$\mathsf{H}^{\mathsf{c}} = Stab_{\mathsf{G}}(\mathsf{H} \star i_1) \cap \dots \cap Stab_{\mathsf{G}}(\mathsf{H} \star i_p) \supseteq \mathsf{H}$$

Characteristics of domain configurations

1. Effective symmetry K of domain configuration $C(v_i)$

$$\mathsf{K} = \{g \in \mathsf{G}; gC(v_i) = v_1g_{<1>} \sqcup \cdots \sqcup v_1g_{} = C(v_i)\}$$

... the stabilizer
$$\mathsf{K} = Stab_{\mathsf{G}}(C(v_i)) \text{ of } C(v_i)$$

stability condition of a DC $C(v_i)$ exposed to an external field F:

$$\begin{split} &\mathsf{K} \subseteq \mathsf{J}^{\mathsf{c}}, \, \mathsf{J} = Stab_{\mathsf{O}(3)}(\boldsymbol{F}) \cap \mathsf{G} \\ &Stab_{\mathsf{O}(3)}(\boldsymbol{F}) \!=\! \{g \!\in\! \!\mathsf{O}(3); g\boldsymbol{F} \!=\! \boldsymbol{F}\} \quad \dots \text{ orthogonal stabilizer of } \boldsymbol{F} \end{split}$$

Statement 1. A subgroup H of G is the stabilizer of some DC $C(v_i)$ if and only if it coincides with its closure, $\mathsf{H} = \mathsf{H}^{\mathsf{c}}$.

2. Unique expression of any DC through coherent configurations

Coherent DC $\langle j_1, \ldots, j_q \rangle$ with the stabilizer K:

all states $\langle j_1 \rangle, \ldots, \langle j_q \rangle$ form an orbit $\mathsf{K} \star j_1$

 $\implies v_{j_1} = \dots = v_{j_q} = \frac{1}{q} \quad \& \quad \mathsf{K} = Stab_\mathsf{G}(\mathsf{K} \star j_1)$

Statement 2. Any DC with stabilizer K is coherent or a unique combination of s coherent DC's $\langle i_{j,1}, \ldots, i_{j,r_j} \rangle$, $s \leq n$:

$$C(u_j) = u_1 < i_{1,1}, \dots, i_{1,r_1} > \sqcup \dots \sqcup u_s < i_{s,1}, \dots, i_{s,r_s} >$$

 $-\mathsf{K} = Stab_{\mathsf{G}}(\mathsf{K} \star i_{1,1}) \cap \cdots \cap Stab_{\mathsf{G}}(\mathsf{K} \star i_{s,1})$

 $-u_j$ is a partial volume of the *j*th coherent DC, $u_1 + \cdots + u_s = 1$

3. Example of potassium niobate: ferroelectric Amm2-phase.

prototypic group $G = m\overline{3}m$ ferroic group $F = 2_{xy}m_{x\overline{y}}m_z$ twelve ferroelectric states

*i*th state – polarization $P^{(i)}$ \leftrightarrow oriented line with arrow

ightarrow initial non-ferroelectric coherent DC <1, 2, ..., 12> Stabilizer K = m3m

Non-ferroelectric coherent DC's produced by mechanical stress \boldsymbol{T}

Stress field $T_{11} = T_{22} \neq T_{33}$ $Stab_{O(3)}(T) = \infty_z/m_zmm$ Configurations: <1, 2, 3, 4>, <5, 6, 7, 8, 9, 10, 11, 12>Stabilizer $K = 4_z/m_zm_xm_{xy}$

Stress field $T_{11} = T_{22} = T_{33}$, $T_{23} = T_{31} = T_{12}$ $Stab_{O(3)}(T) = \infty_{xyz}/m_{xyz}mm$ Configurations: <1, 3, 5, 7, 9, 11>, <2, 4, 6, 8, 10, 12>Stabilizer $K = \overline{3}_{xyz}2_{x\overline{y}}/m_{x\overline{y}}$

4. Average tensor properties of a DC $C(v_i)$. The average \overline{T} of a tensor property T (first approximation): $\sim \overline{T} = v_1 T^{(1)} + \cdots + v_n T^{(n)}$ $T^{(i)}$ – contribution from the *i*th state

Final expressions:

coherent DC $\langle j_1, \ldots, j_q \rangle \sim \overline{T} = \frac{1}{q} (T^{(j_1)} + \cdots + T^{(j_q)})$ general DC $C(u_j) = u_1 \langle i_{1,1}, \ldots, i_{1,r_1} \rangle \sqcup \cdots \sqcup u_s \langle i_{s,1}, \ldots, i_{s,r_s} \rangle$

> $\sim \quad \overline{T} = u_1 \overline{T}^{(1)} + \dots + u_s \overline{T}^{(s)}$ $\overline{T}^{(j)}$ – contribution from the *j*th coherent DC

3. TENSOR PROPERTIES OF COHERENT CONFIGURATIONS

Tensor representation S of rank m

Tensor space
$$L$$
: basis – $\{e_{jk...}; j, k, ... = 1, 2, 3\}$, dim $L = 3^m$
 m -indices
 $S: O(3) \ni g \to S(g) \in GL(L)$,
 $S(g)e_{jk...} = \sum_{j'k'...=1}^{3} \varepsilon(g)D_{j'j}(g)D_{k'k}(g) \cdots e_{j'k'...}, \quad j, k, ... = 1, 2, 3$
 $\varepsilon(g) = \begin{cases} 1 & -\text{polar} \\ |D(g)| & -\text{axial} \end{cases}$ tensors $m = 1: S \sim \begin{cases} D_{1u} \\ D_{1g} \end{cases}$
 $m \ge 2:$ a tensor property $T = \sum_{jk...=1}^{3} T_{jk...}e_{jk...}$
permutational symmetry of m indices $\dots \quad Q_T \subseteq S_m$
 $\pi \in Q_T: \quad S(\pi)e_{j_1j_2...} = e_{j'_1j'_2...}, \quad j'_k = j_{\pi^{-1}(k)}, \quad k = 1, 2, ...$
projection operator $P_{Q_T} = \frac{1}{|Q_T|} \sum_{\pi \in Q_T} S(\pi): P_{Q_T}L = L^T$
 \dots carrier space of tensor T
polar tensor $T: Q_T = C_1 \Longrightarrow L^T = L, S \sim D_{1u}^m$

 $Q_T \neq C_1 \Longrightarrow L^T \subset L, S \sim [D_{1u}^m]^{Q_T} \dots$ symmetrized power

Neumann's principle: $Stab_{O(3)}(\mathbf{T}^{(1)}) \supseteq \mathsf{F}_1$ $\iff \mathsf{F}_1 < 1 > = <1 > \Rightarrow \text{ tensor property } \mathbf{T}^{(1)} \in L_{\mathsf{F}_1} \subseteq L^{\mathbf{T}}$ $L_{\mathsf{F}_1} = \{ \mathbf{x} = \sum_{jk...=1}^3 x_{jk...} \mathbf{e}_{jk...} \in L^{\mathbf{T}}; S(f)\mathbf{x} = \mathbf{x} \text{ for all } f \in \mathsf{F}_1 \}$... stability space of F_1

projection operator $P_{\mathsf{F}_1} = \frac{1}{|\mathsf{F}_1|} \sum_{f \in \mathsf{F}_1} S(f)$: $P_{\mathsf{F}_1} L^T = L_{\mathsf{F}_1}$

a coherent DC $\langle j_1, \ldots, j_p \rangle$, $Stab_{\mathsf{G}}(\langle j_1, \ldots, j_p \rangle) = \mathsf{K}$: $\overline{\mathbf{T}} = \frac{1}{p}(\mathbf{T}^{(j_1)} + \cdots + \mathbf{T}^{(j_p)}) = P_{\mathsf{K}}\mathbf{T}^{(j_1)} = \cdots = P_{\mathsf{K}}\mathbf{T}^{(j_p)} \in L_{\mathsf{K}}$ Statement 3. The average property \overline{T} of a coherent configuration $\langle j_1, \ldots, j_p \rangle$ will have the same form as the tensor T of a single domain crystal with equal macroscopic symmetry K if $P_{\mathsf{K}}L_{\mathsf{F}_{j_1}} = L_{\mathsf{K}}$.

Basic observations: $P_{\mathsf{K}}L_{\mathsf{F}_{j_1}} = 0 \iff L_{\mathsf{K}} \perp L_{\mathsf{F}_{j_1}}.$

Four cases:

$$\begin{array}{ccc} P_{\mathsf{K}}L_{\mathsf{F}_{j_{1}}} = 0 & \Longrightarrow & \overline{T} = 0 \\ \bullet & P_{\mathsf{K}}L_{\mathsf{F}_{j_{1}}} = L_{\mathsf{K}} & \Longrightarrow & Stab_{\mathsf{O}(3)}(\overline{T}) = Stab_{\mathsf{O}(3)}(T) \\ \Box & 0 \subset P_{\mathsf{K}}L_{\mathsf{F}_{j_{1}}} \subset L_{\mathsf{K}} & \& & Stab_{\mathsf{O}(3)}(\overline{T}) = Stab_{\mathsf{O}(3)}(T) \\ \Delta & 0 \subset P_{\mathsf{K}}L_{\mathsf{F}_{j_{1}}} \subset L_{\mathsf{K}} & \Leftarrow & Stab_{\mathsf{O}(3)}(\overline{T}) \supset Stab_{\mathsf{O}(3)}(T) \end{array}$$

Similar four cases after projection $P^{R_{q_i}}: L^T \to L^{T, R_{q_i}}, T \to T^{R_{q_i}}$ R_{q_i} - an irreducible representation (irep) of G $L^{T, R_{q_i}}$ - maximal G-invariant subspace of L^T whose G-irreducible subspaces afford just the irep R_{q_i} $L_{\mathsf{F}_{j_1}} \to L_{\mathsf{F}_{j_1}}^{R_{q_i}} = L_{\mathsf{F}_{j_1}} \cap L^{T, R_{q_i}}, L_{\mathsf{K}} \to L_{\mathsf{K}}^{R_{q_i}} = L_{\mathsf{K}} \cap L^{T, R_{q_i}}$

Ferroelectric monoclinic coherent DC produced by electric field

Electric field (E_1, E_1, E_3) , $|E_1| < |E_3|$ $Stab_{O(3)}(E) = \infty_{[11\kappa]} m_{x\bar{y}}m$. Configuration <5, 9>Stabilizer $K = m_{x\bar{y}}$

TENSOR PROPERTIES OF A COHERENT DOMAIN CONFIGURATION

with average symmetry K = mx-y in $KNbO_3$

 $L = Stab_{O(3)}(T)$ - orthogonal stabilizer of a tensor **T**

4. FERROELECTRIC COHERENT CONFIGURATIONS OF Amm2-PHASE OF POTASSIUM NIOBATE CRYSTALS

Coherent configurations

Electric field $(E_1, E_1, 0)$ $Stab_{O(3)}(E) = \infty_{xy}m_{x\overline{y}}m_z$ Configurations <1> and <5, 8, 9, 10>Stabilizer $K = 2_{xy}m_{x\overline{y}}m_z$

Electric field $(0, 0, E_3)$ mech. stress T_{11}, T_{22}, T_{33} $Stab_{O(3)}(\mathbf{E}) = \infty_z m_x m_y$ $Stab_{O(3)}(\mathbf{T}) = m_z m_x m_y$ Configuration <5, 6>Stabilizer $K = m_x m_y 2_z$

Minimal incoherent configurations

Electric field $(E_1, E_2, 0)$ $Stab_{O(3)}(E) = \infty_{[1\kappa 0]}m_zm.$ Configurations $u_1 < 1 > \sqcup u_2 < 2 >,$ $u_1 < 5, 8 > \sqcup u_2 < 9, 10 >,$ $u_1 < 1 > \sqcup u_2 < 5, 8 >,$ $u_1 < 2 > \sqcup u_2 < 9, 10 >$ Stabilizer $K = m_z$

Non-coherent DC $C(u_j)$: $C(u_j) = u_1 \langle i_{1,1}, \dots, i_{1,r_1} \rangle \sqcup \dots \sqcup u_s \langle i_{s,1}, \dots, i_{s,r_s} \rangle$ $Stab_{\mathsf{G}}(\langle i_{j,1}, \dots, i_{j,r_j} \rangle) = \mathsf{K}_j, \ j = 1, \dots, s$ $Stab_{\mathsf{G}}(C(u_j)) = \mathsf{K} = \mathsf{K}_1 \cap \dots \cap \mathsf{K}_s = \bigcap_{j=1}^s \mathsf{K}_j$ $\mathsf{K} \neq \bigcap_{j \neq k} \mathsf{K}_j, \ k = 1, \dots, s \implies \text{minimal incoherent DC}$

DOMAIN CONFIGURATIONS IN POTASSIUM NIOBATE:

FORM OF STRAIN TENSOR *e* and its orthogonal stabilizer $L = \text{Stab}_{O(3)}(e)$

5. CONCLUSIONS

Tensor properties (summary): Coherent DC's vs. single domain states

Table 3. Non-equivalent coherent DC's produced by electric field.Comparison with hypothetic single domain states of same symmetry.

Electric field	Cohoront DC'a	Stabilizer	Stabilizers:	Tensor
E	Concrete DC s	K of DC	\overline{T} vs. T	form
$(0, 0, E_3)$	<5, 6, 9, 12>	$4_z m_x m_{x \overline{y}}$	=	=
(E_1, E_1, E_1)	<1,5,9>	$3_{xyz}m_{x\overline{y}}$	=	\neq
$(E_1, E_1, 0)$	<1>;<5,8,9,10>	$2_{xy}m_{x\overline{y}}m_z$	= ; ≠	$=; \neq$
(E_1, E_1, E_3)	-5 9	m. –		\neq
$ E_1 < E_3 $		Шху		
	Minimal incoherent			
	DC's			
$(E_1, E_2, 0)$	$u_1 < 1 > \sqcup u_2 < 2 >;$		\neq	\neq
	$u_1 < 5, 8 > \sqcup u_2 < 9, 10 >;$	m	\neq	\neq
	$u_1 < 1 > \sqcup u_2 < 5, 8 >;$	111 _Z	=	\neq
	$u_1 < 1 > \sqcup u_2 < 6, 7 >$		=	\neq

DC's will not have minimal free energy in electric field alone

Table 4. Non-equivalent coherent DC's produced by electric field and mechanical stress.

El. field	Stress	Coherent	Stabilizer	Stabilizers:	Tensor
$oldsymbol{E}$	T	DC's	K of DC	\overline{T} vs. T	form
$(0, 0, E_3)$	T_{11}, T_{22}, T_{33}	<5,6>	$m_x m_y 2_z$	\neq	\neq
$(E_1, -E_1, 0)$	$T_{11} = T_{22}, T_{33}, T_{23} = T_{31}$	<5,11>	2 _{xy}	=	\neq

Main results

• 6 non-equivalent coherent DC's can be, theoretically, produced by electric field, possibly in combination with additional stress

• In 5 coherent DC's form of odd rank and/or even rank tensors differs from tensor form in a single domain crystal with same symmetry:

- for 2 orthorhombic coherent DC's the stabilizers of even rank tensors are different than for respective single domain states

- in 4 cases, $3_{xyz}m_{x\overline{y}}$, $m_xm_y2_z$, $2_{x\overline{y}}$ and $m_{x\overline{y}}$, pseudo-spontaneous tensor components are forbidden in the ferroelectric *Amm2*-phase

- for coherent DC's whose stabilizer is one of ferroic groups, certain spontaneous tensor component(s) will be zero due to the orthogonality of relevant stability spaces, e.g.

 ${}_{<}5,8,9,10{}_{>}\colon L^{T_{2g}}_{\mathsf{K}=2_{\mathsf{xy}}\mathsf{m}_{\mathsf{x}\overline{\mathsf{y}}}\mathsf{m}_{\mathsf{z}}}\perp L^{T_{2g}}_{\mathsf{F}_{5}=\mathsf{m}_{\mathsf{x}}2_{\mathsf{y}\mathsf{z}}\mathsf{m}_{\mathsf{y}\overline{\mathsf{z}}}} \Rightarrow \overline{e}_{12}=0$

• Quite similar features were established for 4 incoherent DC's with the monoclinic stabilizer m_z .

Concluding remarks

non-equivalent coherent configurations \longrightarrow new materials

- \bullet stabilizer ${\sf K}$ of a coherent DC stands as 'fake' ferroic symmetry
- average properties are given by single domain parameters

Five basic cases:

Comparison of average tensor form with single domain form for odd- and even-parity tensors.

tensor parity		stabilizer K of		
cas	e	odd	even	coherent DC $[m{T}]$
A		same	same	4mm
В		different	different	m _{xy}
C		same	different	$m_x m_y 2_z, 2_{xy} m_{x\overline{y}} m_z$
D		different	same	_
	a_1	same	mixed case	-
	a_2	mixed case	same	$3m[\mathbf{P}] \approx D$
E	b_1	different	mixed case	-
	b_2	mixed case	different	$2_{x\bar{y}}[\mathbf{P}] \approx B$
	С	mixed case	mixed case	_

mixed case - not for all tensors with same parity both forms coincide

 $[\boldsymbol{T}]$ - both forms coincide/differ for tensor \boldsymbol{T}