TENSOR PROPERTIES OF COHERENT DOMAIN CONFIGURATIONS IN POTASSIUM NIOBATE CRYSTALS

OUTLINE

1. INTRODUCTORY REMARKS

2. DOMAIN CONFIGURATIONS, AVERAGE TENSOR PROPERTIES AND EXTERNAL FIELDS

3. TENSOR PROPERTIES OF COHERENT CONFIGURATIONS

4. FERROELECTRIC COHERENT CONFIGU-RATIONS OF Amm2-PHASE OF POTASSIUM NIOBATE CRYSTALS

5. CONCLUSIONS

1. INTRODUCTORY REMARKS

Piezoelectric materials

 \hookrightarrow more than seven decades of commercial use

 \leftrightarrow a wide variety of applications ranging from crystal-controlled oscillators to small size active elements of modern electronic devices

Piezoelectric effect

material response to electric field $\mathbf{E} = (E_i)$, or stress field $\mathbf{T} = (T_{jk})$ *piezoelectric tensor* $\boldsymbol{d} = (d_{ijk}) \sim V[V^2]$: 18 components direct effect: stress field (e.g. sound pressure) → polarization, appearance of electric field

$$
P_i = \sum_{j,k=1}^{3} d_{ijk} T_{jk} \qquad \qquad \ldots \text{transducers}
$$

converse effect: electric field −→ induced strain, change in shape

$$
\sigma_{jk} = \sum_{i=1}^{3} d_{ijk} E_i
$$
 ... actuators

piezolectric coefficient d_{333} :

(a) $P_3 = d_{333}T_{33}$ – induced polarization along [001] under stress applied in the 3-direction

(b) $\sigma_{33} = d_{333}E_3$ – induced strain in the 3-direction under $\boldsymbol{E} \parallel [001]$

Structural forms of piezoelectrics:

A single domain crystals

 $-$ SiO₂ (oscillators), LiNbO₃ (SAW devices), \cdots

B polycrystalline ceramics:

typical material: solid solution $Pb(Zr_{(1-x)}Ti_x)O_3$ (PZT)

compositional tuning of material parameters: doping

soft PZT (donors): sensors, ultrasonic imaging systems

hard PZT (acceptors): autofocusing in cameras, tuning of lasers C single multidomain crystals:

1997 – ultrahigh piezoelectric coefficient d_{33} in rhombohedral single crystals of ferroelectric $Pb(Zn_{1/3}Nb_{2/3})O_3-8\%PbTiO_3$ (PZN-PT) poled along the non-polar direction [001]

– new generation of high sensitive actuators and transducers

structural form	material	d_{33} $[pC/N]$
single domain crystals $SiO2$		~ 50
polycrystalline texture 'soft' PZT		~ 600
	'hard' PZT ~ 200	
single crystals	PZN-PT	> 2000

Table 1. Piezoelectric response of piezoelectric materials.

Engineered domain configurations

1999 – stable domain structure in the PZN-PT crystals after poling suggestion: equal distribution of four equivalent domain states with polarizations along [111], $[\overline{11}]$, $[\overline{11}]$ and $[1\overline{11}]$ (S. Wada *et al.*) $\text{QUERY: } \iota$ engineered domain configuration – is it a factor supporting enhanced piezoelectric response to appear ?

experiments with non-lead single crystals of $BaTiO₃$ and $KNbO₃$

 \rightarrow similar enhancement of piezoelectric coefficient d_{33}

poling direction	ferroic phase	compound $(T = 25 \degree C)$	d_{33} [pC/N]	polarization vectors
[111]	4mm	BaTiO ₃	203	[100], [010], [001]
	3m	(b)	145	$[111]^{(a)}$
[001]	4mm	BaTiO ₃	125	$[001]^{(a)}$
	3m	(c)	350	$\left[111\right], \left[\overline{11}1\right], \left[\overline{1}11\right], \left[1\overline{1}1\right]$
[110]	$mm2_{xy}$	KNbO ₃	18.4	$[110]^{(a)}$
[001]	4mm		51.7	$[101], [\overline{1}01], [011], [\overline{01}1]$
(a) single domain state				(b) $E > 40 \, kV/cm$

Table 2. Piezoelectric properties of $BaTiO₃$ and $KNbO₃$ single crystals.

 (c) T = $-100 °C$

PROBLEM:

DETERMINE ALL POSSIBLE ENGINEERED DOMAIN CONFIGURATIONS WHICH CAN BE PRODUCED BY EXTERNAL FIELDS

2. DOMAIN CONFIGURATIONS, AVERAGE TENSOR PROPERTIES AND EXTERNAL FIELDS

A simple model of a multidomain crystal

Basic characteristics:

- point groups of prototypic and ferroic phase, G and F, resp.
- $n = |G|/|F|$ possible single domain states <1>, ..., <n> $|G|$, $|F|$ - the number of operations in those point groups

all states equivalent under G:

 $\langle i \rangle = g_{i \to j} \langle i \rangle$ for any $i \neq j$, $g_{i \to j} \notin F_i = Stab_G(\langle i \rangle)$ the stabilizer of the ith state

numbering through left cosets of F_1 in G

cosets $G = F_1 + q_2 F_1 + \cdots + q_n F_1$ states $\langle 1, 2 \rangle = q_2 \langle 1, \ldots, \langle n \rangle = q_n \langle 1 \rangle$

• partial volumes v_i of the *n* states, $v_1 + \cdots + v_n = 1$

Domain configuration (DC) $C(v_i) = v_1$ < 1 > \sqcup v_2 < 2 \sqcup \ldots \sqcup v_n < n > \dots ⊔ \sim coexists with

Some concepts in use:

H-orbit of the state *, H* \subset *G: H* $\star i = \{h$ *;* $h \in H\}$

 $\textsf{H-decomposition:}$ $\{1, \ldots, n\} = \textsf{H} \star i_1 \cup \cdots \cup \textsf{H} \star i_n$

The closure H^c of the group H with respect to the group pair $G \supset F$:

$$
H^{c} = Stab_{G}(H \star i_{1}) \cap \cdots \cap Stab_{G}(H \star i_{p}) \supseteq H
$$

Characteristics of domain configurations

1. Effective symmetry $\mathsf K$ of domain configuration $C(v_i)$

$$
\mathsf{K} = \{ g \in \mathsf{G}; gC(v_i) = v_1 g \langle 1 \rangle \sqcup \dots \sqcup v_1 g \langle n \rangle = C(v_i) \}
$$

... the stabilizer
$$
\mathsf{K} = \text{Stab}_{\mathsf{G}}(C(v_i)) \text{ of } C(v_i)
$$

stability condition of a DC $C(v_i)$ exposed to an external field \boldsymbol{F} :

 $K \subseteq J^c$, $J = Stab_{O(3)}(F) \cap G$ $Stab_{O(3)}(F) = \{g \in O(3); gF = F\}$... orthogonal stabilizer of F

Statement 1. A subgroup H of G is the stabilizer of some DC $C(v_i)$ if and only if it coincides with its closure, $H = H^c$.

2. Unique expression of any DC through coherent configurations

Coherent DC $\langle j_1, \ldots, j_q \rangle$ with the stabilizer K:

all states $\langle j_1 \rangle, \cdots, \langle j_q \rangle$ form an orbit $\mathsf{K} \star j_1$

 $\implies v_{j_1}=\cdots=v_{j_q}=\frac{1}{q}$ $\frac{1}{q}$ & $\mathsf{K} = Stab_{\mathsf{G}}(\mathsf{K} \star j_1)$

Statement 2. Any DC with stabilizer **K** is coherent or a unique combination of s coherent DC's $\langle i_{j,1}, \ldots, i_{j,r_j} \rangle$, $s \leq n$:

$$
C(u_j) = u_1 < i_{1,1}, \ldots, i_{1,r_1} > \sqcup \cdots \sqcup u_s < i_{s,1}, \ldots, i_{s,r_s} >
$$

 $-$ K = $Stab_G$ (K $\star i_{1,1})$ $\cap \cdots \cap Stab_G$ (K $\star i_{s,1})$

 $-u_j$ is a partial volume of the *j*th coherent DC, $u_1 + \cdots + u_s = 1$

3. Example of potassium niobate: ferroelectric Amm2-phase.

prototypic group $G = m\overline{3}m$ ferroic group $F = 2_{xy}m_{x\overline{y}}m_{z}$ twelve ferroelectric states

*i*th state – polarization $P^{(i)}$ \leftrightarrow oriented line with arrow

 \hookrightarrow initial non-ferroelectric coherent DC $<1, 2, \ldots, 12>$ Stabilizer $K = m\overline{3}m$

Non-ferroelectric coherent DC's produced by mechanical stress T

Stress field $T_{11}= T_{22} \neq T_{33}$ $Stab_{O(3)}(T) = \infty_{z}/m_{z}$ mm Configurations: $<1, 2, 3, 4,$ $\{5, 6, 7, 8, 9, 10, 11, 12\}$ Stabilizer $K = 4_z/m_z m_x m_{xy}$

Stress field $T_{11} = T_{22} = T_{33}$, $T_{23}= T_{31}= T_{12}$ $Stab_{O(3)}(T) = \infty_{xyz}/m_{xyz}$ mm Configurations: $<1, 3, 5, 7, 9, 11$, $\langle 2, 4, 6, 8, 10, 12 \rangle$ Stabilizer $\mathsf{K} = \overline{\mathsf{3}}_{\mathsf{x} \mathsf{y} \mathsf{z}} \mathsf{2}_{\mathsf{x} \overline{\mathsf{y}}} / \mathsf{m}_{\mathsf{x} \overline{\mathsf{y}}}$

4. Average tensor properties of a DC $C(v_i)$. The average \overline{T} of a tensor property T (first approximation): $\sim \quad \overline{\bm{T}} = v_1 \bm{T}^{(1)} + \cdots + v_n \bm{T}^{(n)}$ $\boldsymbol{T}^{(i)}$ – contribution from the *i*th state

Final expressions:

coherent DC $\langle j_1, \ldots, j_q \rangle \sim \overline{T} = \frac{1}{q}$ $\frac{1}{q}(\boldsymbol{T}^{(j_1)}+\cdots+\boldsymbol{T}^{(j_q)})$ general DC $C(u_j) = u_1 < i_{1,1}, \ldots, i_{1,r_1} > \square \cdots \square u_s < i_{s,1}, \ldots, i_{s,r_s} >$

> $\sim \quad \overline{\bm{T}} = u_1 \overline{\bm{T}}^{(1)} + \cdots + u_s \overline{\bm{T}}^{(s)}$ $\overline{T}^{(j)}$ – contribution from the *j*th coherent DC

3. TENSOR PROPERTIES OF COHERENT CONFIGURATIONS

Tensor representation S of rank m

Tensor space L : basis $-\{\boldsymbol{e}_{jk...};j,k,\ldots=1,2,3\}$, dim $L=3^m$ \sum_{m −indices $S: O(3) \ni q \rightarrow S(q) \in GL(L)$, $S(g)e_{jk...} = \sum_{j'k'...=1}^{3} \varepsilon(g)D_{j'j}(g)D_{k'k}(g) \cdots e_{j'k'...}, \ \ j, k, ... = 1, 2, 3$ $\varepsilon(g) = \begin{cases} 1 \\ 1 \end{cases}$ $|D(g)|$ $\left.\begin{array}{c} \text{- polar} \\ \text{- axial} \end{array}\right\}$ tensors $m = 1 : S \sim$ $\int D_{1u}$ D_{1g} $m\geq 2$: a tensor property $\boldsymbol{T}=\sum_{jk...=1}^3 T_{jk...}\boldsymbol{e}_{jk...}$ permutational symmetry of m indices \ldots $Q_T \subseteq S_m$ $\pi\!\in\!Q_{\bm{T}}:\;\;S(\pi)\bm{e}_{j_1j_2...}=\bm{e}_{j_1'}$ j'_2 $j'_{k} = j_{\pi^{-1}(k)}, \quad k = 1, 2, \ldots$ projection operator $P_{Q_T} = \frac{1}{|Q|}$ $|Q_{\bm{T}}|$ $\sum_{\pi \in Q_T} S(\pi)$: $P_{Q_T} L = L^T$ \ldots carrier space of tensor \boldsymbol{T} polar tensor $\boldsymbol{T}: Q_{\boldsymbol{T}} = C_1 \Longrightarrow L^{\boldsymbol{T}} = L, S \sim D_{1u}^m$

 $Q_{\bm{T}}\!\neq C_{1}\Longrightarrow L^{\bm{T}}\!\subset L,S\sim [D_{1u}^{m}]^{Q_{\bm{T}}}\ldots\;$ symmetrized power

 $Neumann's\ principle:$ $Stab_{O(3)}(\mathbf{T}^{(1)}) \supseteq F_1$ \iff F₁<1> = <1> \Rightarrow tensor property $\bm{T}^{(1)} \in L_{\mathsf{F}_1} \subseteq L^{\bm{T}}$ $L_{\mathsf{F}_1} = \{ \boldsymbol{x} = \sum_{jk...=1}^3 x_{jk} ... \boldsymbol{e}_{jk...} \in L^T; S(f) \boldsymbol{x} = \boldsymbol{x} \text{ for all } f \in \mathsf{F}_1 \}$ \ldots stability space of F_1

projection operator $P_{\mathsf{F}_1} = \frac{1}{|\mathsf{F}_1|}$ $\frac{1}{|\mathsf{F}_1|} \sum_{f \in \mathsf{F}_1} S(f)$: $P_{\mathsf{F}_1} L^T = L_{\mathsf{F}_1}$

a coherent DC $\langle j_1, \ldots, j_p \rangle$, $Stab_G(\langle j_1, \ldots, j_n \rangle) = K$: $\overline{\bm{T}} = \frac{1}{n}$ $\frac{1}{p}(\boldsymbol{T}^{(j_1)}+\cdots+\boldsymbol{T}^{(j_p)})$ $=$ $P_{\mathsf K} \boldsymbol{T}^{(j_1)}= \cdots = P_{\mathsf K} \boldsymbol{T}^{(j_p)} \in L_{\mathsf K}$ Statement 3. The average property \overline{T} of a coherent configuration $\langle j_1, \ldots, j_p \rangle$ will have the same form as the tensor **T** of a single domain crystal with equal macroscopic symmetry **K** if $P_K L_{F_{j_1}} = L_K$.

Basic observations: $= 0 \Longleftrightarrow L_{\mathsf{K}} \perp L_{\mathsf{F}_{j_1}}.$

Four cases: O
$$
P_K L_{F_{j_1}} = 0 \implies \overline{T} = 0
$$

\n $P_K L_{F_{j_1}} = L_K \implies Stab_{O(3)}(\overline{T}) = Stab_{O(3)}(T)$
\n \square $0 \subset P_K L_{F_{j_1}} \subset L_K \& Stab_{O(3)}(\overline{T}) = Stab_{O(3)}(T)$
\n \triangle $0 \subset P_K L_{F_{j_1}} \subset L_K \Longleftarrow Stab_{O(3)}(\overline{T}) \supset Stab_{O(3)}(T)$

Similar four cases after projection $P^{R_{q_i}} L^T \to L^{T, R_{q_i}}, T \to T^{R_{q_i}}$ R_{q_i} - an irreducible representation (irep) of ${\sf G}$ $L^{T,R_{q_i}}$ - maximal G-invariant subspace of L^T whose G-irreducible subspaces afford just the irep R_{q_i} $L_{\mathsf{F}_{j_1}\to L_{\mathsf{F}_{j_1}}^{R_{q_i}}}$ $F_{\scriptscriptstyle{\beta_{1}}}^{R_{q_{i}}}=L_{\mathsf{F}_{j_{1}}}\cap L^{\boldsymbol{T},R_{q_{i}}},\, L_{\mathsf{K}}\rightarrow L_{\mathsf{K}}^{R_{q_{i}}}=L_{\mathsf{K}}\cap L^{\boldsymbol{T},R_{q_{i}}}$

Ferroelectric monoclinic coherent DC produced by electric field

Electric field (E_1, E_1, E_3) , $|E_1| < |E_3|$ $Stab_{\mathsf{O}(3)}(\mathbf{E}) = \infty_{[11\kappa]} \mathsf{m}_{\mathsf{x}\overline{\mathsf{y}}} \mathsf{m}.$ **Configuration** $< 5, 9>$ Stabilizer $K = m_{x\overline{y}}$

TENSOR PROPERTIES OF A COHERENT DOMAIN CONFIGURATION

with average symmetry $K=$ mx-y in $KNbO₃$

L= Stab $_{(13)}(T)$ - orthogonal stabilizer of a tensor T

4. FERROELECTRIC COHERENT CONFIGURATIONS OF Amm2-PHASE OF POTASSIUM NIOBATE CRYSTALS

Coherent configurations

Electric field $(E_1, E_1, 0)$ $Stab_{O(3)}(\boldsymbol{E}) = \infty_{xy} m_{x\overline{y}} m_{z}$ Configurations $<1>$ and $<5, 8, 9, 10>$ Stabilizer $K = 2_{xy}m_{x\overline{y}}m_{z}$

Electric field $(0, 0, E_3)$ mech. stress T_{11}, T_{22}, T_{33} $Stab_{O(3)}(\boldsymbol{E}) = \infty$ _zm_xm_y $Stab_{O(3)}(T) = m_z m_x m_y$ Configuration $< 5, 6 >$

Stabilizer $K = m_x m_y 2_z$

Minimal incoherent configurations

Electric field $(E_1, E_2, 0)$ $Stab_{\mathsf{O}(3)}(\mathbf{E}) = \infty_{[1\kappa 0]} \mathsf{m}_z \mathsf{m}.$ Configurations $u_1<1>u_2<2>,$ $u_1<5, 8> \sqcup u_2<9, 10>$ $u_1 < 1 > 1$ $u_2 < 5$, 8 $u_1<2>u_2<9, 10>$ Stabilizer $K = m_z$

Non-coherent DC $C(u_i)$: $C(u_j) = u_1 < i_{1,1}, \ldots, i_{1,r_1} > \square \cdots \square \, u_s < i_{s,1}, \ldots, i_{s,r_s} >$ $Stab_G(\langle i_{j,1},\ldots,i_{j,r_j}\rangle) = {\sf K}_j, \ j=1,\ldots,s$ $Stab_G(C(u_j)) = K = K_1 \cap \cdots \cap K_s = \bigcap_{j=1}^s K_j$ $\mathsf{K} \neq \bigcap_{j \neq k} \mathsf{K}_j, \ k = 1, \ldots, s \implies \text{minimal incoherent DC}$

DOMAIN CONFIGURATIONS IN POTASSIUM NIOBATE:

FORM OF STRAIN TENSOR **e** and its orthogonal stabilizer L = Stab_{O(3)}(e)

5. CONCLUSIONS

Tensor properties (summary): Coherent DC's vs. single domain states

Table 3. Non-equivalent coherent DC's produced by electric field. Comparison with hypothetic single domain states of same symmetry.

Electric field	Coherent DC's	Stabilizer	Stabilizers:	Tensor
\bm{E}		K of DC	T vs. T	form
$(0, 0, E_3)$	${5, 6, 9, 12}$	$4_{z}m_{x}m_{x\overline{y}}$		
(E_1, E_1, E_1)	$-1, 5, 9$	$3_{xyz}m_{x\overline{y}}$		\neq
$(E_1, E_1, 0)$	<1 , $<$ 5, 8, 9, 10,	$2_{xy}m_{x\overline{y}}m_{z}$	$=$; \neq	$=$; \neq
(E_1, E_1, E_3)	${5, 9}$			
$ E_1 < E_3 $		$m_{x\overline{y}}$		
	Minimal incoherent			
	DC's			
$(E_1, E_2, 0)$	$u_1 < 1 > \sqcup u_2 < 2 >;$		\neq	\neq
	$u_1<5, 8> \square u_2<9, 10>;$		\neq	\neq
	$u_1<1> \cup u_2<5, 8>$;	m _z		\neq
	$u_1<1> \square$ $u_2<6, 7>$			\neq

DC's will not have minimal free energy in electric field alone

Table 4. Non-equivalent coherent DC's produced by electric field and mechanical stress.

El. field	Stress			Coherent Stabilizer Stabilizers: Tensor	
		DC's	K of DC \parallel	$\overline{\boldsymbol{T}}$ vs. \boldsymbol{T}	form
$(0,0,E_3)$	$ T_{11}, T_{22}, T_{33} < 5, 6>$		$m_x m_v 2_z$		
	$\left\vert \left(E_{1},-E_{1},0\right) \right\vert T_{11}\!=\!T_{22},T_{33},\, \left\vert _{<\overline{5},\,11>}\right.$		$^{\shortparallel}2_{\mathrm{x}\mathrm{v}}$		

Main results

• 6 non-equivalent *coherent* $DC's$ *can be*, theoretically, *produced by* electric field, possibly in combination with additional stress

• In 5 coherent $DC's$ form of odd rank and/or even rank tensors differs from tensor form in a *single domain crystal with same* symmetry:

– for 2 orthorhombic coherent DC's the stabilizers of even rank tensors are different than for respective single domain states

- in 4 cases, $3_{xyz}m_{x\overline{y}}$, $m_xm_y2_z$, $2_{x\overline{y}}$ and $m_{x\overline{y}}$, pseudo-spontaneous tensor components are forbidden in the ferroelectric Amm2-phase

– for coherent DC's whose stabilizer is one of ferroic groups, certain spontaneous tensor component(s) will be zero due to the orthogonality of relevant stability spaces, e.g.

 $<$ 5, 8, 9, 10> : $L_{\mathsf{K}_{=}}^{T_{2g}}$ $\frac{T_{2g}}{\text{K=2}_{\text{xy}}\text{m}_{\text{x}\overline{\text{y}}} \text{m}_{\text{z}}} \perp L_{\text{F}_5=\text{m}_{\text{x}}2_{\text{yz}}\text{m}_{\text{y}\overline{\text{z}}}}^{T_{2g}} \Rightarrow \overline{e}_{12} = 0$

• Quite similar features were established for 4 incoherent DC's with the monoclinic stabilizer m_z .

Concluding remarks

non-equivalent coherent configurations \longrightarrow new materials

- stabilizer K of a coherent DC stands as 'fake' ferroic symmetry
- average properties are given by single domain parameters

Five basic cases:

Comparison of average tensor form with single domain form for odd- and even-parity tensors.

mixed case - not for all tensors with same parity both forms coincide

 $\left[T\right]$ - both forms coincide/differ for tensor \boldsymbol{T}