Thermal fluctuations and order parameters in the SK model of a spin glass Asymptotic solution near the critical point

V. Janiš

FZÚ AV ČR, 13/12/2005

Grant: GAAV IAA-1010307 (2003-5) Collaborators: L. Zdeborová & A. Klíč

ト 4 ヨト 4 ヨト

1= 990

Thermal fluctuations and order parameters in the SK model of a spin glass Asymptotic solution near the critical point

V. Janiš

FZÚ AV ČR, 13/12/2005

Grant: GAAV IAA-1010307 (2003-5) Collaborators: L. Zdeborová & A. Klíč

1= 990

Outline of Part I

Mean-field theory for spin glasses
 Sherrington-Kirkpatrick model

- Averaging over randomness
 Replica trick
 - Parisi RSB solution

3 Summation over spin configurations

- TAP free energy
- TAP & RSB

Outline of Part II

4 Hierarchical TAP theory

Thermodynamic homogeneity and multiple TAP states

5 One-level hierarchical solution

- 1-TAP free energy and order parameters
- Stability conditions

6 Asymptotic solution near the critical point

- Fixed internal magnetic field
- Equilibrium value of the local field expanded

三日 のへの

Outline

Mean-field theory for spin glasses Sherrington-Kirkpatrick model

- 2 Averaging over randomnessReplica trickParisi RSB solution
- 3 Summation over spin configurations
 TAP free energy
 TAP & RSB

Sherrington-Kirkpatrick model

■ Ising Hamiltonian (classical spins) $S_l = \pm 1$

$$H[J,S] = \sum_{i < j} J_{ij}S_iS_j + h\sum_i S_i$$

Long-range random spin couplings

$$N\left\langle J_{ij}
ight
angle _{a
u}=\sum_{j=1}^{N}J_{ij}=0, \hspace{1em} N\left\langle J_{ij}^{2}
ight
angle _{a
u}=\sum_{j=1}^{N}J_{ij}^{2}=J^{2}$$

Spin couplings *J*_{ij} : Gaussian random variables

■ Free energy (self-averaging) – summation over lattice sites ⇔ averaging over spin couplings (ergodic theorem)

$$\mathcal{F} = -\frac{1}{\beta} \lim_{N \to \infty} \ln \operatorname{Tr}_{\mathcal{S}} \left[\exp\left\{ -\beta H[J, \mathcal{S}] \right\} \right] = -\frac{1}{\beta} \lim_{N \to \infty} \left\langle \ln \operatorname{Tr}_{\mathcal{S}} \left[\exp\left\{ -\beta H[J, \mathcal{S}] \right\} \right] \right\rangle_{\mathrm{av}}$$

Averaging the logarithm not straightforward

Sherrington-Kirkpatrick model

■ Ising Hamiltonian (classical spins) $S_l = \pm 1$

$$H[J,S] = \sum_{i < j} J_{ij}S_iS_j + h\sum_i S_i$$

Long-range random spin couplings

$$N \left\langle J_{ij} \right\rangle_{av} = \sum_{j=1}^{N} J_{ij} = 0, \quad N \left\langle J_{ij}^2 \right\rangle_{av} = \sum_{j=1}^{N} J_{ij}^2 = J^2$$

Spin couplings *J*_{ij} : Gaussian random variables

■ Free energy (self-averaging) – summation over lattice sites ⇔ averaging over spin couplings (ergodic theorem)

$$F = -\frac{1}{\beta} \lim_{N \to \infty} \ln \operatorname{Tr}_{\mathcal{S}} \left[\exp\left\{ -\beta H[J, \mathcal{S}] \right\} \right] = -\frac{1}{\beta} \lim_{N \to \infty} \left\langle \ln \operatorname{Tr}_{\mathcal{S}} \left[\exp\left\{ -\beta H[J, \mathcal{S}] \right\} \right] \right\rangle_{\mathsf{av}}$$

Averaging the logarithm not straightforward

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ ○ ◆

Sherrington-Kirkpatrick model

■ Ising Hamiltonian (classical spins) $S_l = \pm 1$

$$H[J,S] = \sum_{i < j} J_{ij}S_iS_j + h\sum_i S_i$$

Long-range random spin couplings

$$egin{array}{ll} \left\langle J_{ij}
ight
angle_{av} = \sum_{j=1}^{N}\,J_{ij} = 0, \quad N\left\langle J_{ij}^{2}
ight
angle_{av} = \sum_{j=1}^{N}\,J_{ij}^{2} = J^{2} \end{array}$$

Spin couplings J_{ij} : Gaussian random variables

■ Free energy (self-averaging) – summation over lattice sites ⇔ averaging over spin couplings (ergodic theorem)

$$\mathcal{F} = -\frac{1}{\beta} \lim_{N \to \infty} \ln \operatorname{Tr}_{\mathcal{S}} \left[\exp\left\{ -\beta \mathcal{H}[J, \mathcal{S}] \right\} \right] = -\frac{1}{\beta} \lim_{N \to \infty} \left\langle \ln \operatorname{Tr}_{\mathcal{S}} \left[\exp\left\{ -\beta \mathcal{H}[J, \mathcal{S}] \right\} \right] \right\rangle_{av}$$

Averaging the logarithm not straightforward

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ 토言 ∽)�(♡

Outline

Mean-field theory for spin glasses
 Sherrington-Kirkpatrick model

2 Averaging over randomness
Beplica trick
Parisi RSB solution

3 Summation over spin configurations
 TAP free energy
 TAP & RSB

Replica trick – basic idea

Replica trick: averaging of logarithm (quenched) converted to averaging of a partition function (annealed)

Logarithm: limit of the replication factor to zero (derived perturbatively)

$$\ln Z = \lim_{n \to 0} \frac{1}{n} (Z^n - 1)$$

with the replicated partition function (n integer)

$$Z^n = \prod_{i < j} \int dJ_{ij} \mu(J_{ij}) \prod_{lpha = 1}^n \prod_{i=1}^N \int dS^lpha_i
ho(S^lpha_i) \exp\left\{-eta H[J,S^lpha]
ight\}$$

- Integration over spin configurations and randomnes interchanged
- After averaging over randomness partition sum diagonal in lattice indices & nondiagonal in replica indices

Replica trick – basic idea

Replica trick: averaging of logarithm (quenched) converted to averaging of a partition function (annealed)

• Logarithm: limit of the replication factor to zero (derived perturbatively)

$$\ln Z = \lim_{n \to 0} \frac{1}{n} (Z^n - 1)$$

with the replicated partition function (*n* integer)

$$Z^n = \prod_{i < j} \int dJ_{ij} \mu(J_{ij}) \prod_{\alpha=1}^n \prod_{i=1}^N \int dS_i^\alpha \rho(S_i^\alpha) \exp\left\{-\beta H[J, S^\alpha]\right\}$$

Integration over spin configurations and randomnes interchanged

 After averaging over randomness — partition sum diagonal in lattice indices & nondiagonal in replica indices

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ ○ ◆

Replica trick – basic idea

Replica trick: averaging of logarithm (quenched) converted to averaging of a partition function (annealed)

• Logarithm: limit of the replication factor to zero (derived perturbatively)

$$\ln Z = \lim_{n \to 0} \frac{1}{n} (Z^n - 1)$$

with the replicated partition function (*n* integer)

$$Z^n = \prod_{i < j} \int dJ_{ij} \mu(J_{ij}) \prod_{lpha=1}^n \prod_{i=1}^N \int dS^{lpha}_i
ho(S^{lpha}_i) \exp\left\{-eta H[J,S^{lpha}]
ight\}$$

- Integration over spin configurations and randomnes interchanged
- After averaging over randomness partition sum diagonal in lattice indices & nondiagonal in replica indices

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ ○ ◆

■ Saddle point ($N \rightarrow \infty$) evaluation of the integral over spin configurations – order parameters emerge –

matrices in the replica (integer) indices

$$Q^{\alpha\beta} = \frac{J^2}{N} \sum_i \langle S_i^{\alpha} S_i^{\beta} \rangle, \quad \alpha \neq \beta$$

Free energy density averaged over spin couplings J_{ij}

$$f = \frac{1}{\beta} \max f_{T}(Q)$$
$$f_{T}(Q) = -\frac{\beta^{2}}{4} + \ln 2 + \lim_{n \to 0} \left\{ \frac{1}{4} \sum_{\alpha < \beta} \beta^{2} Q_{\alpha\beta}^{2} - \ln \left[\operatorname{Tr} \exp\left(\sum_{\alpha < \beta} \beta^{2} Q_{\alpha\beta} S^{\alpha} S^{\beta} \right) \right] \right\}$$

Next: separation of summation over replica indices in order to perform explicitly summation over spin configurations

Problem: matrix (visual) representation for integer numbers of replicas — needed for real numbers $n \rightarrow 0$

Replica trick – averaging

■ Saddle point ($N \rightarrow \infty$) evaluation of the integral over spin configurations – order parameters emerge –

matrices in the replica (integer) indices

$$Q^{\alpha\beta} = \frac{J^2}{N} \sum_i \langle S_i^{\alpha} S_i^{\beta} \rangle, \quad \alpha \neq \beta$$

Free energy density averaged over spin couplings J_{ij}

$$f = \frac{1}{\beta} \max f_{\mathcal{T}}(Q)$$
$$f_{\mathcal{T}}(Q) = -\frac{\beta^2}{4} + \ln 2 + \lim_{n \to 0} \left\{ \frac{1}{4} \sum_{\alpha < \beta} \beta^2 Q_{\alpha\beta}^2 - \ln \left[\operatorname{Tr} \exp\left(\sum_{\alpha < \beta} \beta^2 Q_{\alpha\beta} S^\alpha S^\beta \right) \right] \right\}$$

Next: separation of summation over replica indices in order to perform explicitly summation over spin configurations

Problem: matrix (visual) representation for integer numbers of replicas — needed for real numbers $n \rightarrow 0$

Replica trick – averaging

■ Saddle point ($N \rightarrow \infty$) evaluation of the integral over spin configurations – order parameters emerge –

matrices in the replica (integer) indices

$$Q^{\alpha\beta} = \frac{J^2}{N} \sum_i \langle S_i^{\alpha} S_i^{\beta} \rangle, \quad \alpha \neq \beta$$

Free energy density averaged over spin couplings J_{ij}

$$f = \frac{1}{\beta} \max f_{T}(Q)$$
$$f_{T}(Q) = -\frac{\beta^{2}}{4} + \ln 2 + \lim_{n \to 0} \left\{ \frac{1}{4} \sum_{\alpha < \beta} \beta^{2} Q_{\alpha\beta}^{2} - \ln \left[\operatorname{Tr} \exp\left(\sum_{\alpha < \beta} \beta^{2} Q_{\alpha\beta} S^{\alpha} S^{\beta} \right) \right] \right\}$$

Next: separation of summation over replica indices in order to perform explicitly summation over spin configurations

Problem: matrix (visual) representation for integer numbers of replicas — needed for real numbers $n \rightarrow 0$

Replica trickk – analytic continuation

Only specific matrices n × n allow for analytic continuation to real n
 The most general case – ultrametric structure

Ultrametric structure

only bloc matrices of identical elements
 larger blocks multiples of smaller blocks
 hierarchy of embeddings around the diagona

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ ○ ◆

Replica trickk – analytic continuation

Only specific matrices n × n allow for analytic continuation to real n
 The most general case – ultrametric structure

0	\boldsymbol{q}_0	\boldsymbol{q}_1	\boldsymbol{q}_1	q_2	q_2	q_2	q_2
\boldsymbol{q}_0	0	\boldsymbol{q}_1	q_1	q_2	q_2	q_2	q_2
q_1	q_1	0	q 0	q_2	q_2	q_2	q_2
q_1	q_1	q 0	0	q_2	q_2	q_2	q_2
q_2	q_2	q_2	q_2	0	\boldsymbol{q}_0	q_1	q_1
q_2	q_2	q_2	q_2	\boldsymbol{q}_0	0	q_1	q_1
q_2	q_2	q_2	q_2	q_1	q_1	0	q_0
q_2	q_2	q_2	q_2	\boldsymbol{q}_1	\boldsymbol{q}_1	q_0	0,

Ultrametric structure

- only bloc matrices of identical elements
- larger blocks multiples of smaller blocks
- hierarchy of embeddings around the diagonal

▶ < 표 ▶ < 표 ▶ 표 | = </p>

Outline

Mean-field theory for spin glassesSherrington-Kirkpatrick model

- Averaging over randomness
 Replica trick
 - Parisi RSB solution
- 3 Summation over spin configurations
 TAP free energy
 TAP & RSB

- Mean-field approximation effective separation of different spin replicas – makes summations over replica indices independent
- We convert $Q[S] = \sum_{\alpha < \beta} Q^{\alpha\beta} S^{\alpha} S^{\beta}$ to sums of squares
- **K** different values of $Q^{\alpha\beta}$: q_1, q_2, \ldots, q_K
- *Multilplicity* of individual values $q_1 (n_1 1)$ -times, $q_2 (n_2 n_1)$ -times, ..., q_K , $(n_K n_{K-1})$ -times
- Spin decouplings

$$2Q[S] = q_{K} \left(\sum_{\alpha=1}^{n_{k}=n} S^{\alpha}\right)^{2} + (q_{K+1} - q_{K}) \sum_{i=1}^{n_{k}/n_{K-1}-1} \left(\sum_{\alpha=in_{K-1}+1}^{(i+1)n_{K-1}} S^{\alpha}\right)^{2} \dots - nq_{1}$$

Squares in the partition sum decoupled via Hubbard-Startonovich transformations

- Mean-field approximation effective separation of different spin replicas – makes summations over replica indices independent
- We convert $Q[S] = \sum_{\alpha < \beta} Q^{\alpha\beta} S^{\alpha} S^{\beta}$ to sums of squares
- **K** different values of $Q^{\alpha\beta}$: q_1, q_2, \ldots, q_K
- *Multilplicity* of individual values $q_1(n_1-1)$ -times, $q_2(n_2-n_1)$ -times, ..., q_K , $(n_K n_{K-1})$ -times
- Spin decouplings

$$2Q[S] = q_{K} \left(\sum_{\alpha=1}^{n_{k}=n} S^{\alpha}\right)^{2} + (q_{K-1} - q_{K}) \sum_{i=1}^{n_{k}/n_{K-1}-1} \left(\sum_{\alpha=in_{K-1}+1}^{(i+1)n_{K-1}} S^{\alpha}\right)^{2} \dots - nq_{1}$$

Squares in the partition sum decoupled via Hubbard-Startonovich transformations

- Mean-field approximation effective separation of different spin replicas – makes summations over replica indices independent
- We convert $Q[S] = \sum_{\alpha < \beta} Q^{\alpha\beta} S^{\alpha} S^{\beta}$ to sums of squares
- *K* different values of $Q^{\alpha\beta}$: q_1, q_2, \ldots, q_K
- *Multilplicity* of individual values $q_1(n_1 1)$ -times, $q_2(n_2 n_1)$ -times, ..., q_K , $(n_K n_{K-1})$ -times
- Spin decouplings

$$2Q[S] = q_{K} \left(\sum_{\alpha=1}^{n_{K}=n} S^{\alpha}\right)^{2} + (q_{K-1}-q_{K}) \sum_{i=1}^{n_{K}/n_{K-1}-1} \left(\sum_{\alpha=in_{K-1}+1}^{(i+1)n_{K-1}} S^{\alpha}\right)^{2} \dots - nq_{1}$$

Squares in the partition sum decoupled via Hubbard-Startonovich transformations

- Mean-field approximation effective separation of different spin replicas – makes summations over replica indices independent
- We convert $Q[S] = \sum_{\alpha < \beta} Q^{\alpha\beta} S^{\alpha} S^{\beta}$ to sums of squares
- *K* different values of $Q^{\alpha\beta}$: q_1, q_2, \ldots, q_K
- *Multilplicity* of individual values $q_1 (n_1 1)$ -times, $q_2 (n_2 n_1)$ -times, ..., q_K , $(n_K n_{K-1})$ -times

Spin decouplings

$$2Q[S] = q_{K} \left(\sum_{\alpha=1}^{n_{k}=n} S^{\alpha}\right)^{2} + (q_{K-1}-q_{K}) \sum_{i=1}^{n_{k}/n_{K-1}-1} \left(\sum_{\alpha=in_{K-1}+1}^{(i+1)n_{K-1}} S^{\alpha}\right)^{2} \dots - nq_{1}$$

Squares in the partition sum decoupled via Hubbard-Startonovich transformations

- Mean-field approximation effective separation of different spin replicas – makes summations over replica indices independent
- We convert $Q[S] = \sum_{\alpha < \beta} Q^{\alpha\beta} S^{\alpha} S^{\beta}$ to sums of squares
- *K* different values of $Q^{\alpha\beta}$: q_1, q_2, \ldots, q_K
- *Multilplicity* of individual values $q_1 (n_1 1)$ -times, $q_2 (n_2 n_1)$ -times, ..., q_K , $(n_K n_{K-1})$ -times
- Spin decouplings

$$2Q[S] = q_{\kappa} \left(\sum_{\alpha=1}^{n_{\kappa}=n} S^{\alpha}\right)^{2} + (q_{\kappa-1}-q_{\kappa}) \sum_{i=1}^{n_{\kappa}/n_{\kappa-1}-1} \left(\sum_{\alpha=in_{\kappa-1}+1}^{(i+1)n_{\kappa-1}} S^{\alpha}\right)^{2} \dots - nq_{1}$$

Squares in the partition sum decoupled via Hubbard-Startonovich transformations

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ ○ ◆

- In RSB discrete hierarchies have no direct physical meaning limit to infinite number of hierarchies $K \rightarrow \infty$
- Traces of functions of replica matrices

$$\lim_{n \to 0} \frac{1}{n} \operatorname{Tr} Q^m = -\sum_{l=1}^{K} (n_{l-1} - n_l) q_l^m$$

with $1 = n_0 > n_1 > \ldots > n_K \ge 0$

Continuous limit: $K \to \infty$, $n_{l-1} - n_l = dx$, $n_l/n_{l+1} = 1 + g(x)dx$ *Order parameters*: g(x) for $x \in [0, 1]$

 $q(x) = q_l, \qquad 0 < n_l \le x \le n_{l-1} < 1$

Integral representation

$$\lim_{n\to 0}\frac{1}{n}\mathrm{Tr}Q^m = \int_0^1 d\mu(x)q(x)^m$$

- In RSB discrete hierarchies have no direct physical meaning limit to infinite number of hierarchies $K \rightarrow \infty$
- Traces of functions of replica matrices

$$\lim_{n\to 0} \frac{1}{n} \operatorname{Tr} Q^m = -\sum_{l=1}^{K} (n_{l-1} - n_l) q_l^m$$

with $1 = n_0 > n_1 > \ldots > n_K \ge 0$

Continuous limit: $K \to \infty$, $n_{l-1} - n_l = dx$, $n_l/n_{l+1} = 1 + g(x)dx$ *Order parameters*: q(x) for $x \in [0, 1]$

$$q(x) = q_l, \qquad 0 < n_l \le x \le n_{l-1} < 1$$

Integral representation

$$\lim_{n\to 0}\frac{1}{n}\mathrm{Tr}Q^m = \int_0^1 d\mu(x)q(x)^m$$

- In RSB discrete hierarchies have no direct physical meaning limit to infinite number of hierarchies $K \rightarrow \infty$
- Traces of functions of replica matrices

$$\lim_{n\to 0} \frac{1}{n} \operatorname{Tr} Q^m = -\sum_{l=1}^{K} (n_{l-1} - n_l) q_l^m$$

with $1 = n_0 > n_1 > \ldots > n_K \ge 0$

■ Continuous limit: $K \to \infty$, $n_{l-1} - n_l = dx$, $n_l/n_{l+1} = 1 + g(x)dx$ ■ Order parameters: g(x) for $x \in [0, 1]$

$$q(x) = q_l, \qquad 0 < n_l \le x \le n_{l-1} < 1$$

Integral representation

$$\lim_{n\to 0}\frac{1}{n}\mathrm{Tr}Q^m = \int_0^1 d\mu(x)q(x)^m$$

- In RSB discrete hierarchies have no direct physical meaning limit to infinite number of hierarchies $K \rightarrow \infty$
- Traces of functions of replica matrices

$$\lim_{n\to 0} \frac{1}{n} \operatorname{Tr} Q^m = -\sum_{l=1}^{K} (n_{l-1} - n_l) q_l^m$$

with $1 = n_0 > n_1 > \ldots > n_K \ge 0$

■ Continuous limit: $K \to \infty$, $n_{l-1} - n_l = dx$, $n_l/n_{l+1} = 1 + g(x)dx$ ■ Order parameters: g(x) for $x \in [0, 1]$

$$q(x) = q_l, \qquad 0 < n_l \le x \le n_{l-1} < 1$$

Integral representation

$$\lim_{n\to 0}\frac{1}{n}\mathrm{Tr}Q^m=\int_0^1d\mu(x)q(x)^m$$

Parisi's RSB free energy

$$f_{av} = \max_{q(x)} k_B T f_T[q]$$

$$f_T[q] = -\frac{1}{4} \beta^2 \left(1 + \int_0^1 d\mu(x)q(x)^2 + 2q(1) \right) + \tilde{f}_T[q]$$

$$\tilde{f}_T[q] = -f(0, h)$$

$$\frac{\partial f(x, h)}{\partial x} = -\frac{1}{2} \frac{dq}{dx} \left[\frac{\partial^2 f(x, h)}{\partial h^2} + x \left(\frac{\partial f(x, h)}{\partial h} \right)^2 \right]$$

$$f(1, h) = \ln [2 \cosh(\beta h)]$$

Talagrand (04): RSB construction exact $f_{av} = f_{SK}$

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Parisi's RSB free energy

$$f_{av} = \max_{q(x)} k_B T f_T[q]$$

$$f_T[q] = -\frac{1}{4}\beta^2 \left(1 + \int_0^1 d\mu(x)q(x)^2 + 2q(1)\right) + \tilde{f}_T[q]$$

$$\tilde{f}_T[q] = -f(0, h)$$

$$\frac{\partial f(x, h)}{\partial x} = -\frac{1}{2}\frac{dq}{dx} \left[\frac{\partial^2 f(x, h)}{\partial h^2} + x\left(\frac{\partial f(x, h)}{\partial h}\right)^2\right]$$

$$f(1, h) = \ln\left[2\cosh(\beta h)\right]$$

Talagrand (04): RSB construction exact $f_{av} = f_{SK}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶ ◆○ ◆

Parisi's RSB free energy

$$f_{av} = \max_{q(x)} k_B T f_T[q]$$

$$f_T[q] = -\frac{1}{4}\beta^2 \left(1 + \int_0^1 d\mu(x)q(x)^2 + 2q(1)\right) + \tilde{f}_T[q]$$

$$\tilde{f}_T[q] = -f(0,h)$$

$$\frac{\partial f(x,h)}{\partial x} = -\frac{1}{2}\frac{dq}{dx} \left[\frac{\partial^2 f(x,h)}{\partial h^2} + x\left(\frac{\partial f(x,h)}{\partial h}\right)^2\right]$$

$$f(1,h) = \ln\left[2\cosh(\beta h)\right]$$

Talagrand (04): RSB construction exact $f_{av} = f_{SK}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶ ◆○ ◆

Parisi's RSB free energy

$$f_{av} = \max_{q(x)} k_B T f_T[q]$$

$$f_T[q] = -\frac{1}{4}\beta^2 \left(1 + \int_0^1 d\mu(x)q(x)^2 + 2q(1)\right) + \tilde{f}_T[q]$$

$$\tilde{f}_T[q] = -f(0,h)$$

$$\frac{\partial f(x,h)}{\partial x} = -\frac{1}{2}\frac{dq}{dx} \left[\frac{\partial^2 f(x,h)}{\partial h^2} + x\left(\frac{\partial f(x,h)}{\partial h}\right)^2\right]$$

$$f(1,h) = \ln\left[2\cosh(\beta h)\right]$$

Talagrand (04): RSB construction exact $f_{av} = f_{SK}$

・ロト < @ ト < E ト < E ト E E ・ のへの

Outline

Mean-field theory for spin glassesSherrington-Kirkpatrick model

2 Averaging over randomnessReplica trickParisi RSB solution

3 Summation over spin configurations
 TAP free energy
 TAP & RSB

Fixed configurations of spin couplings J_{ij}

MF ($d = \infty$) solution for SK model for a fixed configuration of spin couplings J_{ij}

■ *Inhomogeneous free energy*: local magnetizations m_i and local internal magnetic fields η_i^0 – order parameters

$$egin{split} F_{TAP} &= \sum_{i} \left\{ m_{i} \eta_{i}^{0} - rac{1}{eta} \ln 2 \cosh[eta(h+\eta_{i}^{0})]
ight\} \ &- rac{1}{2} \sum_{ij} \left[J_{ij} m_{i} m_{j} + rac{1}{2} eta J_{ij}^{2} (1-m_{i}^{2}) (1-m_{j}^{2})
ight] \end{split}$$

Stationarity equations for the order parameters

 $egin{aligned} m_i &= anh[eta(h+\eta_i^0)]\,,\ \eta_i^0 &= \sum_j J_{ij}m_j - m_i\sum_jeta J_{ij}^2(1-m_j^2) \end{aligned}$

Numerical solution for finite volumes viable – many solutions (degenerate in free energy)

Fixed configurations of spin couplings J_{ij}

MF ($d = \infty$) solution for SK model for a fixed configuration of spin couplings J_{ij}

■ *Inhomogeneous free energy*: local magnetizations m_i and local internal magnetic fields η_i^0 – order parameters

$$\begin{split} F_{TAP} &= \sum_{i} \left\{ m_{i} \eta_{i}^{0} - \frac{1}{\beta} \ln 2 \cosh[\beta(h + \eta_{i}^{0})] \right\} \\ &- \frac{1}{2} \sum_{ij} \left[J_{ij} m_{i} m_{j} + \frac{1}{2} \beta J_{ij}^{2} (1 - m_{i}^{2}) (1 - m_{j}^{2}) \right] \end{split}$$

Stationarity equations for the order parameters

 $egin{aligned} m_i &= anh[eta(h+\eta_i^0)]\,,\ \eta_i^0 &= \sum_j J_{ij}m_j - m_i\sum_jeta J_{ij}^2(1-m_j^2) \end{aligned}$

 Numerical solution for finite volumes viable – many solutions

 (degenerate in free energy)

Fixed configurations of spin couplings J_{ij}

MF ($d = \infty$) solution for SK model for a fixed configuration of spin couplings J_{ij}

■ *Inhomogeneous free energy*: local magnetizations m_i and local internal magnetic fields η_i^0 – order parameters

$$\begin{split} F_{TAP} &= \sum_{i} \left\{ m_{i} \eta_{i}^{0} - \frac{1}{\beta} \ln 2 \cosh[\beta(h + \eta_{i}^{0})] \right\} \\ &- \frac{1}{2} \sum_{ij} \left[J_{ij} m_{i} m_{j} + \frac{1}{2} \beta J_{ij}^{2} (1 - m_{i}^{2}) (1 - m_{j}^{2}) \right] \end{split}$$

Stationarity equations for the order parameters

 $egin{aligned} m_i &= anh[eta(h+\eta_i^0)]\,,\ \eta_i^0 &= \sum_j J_{ij}m_j - m_i\sum_jeta J_{ij}^2(1-m_j^2) \end{aligned}$

Numerical solution for finite volumes viable – many solutions (degenerate in free energy)

Stability conditions Linear susceptibility

Not all solutions of the TAP equations physically acceptable — only stable ones can represent equilibrium states

Positivity of linear (nonlocal) susceptibility

 \blacktriangleleft nonlocal χ

ELE DQC

イロト イポト イヨト イヨト

$$\begin{pmatrix} \chi^{-1} \end{pmatrix}_{ij} = \frac{\partial^2 \beta F_{TAP}}{\partial m_i \partial m_j} + \sum_l \left[\frac{\partial^2 \beta F_{TAP}}{\partial m_i \partial \eta_l^0} \frac{\partial \eta_l^0}{\partial m_j} + \frac{\partial^2 \beta F_{TAP}}{\partial m_j \partial \eta_l^0} \frac{\partial \eta_l^0}{\partial m_i} \right]$$
$$+ \sum_{kl} \frac{\partial^2 \beta F_{TAP}}{\partial \eta_k^0 \partial \eta_l^0} \frac{\partial \eta_k^0}{\partial m_j} \frac{\partial \eta_l^0}{\partial m_j} = -\beta J_{ij} + \delta_{ij} \left(\frac{1}{1 - m_i^2} + \sum_l \beta^2 J_{il}^2 (1 - m_l^2) \right)$$

Only *local minima* of *F*_{TAP} are physical
Stability conditions Linear susceptibility

Not all solutions of the TAP equations physically acceptable — only stable ones can represent equilibrium states

Positivity of linear (nonlocal) susceptibility

 \blacktriangleleft nonlocal χ

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ 토言 ∽)�(♡

$$\begin{split} \left(\chi^{-1}\right)_{ij} &= \frac{\partial^2 \beta F_{TAP}}{\partial m_i \partial m_j} + \sum_l \left[\frac{\partial^2 \beta F_{TAP}}{\partial m_i \partial \eta_l^0} \frac{\partial \eta_l^0}{\partial m_j} + \frac{\partial^2 \beta F_{TAP}}{\partial m_j \partial \eta_l^0} \frac{\partial \eta_l^0}{\partial m_i}\right] \\ &+ \sum_{kl} \frac{\partial^2 \beta F_{TAP}}{\partial \eta_k^0 \partial \eta_l^0} \frac{\partial \eta_k^0}{\partial m_i} \frac{\partial \eta_l^0}{\partial m_j} = -\beta J_{ij} + \delta_{ij} \left(\frac{1}{1 - m_i^2} + \sum_l \beta^2 J_{il}^2 (1 - m_l^2)\right) \end{split}$$

Only local minima of FTAP are physical

Stability conditions Spin-glass susceptibility

Uniqueness of the equilibrium state – consistency demand from the derivation of the TAP free energy

Positivity of spin-glass susceptibility

$$\chi_{SG} \equiv \frac{1}{N} \sum_{ij} \chi_{ij}^2 = \frac{1}{N} \sum_i \frac{\chi_{ii}^2}{1 - \sum_j \beta^2 J_{ij}^2 \chi_{jj}^2}$$

Local susceptibility: $\chi_{ii} = 1 - m_i^2$

Consistency condition to be fulfilled (Plefka: convergence of LCE)

$$\lambda = 1 - rac{eta^2 J^2}{N} \sum_i (1 - m_i^2)^2 \ge 0$$
 (1)

 $\lambda = 0$ defines the de Almeida-Thouless transition line to the SG phase

Stability conditions Spin-glass susceptibility

Uniqueness of the equilibrium state – consistency demand from the derivation of the TAP free energy

Positivity of spin-glass susceptibility

$$\chi_{SG} \equiv \frac{1}{N} \sum_{ij} \chi_{ij}^2 = \frac{1}{N} \sum_i \frac{\chi_{ii}^2}{1 - \sum_j \beta^2 J_{ij}^2 \chi_{jj}^2} \,.$$

Local susceptibility: $\chi_{ii} = 1 - m_i^2$

Consistency condition to be fulfilled (Plefka: convergence of LCE)

$$\lambda = 1 - rac{eta^2 J^2}{N} \sum_i (1 - m_i^2)^2 \ge 0$$
 (1)

 $\lambda = 0$ defines the de Almeida-Thouless transition line to the SG phase

三日 のへの

Outline

Mean-field theory for spin glassesSherrington-Kirkpatrick model

2 Averaging over randomnessReplica trickParisi RSB solution

Summation over spin configurations
 TAP free energy

■ TAP & RSB

- Multitude of solutions at low temperatures local minima not separable in free energy from unstable saddle points complexity
- High degeneracy in free energy complex free-energy landscape
- Convergence rather rare ubiquitous unstable states (do not obey Plefka's stability condition)
- Majority of configurations do not possess a well defined equilibrium state (minimum of free energy) – non-self-averaging FE – direct averaging leads to the SK (replica symmetric) solution
- G Composite equilibrium state (De Dominicis-Young ansatz)

$$\operatorname{Tr}_{S} \exp\left[-\beta H\{S\}\right] = \sum_{\alpha}^{\mathcal{N}} \exp\left[-\beta F_{TAP}\{m_{i}^{\alpha}\}\right]$$

${\cal N}$ – numer of TAP solutions,

TAP states independent – separated by infinite energy barriers – quasi-equilibrium states

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

- Multitude of solutions at low temperatures local minima not separable in free energy from unstable saddle points — complexity
- 2 High degeneracy in free energy complex free-energy landscape
- Convergence rather rare ubiquitous unstable states (do not obey Plefka's stability condition)
- Majority of configurations do not possess a well defined equilibrium state (minimum of free energy) – non-self-averaging FE – direct averaging leads to the SK (replica symmetric) solution
- Composite equilibrium state (De Dominicis-Young ansatz)

$$\operatorname{Tr}_{S} \exp\left[-\beta H\{S\}\right] = \sum_{\alpha}^{\mathcal{N}} \exp\left[-\beta F_{TAP}\{m_{i}^{\alpha}\}\right]$$

${\cal N}$ – numer of TAP solutions,

TAP states independent – separated by infinite energy barriers – quasi-equilibrium states

- Multitude of solutions at low temperatures local minima not separable in free energy from unstable saddle points — complexity
- 2 High degeneracy in free energy complex free-energy landscape
- Convergence rather rare ubiquitous unstable states (do not obey Plefka's stability condition)
- Majority of configurations do not possess a well defined equilibrium state (minimum of free energy) – non-self-averaging FE – direct averaging leads to the SK (replica symmetric) solution
- **5** Composite equilibrium state (De Dominicis-Young ansatz)

$$\operatorname{Tr}_{S} \exp\left[-\beta H\{S\}\right] = \sum_{\alpha}^{\mathcal{N}} \exp\left[-\beta F_{TAP}\{m_{i}^{\alpha}\}\right]$$

$\mathcal N$ – numer of TAP solutions,

TAP states independent – separated by infinite energy barriers – quasi-equilibrium states

- Multitude of solutions at low temperatures local minima not separable in free energy from unstable saddle points — complexity
- 2 High degeneracy in free energy complex free-energy landscape
- Convergence rather rare ubiquitous unstable states (do not obey Plefka's stability condition)
- Majority of configurations do not possess a well defined equilibrium state (minimum of free energy) – non-self-averaging FE – direct averaging leads to the SK (replica symmetric) solution

5 Composite equilibrium state (De Dominicis-Young ansatz)

 $\operatorname{Tr}_{S} \exp\left[-\beta H\{S\}\right] = \sum_{\alpha}^{\mathcal{N}} \exp\left[-\beta F_{TAP}\{m_{i}^{\alpha}\}\right]$

$\mathcal N$ – numer of TAP solutions,

TAP states independent – separated by infinite energy barriers – quasi-equilibrium states

- Multitude of solutions at low temperatures local minima not separable in free energy from unstable saddle points — complexity
- 2 High degeneracy in free energy complex free-energy landscape
- Convergence rather rare ubiquitous unstable states (do not obey Plefka's stability condition)
- Majority of configurations do not possess a well defined equilibrium state (minimum of free energy) – non-self-averaging FE – direct averaging leads to the SK (replica symmetric) solution
- **5** Composite equilibrium state (De Dominicis-Young ansatz)

$$\operatorname{Tr}_{S} \exp\left[-\beta H\{S\}\right] = \sum_{\alpha}^{\mathcal{N}} \exp\left[-\beta F_{TAP}\{m_{i}^{\alpha}\}\right]$$

\mathcal{N} – numer of TAP solutions,

TAP states independent – separated by infinite energy barriers – quasi-equilibrium states

- Multitude of solutions at low temperatures local minima not separable in free energy from unstable saddle points complexity
- 2 High degeneracy in free energy complex free-energy landscape
- Convergence rather rare ubiquitous unstable states (do not obey Plefka's stability condition)
- Majority of configurations do not possess a well defined equilibrium state (minimum of free energy) – non-self-averaging FE – direct averaging leads to the SK (replica symmetric) solution
- **5** Composite equilibrium state (De Dominicis-Young ansatz)

$$\operatorname{Tr}_{S} \exp\left[-\beta H\{S\}\right] = \sum_{\alpha}^{\mathcal{N}} \exp\left[-\beta F_{TAP}\{m_{i}^{\alpha}\}\right]$$

 \mathcal{N} – numer of TAP solutions,

TAP states independent – separated by infinite energy barriers – quasi-equilibrium states

Questions without unambiguous (rigorous) answers

- How do we derive Parirsi's solution from TAP? Cavity method interpretation of the order parameters
- Is the TAP free energy an exact solution of the SK model? Is the TAP phase space complete? – YES
 - disconnected phase space & independent TAP solutions, non-self-averaging TAP free energy
- Does the TAP approach lead to a unique stable equilibrium state? weighted sum of quasiequilbrium TAP states (solutions of TAP equations)
- Does the thermodynamic limit exist? not for single configurations of spin couplings, only a weighted sum
- At what stage do the RSB order parameters emerge? Thermal or disorder-induced fluctuations responsible?
 - disorder seems responsible (leads coupling of replicas)

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Questions without unambiguous (rigorous) answers

- How do we derive Parirsi's solution from TAP? Cavity method interpretation of the order parameters
- 2 Is the TAP free energy an exact solution of the SK model? Is the TAP phase space complete? YES

– disconnected phase space & independent TAP solutions, non-self-averaging TAP free energy

- Does the TAP approach lead to a unique stable equilibrium state? weighted sum of quasiequilbrium TAP states (solutions of TAP equations)
- Does the thermodynamic limit exist? not for single configurations of spin couplings, only a weighted sum
- At what stage do the RSB order parameters emerge? Thermal or disorder-induced fluctuations responsible?
 - disorder seems responsible (leads coupling of replicas)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Questions without unambiguous (rigorous) answers

- How do we derive Parirsi's solution from TAP? Cavity method interpretation of the order parameters
- 2 Is the TAP free energy an exact solution of the SK model? Is the TAP phase space complete? YES

– disconnected phase space & independent TAP solutions, non-self-averaging TAP free energy

- Does the TAP approach lead to a unique stable equilibrium state? weighted sum of quasiequilbrium TAP states (solutions of TAP equations)
- Does the thermodynamic limit exist? not for single configurations of spin couplings, only a weighted sum
- At what stage do the RSB order parameters emerge? Thermal or disorder-induced fluctuations responsible?
 - disorder seems responsible (leads coupling of replicas)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Questions without unambiguous (rigorous) answers

- How do we derive Parirsi's solution from TAP? Cavity method interpretation of the order parameters
- 2 Is the TAP free energy an exact solution of the SK model? Is the TAP phase space complete? YES

– disconnected phase space & independent TAP solutions, non-self-averaging TAP free energy

- Does the TAP approach lead to a unique stable equilibrium state? weighted sum of quasiequilbrium TAP states (solutions of TAP equations)
- 2 Does the thermodynamic limit exist? not for single configurations of spin couplings, only a weighted sum

 At what stage do the RSB order parameters emerge? Thermal or disorder-induced fluctuations responsible?

disorder seems responsible (leads coupling of replicas)

・ロト < @ ト < E ト < E ト < E ト < E ト < のへの

Questions without unambiguous (rigorous) answers

- How do we derive Parirsi's solution from TAP? Cavity method interpretation of the order parameters
- 2 Is the TAP free energy an exact solution of the SK model? Is the TAP phase space complete? YES

– disconnected phase space & independent TAP solutions, non-self-averaging TAP free energy

- Does the TAP approach lead to a unique stable equilibrium state? weighted sum of quasiequilbrium TAP states (solutions of TAP equations)
- Does the thermodynamic limit exist? not for single configurations of spin couplings, only a weighted sum
- **5** At what stage do the RSB order parameters emerge? Thermal or disorder-induced fluctuations responsible?
 - disorder seems responsible (leads coupling of replicas)

・ロト < @ ト < E ト < E ト < E ト < E ト < のへの

▶ ▲ 프 ▶ ▲ 프 ▶ 프 프 ▲ 의 Q (○)

Outline

4 Hierarchical TAP theory

Thermodynamic homogeneity and multiple TAP states

5 One-level hierarchical solution

- 1-TAP free energy and order parameters
- Stability conditions

6 Asymptotic solution near the critical point

- Fixed internal magnetic field
- Equilibrium value of the local field expanded

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ 토言 ∽)�(♡

Homogeneity of free energy I

Thermodynamic lmit exists only if there is a unique thermodynamic equilibrium state – degeneracy in free energy must be lifted

- Thermodynamic homogeneity thermodynamic potentials depend only on spatial densities of extensive variables (Gibbs paradox)
- Euler homogeneity condition

$$\alpha F(T, V, N, \ldots, X_i, \ldots) = F(T, \alpha V, \alpha N, \ldots, \alpha X_i, \ldots)$$

Real spin replicas ($\alpha = \nu$ integer) – each TAP state – one spin replica (independence of TAP states)

$$\left[\operatorname{Tr}\, \exp\{-\beta H\}\right]^{\nu} = \operatorname{Tr}_{\nu} \exp\left\{\sum_{a=1}^{\nu} \sum_{\langle ij \rangle} J_{ij} S_{i}^{a} S_{j}^{a}\right\}$$

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ ○ ◆

Homogeneity of free energy II

 Breaking independence of spin replicas – softening of energy barriers between TAP states

$$\Delta H(\mu) = \sum_{i} \sum_{a < b} \mu^{ab} S_i^a S_i^b$$

Replicated free energy with weakly coupled replicas

$$F_{\nu}(\mu) = -k_{B}T \frac{1}{\nu} \left\langle \ln \operatorname{Tr} \exp\left\{-\beta \sum_{\alpha} H^{\alpha} - \beta \Delta H(\mu)\right\} \right\rangle_{av}$$

Stability of homogeneity

$$rac{d}{d
u}\lim_{\mu
ightarrow 0}F_
u(\mu)\equiv 0$$

■ Necessary condition: Analytic continuation to $\nu \in \mathbb{R}$ (no neeed for the limit $\nu \to 0$)

◆□ > ◆圖 > ◆臣 > ◆臣 > 王言 めんの

Replicated TAP free energy

General solution for interger number of real replicas

VJ, L. Zdeborová, cond-mat/0504132

$$\begin{aligned} F_{\nu} &= \frac{1}{\nu} \sum_{a=1}^{\nu} \left\{ \sum_{i} M_{i}^{a} \left[\eta_{i}^{a} + \beta J^{2} \sum_{b=1}^{a-1} \chi^{ab} M_{i}^{b} \right] + \frac{\beta J^{2} N}{2} \sum_{b=1}^{a-1} (\chi^{ab})^{2} \\ &- \frac{1}{4} \sum_{i,j} \beta J_{ij}^{2} \left[1 - (M_{i}^{a})^{2} \right] \left[1 - (M_{j}^{a})^{2} \right] - \frac{1}{2} \sum_{i,j} J_{ij} M_{i}^{a} M_{j}^{a} \right\} \\ &- \frac{1}{\beta \nu} \sum_{i} \ln \operatorname{Tr} \exp \left\{ \beta^{2} J^{2} \sum_{a < b}^{\nu} \chi^{ab} S_{i}^{a} S_{i}^{b} + \beta \sum_{a=1}^{\nu} (h + \eta_{i}^{a}) S_{i}^{a} \right\} \end{aligned}$$

- Order parameters: M_i , η_i , χ^{ab}
- **TAP recovered for** $\chi^{ab} = 0$
- Decoupling of spin replicas: integer ν trivial solution (RS)
- Analytic continuation maximally general form of $\nu \times \nu$ matrices χab

Uniqueness of the equilibrium state

Equivalence of replicas

$$M_i^a \equiv \langle S_i^a \rangle_T = M_i, \quad \eta_i^a = \eta$$

Symmetry

 $\chi^{ab}=\chi^{ba},\quad \chi^{aa}=0$

Indistinguishability of spin replicas

$$\{\chi^{a1}, \dots, \chi^{a\nu}\} = \{\chi^{b1}, \dots, \chi^{b\nu}\}$$

permutation of elements within rows (columns)

• Hierarchical (ultrametric) structure of χ^{ab} as in the RSB trick

– most general structure allowing for analytic continuation

イロト イ理ト イヨト イヨト

1= 990

Uniqueness of the equilibrium state

Equivalence of replicas

$$M_i^a \equiv \langle S_i^a \rangle_T = M_i, \quad \eta_i^a = \eta$$

Symmetry

$$\chi^{ab}=\chi^{ba},\quad \chi^{aa}=0$$

Indistinguishability of spin replicas

$$\{\chi^{a1}, \dots, \chi^{a\nu}\} = \{\chi^{b1}, \dots, \chi^{b\nu}\}$$

permutation of elements within rows (columns)

Hierarchical (ultrametric) structure of χ^{ab} as in the RSB trick – consequence of stability conditions hierarchically applied

– most general structure allowing for analytic continuation

イロト イ理ト イヨト イヨト

三日 のへの

Uniqueness of the equilibrium state

Equivalence of replicas

$$M_i^a \equiv \langle S_i^a \rangle_T = M_i, \quad \eta_i^a = \eta$$

Symmetry

$$\chi^{ab} = \chi^{ba}, \quad \chi^{aa} = 0$$

Indistinguishability of spin replicas

$$\{\chi^{a1}, \dots, \chi^{a\nu}\} = \{\chi^{b1}, \dots, \chi^{b\nu}\}$$

permutation of elements within rows (columns)

• Hierarchical (ultrametric) structure of χ^{ab} as in the RSB trick – consequence of stability conditions hierarchically applied

- most general structure allowing for analytic continuation

< □ > < 同 > < 回 > < 回 > < 回 > <

三日 のへの

Uniqueness of the equilibrium state

Equivalence of replicas

$$M_i^a \equiv \langle S_i^a \rangle_T = M_i, \quad \eta_i^a = \eta$$

Symmetry

$$\chi^{ab} = \chi^{ba}, \quad \chi^{aa} = 0$$

Indistinguishability of spin replicas

$$\{\chi^{\mathtt{a1}},\ldots,\chi^{\mathtt{a\nu}}\}=\{\chi^{\mathtt{b1}},\ldots,\chi^{\mathtt{b\nu}}\}$$

permutation of elements within rows (columns)

Hierarchical (ultrametric) structure of χ^{ab} as in the RSB trick

- consequence of stability conditions hierarchically applied
- most general structure allowing for analytic continuation

Hierarchical TAP free energy

Hierarchical solution with K-levels — K different values of χ^{ab} $(\nu_1 - 1)\chi_1, (\nu_2 - \nu_1)\chi_2, \dots, (\nu_K - \nu_{K-1})\chi_K$ – homogeneous order parameters K-TAP free energy – analytic representation

$$F_{K}(\chi_{1},\nu_{1},...,\chi_{K},\nu_{K}) = -\frac{1}{4}\sum_{i,j}\beta J_{ij}^{2}(1-M_{i}^{2})(1-M_{j}^{2}) - \frac{1}{2}\sum_{i,j}J_{ij}M_{i}M_{j}$$

+ $\sum_{i}M_{i}\left[\eta_{i} + \frac{1}{2}\beta J^{2}M_{i}\sum_{l=1}^{K}(\nu_{l}-\nu_{l-1})\chi_{l}\right] + \frac{\beta J^{2}N}{4}\sum_{l=1}^{K}(\nu_{l}-\nu_{l-1})\chi_{l}[\chi_{l}+2]$
- $\frac{1}{\beta\nu_{K}}\sum_{i}\ln\left[\int_{-\infty}^{\infty}D\lambda_{K}\left\{\dots\int_{-\infty}^{\infty}D\lambda_{1}\left\{2\cosh\left[\beta\left(h+\eta_{i}+\sum_{l=1}^{K}\lambda_{l}\sqrt{\chi_{l}-\chi_{l+1}}\right)\right]\right\}^{\nu_{1}}\dots\right\}^{\nu_{K}/\nu_{K-1}}\right]$

 $\mathcal{D}\lambda_{l}\equiv \mathrm{d}\lambda_{l}~e^{-\lambda_{l}^{2}/2}/\sqrt{2\pi}$, $u_{0}=1$

- * ヨ * * ヨ *

三日 のへの

Outline

4 Hierarchical TAP theory

Thermodynamic homogeneity and multiple TAP states

5 One-level hierarchical solution

- 1-TAP free energy and order parameters
- Stability conditions

6 Asymptotic solution near the critical point

- Fixed internal magnetic field
- Equilibrium value of the local field expanded

Free energy

- K = 1 TAP theory "replica symmetric" solution for replicated TAP
 - apart from local inhomogeneous sets M_i , η_i
 - two *homogeneous* order parameters χ and ν

$$F_{1}(\chi,\nu) = -\frac{1}{4} \sum_{i,j} \beta J_{ij}^{2} (1 - M_{i}^{2}) (1 - M_{j}^{2}) - \frac{1}{2} \sum_{i,j} J_{ij} M_{i} M_{j}$$
$$+ \frac{\beta J^{2} N}{4} \chi [(\nu - 1)\chi + 2] + \sum_{i} M_{i} \left[\eta_{i} + \frac{1}{2} \beta J^{2} (\nu - 1) \chi M_{i} \right]$$
$$- \frac{1}{\beta \nu} \sum_{i} \ln \int \mathcal{D}\lambda_{i} [2 \cosh[\beta (h + \lambda_{i} J \sqrt{\chi} + \eta_{i})]]^{\nu}$$

 $F_1(\chi, \nu)$ analytic function of all variables (ν)

Stationarity equations

Local magnetization

$$M_i = \left\langle
ho^{(
u)}(h+\eta_i;\lambda,\chi) anh[eta(h+\eta_i+\lambda J\sqrt{\chi})]
ight
angle_\lambda \equiv \langle
ho_i^{(
u)} t_i
angle_\lambda \,,$$

where $\langle X(\lambda) \rangle_{\lambda} = \int \mathcal{D}\lambda X(\lambda)$ and

$$\rho_{i}^{\nu} \equiv \rho^{(\nu)}(h + \eta_{i}; \lambda, \chi) = \frac{\cosh^{\nu}[\beta(h + \eta_{i} + \lambda J\sqrt{\chi})]}{\left\langle \cosh^{\nu}[\beta(h + \eta_{i} + \lambda J\sqrt{\chi})] \right\rangle_{\lambda}}$$

is a density matrix (weight of the other TAP solutions affecting the chosen one)

Internal magnetic field

$$\eta_i = \sum_j J_{ij} M_j - M_i \left[eta J^2(
u-1)\chi + \sum_j eta J^2_{ij}(1-M^2_j)
ight]$$

Stationarity equations Local variables

Local magnetization

$$M_i = \left\langle
ho^{(
u)}(h+\eta_i;\lambda,\chi) anh[eta(h+\eta_i+\lambda J\sqrt{\chi})]
ight
angle_\lambda \equiv \langle
ho_i^{(
u)} t_i
angle_\lambda \,,$$

where $\langle X(\lambda) \rangle_{\lambda} = \int \mathcal{D}\lambda X(\lambda)$ and

$$\rho_{i}^{\nu} \equiv \rho^{(\nu)}(h+\eta_{i};\lambda,\chi) = \frac{\cosh^{\nu}[\beta(h+\eta_{i}+\lambda J\sqrt{\chi})]}{\left\langle\cosh^{\nu}[\beta(h+\eta_{i}+\lambda J\sqrt{\chi})]\right\rangle_{\lambda}}$$

is a density matrix (weight of the other TAP solutions affecting the chosen one)

Internal magnetic field

$$\eta_i = \sum_j J_{ij} \mathcal{M}_j - \mathcal{M}_i \left[eta J^2 (
u - 1) \chi + \sum_j eta J_{ij}^2 (1 - \mathcal{M}_j^2)
ight]$$

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Staionarity equations Homogeneous variables

Homogeneous overlap susceptibility

$$\chi = \frac{1}{N} \sum_{i} \left[\left\langle \rho_{i}^{(\nu)} t_{i}^{2} \right\rangle_{\lambda} - \left\langle \rho_{i}^{(\nu)} t_{i} \right\rangle_{\lambda}^{2} \right]$$

Multiplicity (geometric/replication) factor

$$\begin{split} \beta^2 J^2 \chi(2Q + \chi) \nu &= \frac{4}{N} \sum_i \left[\langle \ln \cosh[\beta(h + \eta_i + \lambda J \sqrt{\chi})] \rangle_{\lambda} \right. \\ &\left. - \ln \langle \cosh^{\nu}[\beta(h + \eta_i + \lambda J \sqrt{\chi})] \rangle_{\lambda}^{1/\nu} \end{split}$$

 $Q \equiv N^{-1} \sum_i M_i^2$

Staionarity equations Homogeneous variables

Homogeneous overlap susceptibility

$$\chi = \frac{1}{N} \sum_{i} \left[\left\langle \rho_{i}^{(\nu)} t_{i}^{2} \right\rangle_{\lambda} - \left\langle \rho_{i}^{(\nu)} t_{i} \right\rangle_{\lambda}^{2} \right]$$

Multiplicity (geometric/replication) factor

$$\beta^{2} J^{2} \chi (2Q + \chi) \nu = \frac{4}{N} \sum_{i} \left[\langle \ln \cosh[\beta(h + \eta_{i} + \lambda J \sqrt{\chi})] \rangle_{\lambda} - \ln \langle \cosh^{\nu}[\beta(h + \eta_{i} + \lambda J \sqrt{\chi})] \rangle_{\lambda}^{1/\nu} \right]$$

 $Q \equiv N^{-1} \sum_{i} M_{i}^{2}$

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ 토言 ∽)�(♡

Dependence on the geometric parameter ν I

Reconstruction of TAP – $\chi = 0$ – high-temperature phase (Plefka's condition fulfilled)

When else do we recover TAP?

Single spin replica: $\nu = 1$, $F_1(\chi_1, 1) = F_{TAP}$

Limit to infinite number of replicas: $\nu \to \infty$, $\nu \chi = \Gamma^2$ – saddle point evaluation of λ -integral

$$\begin{split} \bar{F}_1(\Gamma,\bar{\lambda}_i) &= -\frac{1}{4}\sum_{i,j}\beta J_{ij}^2(1-M_i^2)(1-M_j^2) \\ &- \frac{1}{2}\sum_{i,j}J_{ij}M_iM_j + \sum_i M_i \left[\eta_i + \frac{1}{2}\beta J^2\Gamma^2 M_i\right] \\ &+ \frac{1}{\beta}\sum_i \left\{\frac{\bar{\lambda}_i^2}{2} - \ln\left[2\cosh[\beta(h+\eta_i+J\Gamma\bar{\lambda}_i)]\right]\right\} = F_{TAP} \end{split}$$

 $\bar{\lambda}_i = \beta J \Gamma M_i$

Dependence on the geometric parameter ν II

Zero number of replicas: $\nu \rightarrow 0$ – annealed averaging goes over to quenched

$$F_1(\chi, 0) = \frac{\beta J^2 N}{4} \chi(2 - \chi) - \frac{1}{4} \sum_{i,j} \beta J_{ij}^2 (1 - M_i^2) (1 - M_j^2)$$
$$- \frac{1}{2} \sum_{i,j} J_{ij} M_i M_j + \sum_i M_i \left[\eta_i - \frac{1}{2} \beta J^2 \chi M_i \right]$$
$$- \frac{1}{\beta} \sum_i \int \mathcal{D}\lambda_i \ln \left[2 \cosh[\beta (h + \eta_i + \lambda_i J \sqrt{\chi})] \right] = F_{TAP}$$

• Substitution: $\xi_i = \eta_i + \lambda_i J_{\sqrt{\chi}}$, $\chi = 1 - Q$, $Q = N^{-1} \sum_i M_i^2$

Integration absorbed into lattice sum

<ロ> <同> <同> < 同> < 同> < 同> < 同> < 同</p>

ν -dependence of 1-TAP

▶ ▲ 프 ▶ ▲ 프 ▶ 프 프 ▲ 의 Q (○)

Outline

4 Hierarchical TAP theory

Thermodynamic homogeneity and multiple TAP states

5 One-level hierarchical solution ■ 1-TAP free energy and order parameters

Stability conditions

6 Asymptotic solution near the critical point

- Fixed internal magnetic field
- Equilibrium value of the local field expanded

Linear susceptibility

Positivity of linear susceptibility – minimum of free energy w.rt. inhomogeneous parameters

$$\left(\chi^{-1}
ight)_{ij}=-eta J_{ij}+\delta_{ij}\left[eta^2 J^2\left(1-Q-(1-
u)\chi
ight)+rac{1}{\chi_{ii}}
ight]$$

Inhomogeneous local susceptibility

$$\chi_{ii} = 1 - M_i^2 - (1 - \nu) \left[\left\langle \rho_i^{(\nu)} t_i^2 \right\rangle_\lambda - \left\langle \rho_i^{(\nu)} t_i \right\rangle_\lambda^2 \right]$$

Stability criteria

Positivity of spin-glass susceptibility – uniqueness of the equilibrium state

$$\Lambda_{0} = 1 - \frac{\beta^{2} J^{2}}{N} \sum_{i} \left[1 - (1 - \nu) \left\langle \rho_{i}^{(\nu)} t_{i}^{2} \right\rangle_{\lambda} - \nu \left\langle \rho_{i}^{(\nu)} t_{i} \right\rangle_{\lambda}^{2} \right]^{2} \ge 0 \qquad (2)$$

Extremum of free energy w.r.t. variation of the homogeneous parameter

$$\Lambda_1 = 1 - rac{eta^2 J^2}{N} \sum_i \left<
ho_i^{(
u)} (1 - t_i^2)^2 \right>_\lambda \ge 0$$
 (3)

TAP solution: $\Lambda_0 = \Lambda_1 = \lambda = 1 - \beta^2 J^2 N^{-1} \sum_i (1 - m_i^2)^2$ (instabi
ELE DOG

イロト イ理ト イヨト イヨト

Stability criteria

Positivity of spin-glass susceptibility – uniqueness of the equilibrium state

$$\Lambda_{0} = 1 - \frac{\beta^{2} J^{2}}{N} \sum_{i} \left[1 - (1 - \nu) \left\langle \rho_{i}^{(\nu)} t_{i}^{2} \right\rangle_{\lambda} - \nu \left\langle \rho_{i}^{(\nu)} t_{i} \right\rangle_{\lambda}^{2} \right]^{2} \ge 0 \qquad (2)$$

Extremum of free energy w.r.t. variation of the homogeneous parameter

$$\Lambda_1 = 1 - \frac{\beta^2 J^2}{N} \sum_i \left\langle \rho_i^{(\nu)} (1 - t_i^2)^2 \right\rangle_{\lambda} \ge 0 \qquad (3)$$

TAP solution: $\Lambda_0 = \Lambda_1 = \lambda = 1 - \beta^2 J^2 N^{-1} \sum_i (1 - m_i^2)^2$ (instab

Stability criteria

Positivity of spin-glass susceptibility – uniqueness of the equilibrium state

$$\Lambda_{0} = 1 - \frac{\beta^{2} J^{2}}{N} \sum_{i} \left[1 - (1 - \nu) \left\langle \rho_{i}^{(\nu)} t_{i}^{2} \right\rangle_{\lambda} - \nu \left\langle \rho_{i}^{(\nu)} t_{i} \right\rangle_{\lambda}^{2} \right]^{2} \ge 0 \qquad (2)$$

Extremum of free energy w.r.t. variation of the homogeneous parameter

$$\Lambda_{1} = 1 - \frac{\beta^{2} J^{2}}{N} \sum_{i} \left\langle \rho_{i}^{(\nu)} (1 - t_{i}^{2})^{2} \right\rangle_{\lambda} \ge 0 \quad (3)$$

$$TAP \text{ solution:} \quad \Lambda_{0} = \Lambda_{1} = \lambda = 1 - \beta^{2} J^{2} N^{-1} \sum_{i} (1 - m_{i}^{2})^{2} \quad (\text{instability})$$

Properties of 1-TAP theory

- Overlap susceptibility $\chi > 0$, if TAP free energy thermodynamically inhomogeneous
- Free energy F_1 depends on the geometric parameter ν
- Physical solution $-\nu < 1$
 - ► TAP instability

- $-\nu < 1$
- thermodynamic inhomogeneity *minimized*
 - free energy maximized
- Instability parameters
 figure
- Λ_0 decreasing in ν
- $\wedge \quad \Lambda_1$ increasing in u
- 1-TAP stable only if both stability conditions fulfilled for the equilibrium ν_{eq}
- If F_1 unstable \Rightarrow 2-TAP solution etc.
- Free energy $F_{\mathcal{K}}$ either exact or an exact lower bound

Properties of 1-TAP theory

Nontriviality of the homogeneous order parameters

• Overlap susceptibility $\chi > 0$, if TAP free energy thermodynamically inhomogeneous

Free energy F_1 depends on the geometric parameter ν

- Physical solution
 - thermodynamic inhomogeneity *minimized* free energy *maximized*
- Instability parameters
 figure
- Λ_0 decreasing in ν
- \sim Λ_1 increasing in ν
- 1-TAP stable only if both stability conditions fulfilled for the equilibrium ν_{eq}
- If F_1 unstable \Rightarrow 2-TAP solution etc.
- Free energy F_{κ} either exact or an exact lower bound

Properties of 1-TAP theory

- Overlap susceptibility $\chi > 0$, if TAP free energy thermodynamically inhomogeneous
- Free energy F_1 depends on the geometric parameter ν
- Physical solution $-\nu < 1$

 - thermodynamic inhomogeneity *minimized* _
 - free energy *maximized* _

Properties of 1-TAP theory

- Overlap susceptibility $\chi > 0$, if TAP free energy thermodynamically inhomogeneous
- Free energy F_1 depends on the geometric parameter ν
- Physical solution $-\nu < 1$

 - thermodynamic inhomogeneity *minimized* _
 - free energy *maximized* _
- Instability parameters $-\Lambda_0$ decreasing in ν
 - Λ_1 increasing in ν

Properties of 1-TAP theory

- Overlap susceptibility $\chi > 0$, if TAP free energy thermodynamically inhomogeneous
- Free energy F_1 depends on the geometric parameter ν
- Physical solution $-\nu < 1$

 - thermodynamic inhomogeneity *minimized*
 - free energy *maximized* _
- Instability parameters $-\Lambda_0$ decreasing in ν
- - Λ_1 increasing in ν
- 1-TAP stable only if both stability conditions fulfilled for the equilibrium ν_{eq}

Properties of 1-TAP theory

- Overlap susceptibility $\chi > 0$, if TAP free energy thermodynamically inhomogeneous
- Free energy F_1 depends on the geometric parameter ν
- Physical solution $-\nu < 1$

 - thermodynamic inhomogeneity *minimized*
 - free energy *maximized* _
- Instability parameters $-\Lambda_0$ decreasing in ν
- - Λ_1 increasing in ν
- 1-TAP stable only if both stability conditions fulfilled for the equilibrium ν_{eq}
- If F_1 unstable \Rightarrow 2-TAP solution etc.

・ロト < @ ト < E ト < E ト < E ト < E ト < のへの

Properties of 1-TAP theory

- Overlap susceptibility $\chi > 0$, if TAP free energy thermodynamically inhomogeneous
- Free energy F_1 depends on the geometric parameter ν
- Physical solution $-\nu < 1$

 - thermodynamic inhomogeneity *minimized*
 - free energy *maximized* _
- Instability parameters $-\Lambda_0$ decreasing in ν
- - Λ_1 increasing in ν
- 1-TAP stable only if both stability conditions fulfilled for the equilibrium ν_{eq}
- If F_1 unstable \Rightarrow 2-TAP solution etc.
- Free energy $F_{\mathcal{K}}$ either exact or an exact lower bound

Outline

Thermodynamic homogeneity and multiple TAP states

1-TAP free energy and order parameters

- Stability conditions

6 Asymptotic solution near the critical point Fixed internal magnetic field

Equilibrium value of the local field expanded

◆□ > ◆圖 > ◆臣 > ◆臣 > 王言 めんの

Explicit χ *-dependence*

Expansion around TAP – χ - expansion parameter *Two-step expansion*

- **1** Internal magnetic field η_i fixed (χ independent)
- **2** equilibrium value of η_i expanded in χ

Local magnetization

 $egin{aligned} \mathcal{M}_i &\doteq \mu_i - eta^2 J^2 (1u) \mu_i (1-\mu_i^2) \chi \ &+ eta^4 J^4 (1u) \mu_i (1-\mu_i^2) \left[2u-(3-2
u) \mu_i^2
ight] \chi^2 \end{aligned}$

 $\mu_i = \tanh[\beta(h + \eta_i)], \quad (\eta_i \text{ depends on } \chi)$ Homogeneous parameter Q

$$\begin{split} Q \doteq \left\langle \mu_i^2 \right\rangle_{_{a\nu}} &- 2\beta^2 J^2 (1-\nu) \left\langle \mu_i^2 (1-\mu_i^2) \right\rangle_{_{a\nu}} \chi \\ &+ \beta^4 J^4 (1-\nu) \left\langle \mu_i^2 (1-\mu_i^2) \left[5 - 3\nu - (7-5\nu)\mu_i^2 \right] \right\rangle_{_{a\nu}} \chi^2 \end{split}$$

 $\langle X_i \rangle_{av} \equiv N^{-1} \sum_i X_i$ due self-averaging property

◆□ > ◆圖 > ◆臣 > ◆臣 > 王言 めんの

Explicit χ *-dependence*

Expansion around TAP – χ - expansion parameter *Two-step expansion*

- **1** Internal magnetic field η_i fixed (χ independent)
- **2** equilibrium value of η_i expanded in χ
- Local magnetization

$$egin{aligned} \mathcal{M}_i &\doteq \mu_i - eta^2 J^2 (1-
u) \mu_i (1-\mu_i^2) \chi \ &+ eta^4 J^4 (1-
u) \mu_i (1-\mu_i^2) \left[2-
u-(3-2
u) \mu_i^2
ight] \chi^2 \end{aligned}$$

 $\mu_i = \tanh[\beta(h + \eta_i)], \quad (\eta_i \text{ depends on } \chi)$

Homogeneous parameter Q

$$\begin{split} Q \doteq \left\langle \mu_i^2 \right\rangle_{a\nu} &- 2\beta^2 J^2 (1-\nu) \left\langle \mu_i^2 (1-\mu_i^2) \right\rangle_{a\nu} \chi \\ &+ \beta^4 J^4 (1-\nu) \left\langle \mu_i^2 (1-\mu_i^2) \left[5 - 3\nu - (7-5\nu)\mu_i^2 \right] \right\rangle_{a\nu} \chi^2 \end{split}$$

 $\langle X_i \rangle_{av} \equiv N^{-1} \sum_i X_i$ due self-averaging property

Explicit χ *-dependence*

Expansion around TAP – χ - expansion parameter *Two-step expansion*

- **1** Internal magnetic field η_i fixed (χ independent)
- **2** equilibrium value of η_i expanded in χ
- Local magnetization

$$egin{aligned} \mathcal{M}_i &\doteq \mu_i - eta^2 J^2 (1-
u) \mu_i (1-\mu_i^2) \chi \ &+ eta^4 J^4 (1-
u) \mu_i (1-\mu_i^2) \left[2-
u-(3-2
u) \mu_i^2
ight] \chi^2 \end{aligned}$$

 $\mu_i = \tanh[\beta(h + \eta_i)], \quad (\eta_i \text{ depends on } \chi)$

Homogeneous parameter Q

$$\begin{aligned} Q \doteq \left\langle \mu_i^2 \right\rangle_{a\nu} &- 2\beta^2 J^2 (1-\nu) \left\langle \mu_i^2 (1-\mu_i^2) \right\rangle_{a\nu} \chi \\ &+ \beta^4 J^4 (1-\nu) \left\langle \mu_i^2 (1-\mu_i^2) \left[5 - 3\nu - (7-5\nu)\mu_i^2 \right] \right\rangle_{a\nu} \chi^2 \end{aligned}$$

 $\langle X_i \rangle_{av} \equiv N^{-1} \sum_i X_i$ due self-averaging property

イロト イ押ト イヨト イヨト

ELE DOG

Global order parameters

Asymptotic equations for the homogeneous order parameters

Asymptotic equation for χ

$$\chi \doteq \beta^2 J^2 (1 - \mu_i^2)^2 \chi - \beta^4 J^4 (1 - \mu_i^2)^2 [2 - \nu - (8 - 5\nu)\mu_i^2] \chi^2$$

• Asymptotic equation for ν

$$\begin{split} 0 &\doteq \nu \chi^2 \left\{ 1 - \beta^2 J^2 \left\langle (1 - \mu_i^2)^2 \right\rangle_{_{\boldsymbol{3}\nu}} \right. \\ &\left. + \frac{2}{3} \beta^4 J^4 \chi \left\langle (1 - \mu_i^2)^2 \left[3 - 2\nu - (11 - 8\nu) \mu_i^2 \right] \right\rangle_{_{\boldsymbol{3}\nu}} \right\} \end{split}$$

Global order parameters

Asymptotic equations for the homogeneous order parameters

Asymptotic equation for χ

$$\chi \doteq \beta^2 J^2 (1 - \mu_i^2)^2 \chi - \beta^4 J^4 (1 - \mu_i^2)^2 [2 - \nu - (8 - 5\nu)\mu_i^2] \chi^2$$

• Asymptotic equation for ν

$$\begin{split} 0 &\doteq \nu \chi^2 \left\{ 1 - \beta^2 J^2 \left\langle (1 - \mu_i^2)^2 \right\rangle_{a\nu} \\ &+ \frac{2}{3} \beta^4 J^4 \chi \left\langle (1 - \mu_i^2)^2 \left[3 - 2\nu - (11 - 8\nu) \mu_i^2 \right] \right\rangle_{a\nu} \right\} \end{split}$$

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ 토言 ∽)�(♡

Outline

4 Hierarchical TAP theory

Thermodynamic homogeneity and multiple TAP states

5 One-level hierarchical solution 1-TAP free energy and order parameters Stability conditions

*Asymptotic solution near the critical point*Fixed internal magnetic field

Equilibrium value of the local field expanded

イロト イ理ト イヨト イヨト

ELE DQC

Local magnetization μ

Only linear order in χ sufficient

Local magnetization

$$\mu_i \doteq m_i + (1 - m_i^2) \chi \beta \dot{\eta}_i$$

where $\dot{\eta}_i = d\eta_i/d\chi$ and $m_i = \tanh[\beta(h + \eta_i^0)]$

Derivative of the local field

$$eta \dot{\eta}_i = eta^2 J^2 \left[(1-
u) + \dot{Q}
ight] M_i + \sum_j \left[eta J_{ij} - \delta_{ij} eta^2 J^2 (1-Q)
ight] \dot{M}_j$$

with $\dot{M}_i = dM_i/d\chi$

■ Using the expansions for *M_i* and *Q* together with the definition of the TAP susceptibility

$$eta\dot{\eta}_i \doteq eta^2 J^2 (1-
u) igg[m_i - 2eta^2 J^2 rac{\langle m_i^2(1-m_i^2)
angle_{a
u}}{(1-m_i^2)} \sum_j \chi_{ij}^{TAP} m_j igg]$$

イロト イ理ト イヨト イヨト

ELE DQC

Local magnetization μ

Only linear order in χ sufficient

Local magnetization

$$\mu_i \doteq m_i + (1 - m_i^2) \chi \beta \dot{\eta}_i$$

where $\dot{\eta}_i = d\eta_i/d\chi$ and $m_i = \tanh[\beta(h + \eta_i^0)]$

Derivative of the local field

$$eta\dot{\eta}_i=eta^2 J^2\left[(1-
u)+\dot{Q}
ight]M_i+\sum_j\left[eta J_{ij}-\delta_{ij}eta^2 J^2(1-Q)
ight]\dot{M}_j$$

with $\dot{M}_i = dM_i/d\chi$

Using the expansions for *M_i* and *Q* together with the definition of the TAP susceptibility

$$eta\dot{\eta}_i \doteq eta^2 J^2 (1-
u) igg[m_i - 2eta^2 J^2 rac{\langle m_i^2(1-m_i^2)
angle_{a
u}}{(1-m_i^2)} \sum_j \chi_{ij}^{TAP} m_j igg]$$

イロト イ理ト イヨト イヨト

ELE DQC

Local magnetization μ

Only linear order in χ sufficient

Local magnetization

$$\mu_i \doteq m_i + (1 - m_i^2) \chi \beta \dot{\eta}_i$$

where $\dot{\eta}_i = d\eta_i/d\chi$ and $m_i = \tanh[\beta(h + \eta_i^0)]$

Derivative of the local field

$$eta\dot{\eta}_i=eta^2 J^2\left[(1-
u)+\dot{Q}
ight]M_i+\sum_j\left[eta J_{ij}-\delta_{ij}eta^2 J^2(1-Q)
ight]\dot{M}_j$$

with $\dot{M}_i = dM_i/d\chi$

Using the expansions for M_i and Q together with the definition of the TAP susceptibility

$$eta \dot{\eta}_i \doteq eta^2 J^2 (1-
u) igg[m_i - 2eta^2 J^2 rac{\langle m_i^2 (1-m_i^2)
angle_{av}}{(1-m_i^2)} \sum_j \chi_{ij}^{TAP} m_j igg]$$

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ 토言 ∽)�(♡

Mean-field nonolocal susceptibility I

Mean-field approximation – separation of distinct lattice sites

Decoupling of sums with linear susceptibility:

$$C[f,g] = \frac{1}{N} \sum_{ij} \chi_{ij} f(m_i) g(m_j)$$

Representation of the matrix inverse via self-avoiding random walks

$$\chi_{ij} = \chi_{ii} \left[\delta_{ij} + \sum_{k}' \beta J_{ik} \chi_{kj} \right]$$

TAP susceptibility

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Mean-field nonolocal susceptibility II

Operator representation of the spin coupling

$$\beta J_{ij} = \frac{\beta^2 J^2}{N} \left[\nabla_i m_j + m_i \nabla_j \right]$$
$$\nabla_i \equiv \chi_{ii} \frac{\partial}{\partial m_i}$$

• Operator representation of the linear susceptibility (along the AT line)

$$\begin{split} \chi_{ij} &= \chi_{ii} \delta_{ij} + \frac{\beta^2 J^2}{2N} \left[2 \nabla_i \chi_{ii} m_j \chi_{jj} + 2 m_i \chi_{ii} \nabla_j \chi_{jj} + \nabla_i \chi_{ii} \nabla_j \chi_{jj} \right] \\ &- \frac{\langle (1 - m_k^2 (1 - 3m_k^2) \rangle_{av}}{\langle m_k^2 (1 - m_k^2) \rangle_{av} \langle (1 - m_k^2)^2 \rangle_{av}} m_i \chi_{ii} m_j \chi_{jj} \end{split}$$

▲□▶▲@▶▲∃▶▲∃▶ ∃目 のへで

Mean-field nonolocal susceptibility III

Decoupled sum with nonlocal TAP susceptibility

$$\frac{1}{N} \sum_{ij} \chi_{ij} m_i (1 - m_i^2) m_j = \frac{\beta^2 J^2}{2} \left\langle (1 - m_k^2)^2 \right\rangle_{av} \left\langle (1 - m_k^2) (1 - 3m_k^2) \right\rangle_{av}$$

Asymptotic solution for the global parameters I

Asymptotic equation for the overlap susceptibility

$$\beta^{2} J^{2} \left\langle (1-m_{i}^{2})^{2} \right\rangle_{av} - 1$$

$$= \beta^{4} J^{4} \chi \left\{ \left\langle (1-m_{i}^{2}) \left[2-\nu - 2(5-3\nu)m_{i}^{2} + (4-\nu)m_{i}^{4} \right] \right] \right\rangle_{av}$$

$$+ 8\beta^{2} J^{2} (1-\nu) \left\langle m_{i}^{2} (1-m_{i}^{2}) \right\rangle_{av} \left\langle m_{i}^{2} (1-m_{i}^{2})^{2} \right\rangle_{av} \right\}$$

$$(4)$$

Asymptotic equation for the geometric (multilplicity) factor

$$\beta^{2} J^{2} \left\langle (1-m_{i}^{2})^{2} \right\rangle_{av} - 1$$

$$= \frac{2}{3} \beta^{4} J^{4} \chi \left\{ \left\langle (1-m_{i}^{2}) \left[3-2\nu-2(7-5\nu)m_{i}^{2}+(5-2\nu)m_{i}^{4} \right] \right] \right\rangle_{av}$$

$$+ 12 \beta^{2} J^{2} (1-\nu) \left\langle m_{i}^{2} (1-m_{i}^{2}) \right\rangle_{av} \left\langle m_{i}^{2} (1-m_{i}^{2})^{2} \right\rangle_{av} \right\}$$
(5)

Asymptotic solution for the global parameters II

■ Leading χ asymptotics below and ν_0 along the AT line

$$u_0 = rac{2\langle m_i^2(1-m_i^2)^2
angle_{_{av}}}{\langle (1-m_i^2)^3
angle_{_{av}}}$$

- Physics does not depend on ν , if $\chi = 0$
- Solution for ν_0 only for small magnetic field: $\langle m_i^2 \rangle_{av} = \langle \tanh^2[\beta(h + \eta_i^0)] \rangle_{av} < 1$

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Crossover in magnetic field

Crossover in the asymptotic solution

Asymptotic solution for *χ* physical only if positive and *ν* ≤ 1
 Positive solution only for small magnetic fields up to a critical value *ν_c* < 1 from

$$0 = \left\langle (1 - m_i^2) \left[2 - \nu_c - 2(5 - 3\nu_c) m_i^2 + (4 - \nu_c) m_i^4 \right] \right\rangle_{av} \\ + 8\beta^2 J^2 (1 - \nu_c) \left\langle m_i^2 (1 - m_i^2) \right\rangle_{av} \left\langle m_i^2 (1 - m_i^2)^2 \right\rangle_{av}$$

- Critical magnetic field h_c when ν_0 used for ν_c
- For higher magnetic fields asymptotic expansion to higher powers of *χ*

Crossover in magnetic field

- Asymptotic solution for χ physical only if positive and $\nu \leq 1$
- Positive solution only for small magnetic fields up to a critical value $\nu_c < 1$ from

$$\begin{split} 0 &= \left\langle (1 - m_i^2) \left[2 - \nu_c - 2(5 - 3\nu_c)m_i^2 + (4 - \nu_c)m_i^4 \right] \right\rangle_{av} \\ &+ 8\beta^2 J^2 (1 - \nu_c) \left\langle m_i^2 (1 - m_i^2) \right\rangle_{av} \left\langle m_i^2 (1 - m_i^2)^2 \right\rangle_{av} \end{split}$$

- Critical magnetic field h_c when ν_0 used for ν_c
- For higher magnetic fields asymptotic expansion to higher powers of *χ*

Crossover in magnetic field

- Asymptotic solution for χ physical only if positive and $\nu \leq 1$
- Positive solution only for small magnetic fields up to a critical value $\nu_c < 1$ from

$$0 = \left\langle (1 - m_i^2) \left[2 - \nu_c - 2(5 - 3\nu_c)m_i^2 + (4 - \nu_c)m_i^4 \right] \right\rangle_{av} \\ + 8\beta^2 J^2 (1 - \nu_c) \left\langle m_i^2 (1 - m_i^2) \right\rangle_{av} \left\langle m_i^2 (1 - m_i^2)^2 \right\rangle_{av}$$

- Critical magnetic field h_c when ν_0 used for ν_c
- For higher magnetic fields asymptotic expansion to higher powers of χ

Crossover in magnetic field

- Asymptotic solution for χ physical only if positive and $\nu \leq 1$
- Positive solution only for small magnetic fields up to a critical value $\nu_c < 1$ from

$$\begin{split} 0 &= \left\langle (1 - m_i^2) \left[2 - \nu_c - 2(5 - 3\nu_c) m_i^2 + (4 - \nu_c) m_i^4 \right] \right\rangle_{av} \\ &+ 8\beta^2 J^2 (1 - \nu_c) \left\langle m_i^2 (1 - m_i^2) \right\rangle_{av} \left\langle m_i^2 (1 - m_i^2)^2 \right\rangle_{av} \end{split}$$

- Critical magnetic field h_c when ν_0 used for ν_c
- For higher magnetic fields asymptotic expansion to higher powers of χ

Crossover in magnetic field

- Asymptotic solution for χ physical only if positive and $\nu \leq 1$
- Positive solution only for small magnetic fields up to a critical value $\nu_c < 1$ from

$$0 = \left\langle (1 - m_i^2) \left[2 - \nu_c - 2(5 - 3\nu_c)m_i^2 + (4 - \nu_c)m_i^4 \right] \right\rangle_{av} \\ + 8\beta^2 J^2 (1 - \nu_c) \left\langle m_i^2 (1 - m_i^2) \right\rangle_{av} \left\langle m_i^2 (1 - m_i^2)^2 \right\rangle_{av}$$

- Critical magnetic field h_c when ν_0 used for ν_c
- For higher magnetic fields asymptotic expansion to higher powers of χ

Answers to the addressed questions

- How RSB from TAP? real spin replicas for different TAP solutions, hierarchical (thermodynamically homogeneous) extension of TAP theory
- Is TAP exact? only in the paramagnetic phase, low-temperature solution unstable (thermodynamically inhomogeneous) ⇒ hierarchical TAP
- Does TAP produce stable equilibrium? standard TAP NO – hierarchical TAP YES
- Thermodynamikc limit & self-averaging? - only for hierarchical TAP, different TAP states dynamically interact via χ – simply connected phase space with a unique equilibrium state
- Origin of RSB order parameters? thermal fluctuations responsible for RSB order parameters, randomness harmless

(日)

Answers to the addressed questions

- How RSB from TAP? real spin replicas for different TAP solutions, hierarchical (thermodynamically homogeneous) extension of TAP theory
- Is TAP exact? only in the paramagnetic phase, low-temperature solution unstable (thermodynamically inhomogeneous) ⇒ hierarchical TAP
- Does TAP produce stable equilibrium? standard TAP NO – hierarchical TAP YES
- **Thermodynamikc limit & self-averaging?** - only for hierarchical TAP, different TAP states dynamically interact via χ
 - simply connected phase space with a unique equilibrium state
- Origin of RSB order parameters? thermal fluctuations responsible for RSB order parameters, randomness harmless

(日)

Answers to the addressed questions

- How RSB from TAP? real spin replicas for different TAP solutions, hierarchical (thermodynamically homogeneous) extension of TAP theory
- Is TAP exact? only in the paramagnetic phase, low-temperature solution unstable (thermodynamically inhomogeneous) ⇒ hierarchical TAP
- 3 *Does TAP produce stable equilibrium?* standard TAP NO – hierarchical TAP YES
- **a** Thermodynamikc limit & self-averaging? - only for hierarchical TAP,
different TAP states dynamically interact via χ
 - simply connected phase space with a unique equilibrium state
- Origin of RSB order parameters? thermal fluctuations responsible for RSB order parameters, randomness harmless

Answers to the addressed questions

- How RSB from TAP? real spin replicas for different TAP solutions, hierarchical (thermodynamically homogeneous) extension of TAP theory
- Is TAP exact? only in the paramagnetic phase, low-temperature solution unstable (thermodynamically inhomogeneous) ⇒ hierarchical TAP
- 3 *Does TAP produce stable equilibrium?* standard TAP NO – hierarchical TAP YES
- Thermodynamikc limit & self-averaging? - only for hierarchical TAP, different TAP states dynamically interact via χ
 - simply connected phase space with a unique equilibrium state
- Origin of RSB order parameters? thermal fluctuations responsible for RSB order parameters, randomness harmless

Answers to the addressed questions

- How RSB from TAP? real spin replicas for different TAP solutions, hierarchical (thermodynamically homogeneous) extension of TAP theory
- Is TAP exact? only in the paramagnetic phase, low-temperature solution unstable (thermodynamically inhomogeneous) ⇒ hierarchical TAP
- 3 *Does TAP produce stable equilibrium?* standard TAP NO – hierarchical TAP YES
- **4** *Thermodynamikc limit & self-averaging?* - only for hierarchical TAP, different TAP states dynamically interact via χ
 - simply connected phase space with a unique equilibrium state
- **5** Origin of RSB order parameters? thermal fluctuations responsible for RSB order parameters, randomness harmless

TAP vs. hierarchical TAP

TAP subet of hierarchical TAP

TAP

- *PM* single solution
- *SG* multiple solutions
 - exponentially many independent quasi-equilibrium states
 - a single weighted (composite) equilibrium state
 - locally stable states degenerate with unstable states
 - direct averaging over randomess impossible (incorrect)
 - exclusion of unstable states only by solving numerically inhomogeneous TAP equatons

Hierarchical TAP

- *PM* single solution (TAP)
- *SG* single solution
 - TAP states dynamically interact – melt into one
 - single equilibrium state characterized by homogeneous RSB parameters
 - degeneracy of TAP states lifted
 unstable states removed
 - self-averaging free energy
 - no need to solve inhomogeneous hierarchical TAP equations numerically

Stability parameters

To the main text

